Obecná a anorganická chemie

Prof. Dr. Ing. Jiří Klikorka, DrSc.
Prof. Ing. Bohumil Hájek, DrSc.

2., nezměněné vydání

Praha 1989

SNTL – Nakladatelství technické literatury
Alfa, vydavatelstvo technickej a ekonomickej literatúry, Bratislava
Moderní výklad struktury atomů, teorie chemické vazby, struktury anorganických látek a podstaty jejich reakcí. V systematické části věnované chemickým vlastnostem prvků a jejich složení jsou především zdůrazňovány obecné souvislosti a průmyslové aspekty.

Kniha je určena jako učebnice pro studující vysokých škol chemickotechnologických a jako pomůcka všem, kteří chtějí získat ucelený pohled na moderní anorganickou chemii.

Lektorovali prof. Ing. Ján Gašo, DrSc., člen korespondent ČSAV a SAV, a prof. RNDr. Jiří Vacík, DrSc.

Redakce chemické literatury – hlavní redaktorka Ing. Eva Hugová,
odpovědná redaktorka Ing. Eva Dibusová

© Prof. Dr. Ing. Jiří Klikorka, DrSc., prof. Ing. Bohumil Hájek, DrSc., doc. Ing. Jiří Votinský, CSc., 1985
Obsah

Předmluva .. 9

1 HOMOTA A JEJÍ VLASTNOSTI 11
 1.1 Pojem hmoty 11
 1.2 Formy hmoty 11
 1.3 Způsoby existence hmoty 12
 1.4 Přední fyziky, chemie a biologie 13
 1.5 Zákony zachování hmotnosti a energie 14

2 CHEMIE JAKO VĚDA. JEJÍ HISTORICKÝ VÝVOJ ... 17
 2.1 Poznávání světa 17
 2.2 Zákázně charakteristiky vědy 18
 2.3 Historické etapy vývoje chemie 19
 2.4 Obecná a anorganická chemie 23

3 ATOMOVÉ JÁDRO 25
 3.1 Struktura atomu 25
 3.2 Atomové, neutronové a nukleonové číslo ... 26
 3.3 Atomová hmotnost 27
 3.4 Přírodní nuklydy a prvky 29
 3.5 Vazebná energie jádra 32
 3.6 Stabilita atomových jader 34
 3.7 Radioaktivita 37

4 ELEKTRONOVÝ OBAL ATOMU 41
 4.1 Fyzikální odsouzení světa mikroobjektů ... 42
 4.2 Vlnová funkce 47
 4.3 Atomové orbitály 48
 4.4 Kvantová čísla 49
 4.5 Energie atomových orbitalů 54
 4.6 Prostořové uspořádání atomových orbitalů 59
 4.7 Vysvětlový princip 63
 4.8 Elektronová konfigurace atomů prvků. Její periodická 72

5 CHEMICKÁ VZBA 78
 5.1 Vazba v molekule vodíku 80
 5.2 Molekulové orbitály 84
 5.3 Vazba ve stejnooderných dvouatomových molekulách a molekulových iontech 90
 5.4 Vazba v různooderných dvouatomových molekulách ... 94
 5.5 Polárita a ionový charakter vazby 96
 5.6 Hybridizace atomových orbitálů 101
 5.7 Tvar molekul sloučenin nepruhodných prvků ... 111
FORMÁLNÍ VYJADŘOVÁNÍ A KLASIFIKACE CHEMICKÝCH VAZEB

ATOMOVÁ A ELEKTRONOVÁ KONFIGURACE
SYMBOLIKA CHEMICKÉ VAZBY
CHEMICKÉ VZOREČ
KLASIFIKACE TVORBY A ZÁNiku KOVALENTSCHCH VAZEB
JEDNOUCHÁ CHARAKTERISTIKA VAZEBNÝCH SITUACI
NĚKTERÉ ZÁKLADNÍ CHEMICKÉ POJMY A ZÁKONOSTI
SLABÉ INTERAKCE MEZI MOLEKULAMI
VAN DER WAALSROVY SILY
VAZBA VODÍKOVÝM MŮSTKEM
KLASIFIKACE CHEMICKÝCH LÁTEK
KLASIFIKACE PRVKŮ
KLASIFIKACE ČISTÝCH LÁTEK
CHEMICKÉ REAKCE
FORMALNÍ ZNIZORNĚNÍ CHEMICKÉHO DĚJE
TYPY CHEMICKÝCH REAKCE
ENERGETICKÉ změny PŘI PRŮBĚHU CHEMICKÝCH REAKCÍ
REAKČNÍ KINETIKA
ROVNOVÁHA CHEMICKÝCH REAKCÍ
VODÍK A VODA
VODÍK
HYDRAVLY A HYDRAVLYKOMPLEXY
VODA
ROZTOKY
VYJADŘOVÁNÍ SLOLENÍ ROZTOKŮ
TVORBA ROZTOKŮ A JICH STRUKTURA
Rozpustnost látek
KYSELINY A ZÁSADY
POJEM KYSELINY A ZÁSADY
KVANTITATIVNÍ VYJADŘOVÁNÍ KYSELOSTI A ZÁSADITOSTI LÁTEK
VZTAHY MEZI STRUKTUROU A ACIDOBAZICKÝMI VLASTNOSTMI LÁTEK
HYDRÓLYZA SOLI
ELEMENTÁRNÍ NEKOVY
ELEMENTÁRNÍ VODÍK
VZÁMENÉ PLYNY
ELEMENTÁRNÍ FLUOR
ELEMENTÁRNÍ CHLOR, BROM A JOD
ASTAT
ELEMENTÁRNÍ KYSLÍK
ELEMENTÁRNÍ SÍRA
ELEMENTÁRNÍ SELEN

118
124
129
129
130
131
136
137
141
144
144
148
152
156
163
167
168
169
179
188
204
216
216
219
222
229
230
232
237
243
243
249
252
258
262
264
266
267
268
270
271
273
276
13.9 Elementární tellur ... 277
13.10 Polonium ... 277
13.11 Elementární dusík ... 277
13.12 Elementární fosfor .. 278
13.13 Elementární uhlik ... 280
13.14 Elementární křemík 281
13.15 Elementární bor .. 282
14 VZÁCNÉ PLYNY .. 284
15 HALOGENY .. 288
15.1 Vazebné možnosti halogenů 288
15.2 Chemické vlastnosti halogenů 292
15.3 Binární sloučeniny halogenů 293
15.4 Ternární kysličaté sloučeniny halogenů 301
15.5 Výroba a použití technicky významných sloučenin fluoru 305
15.6 Výroba a použití technicky významných sloučenin chlорu 306
15.7 Výroba a použití technicky významných sloučenin bromu a jodu 309
16 KYSLÍK .. 311
16.1 Vazebné možnosti kyslíku 311
16.2 Chemické vlastnosti kyslíku 314
16.3 Binární sloučeniny kyslíku 315
16.4 Výroba a použití technicky významných sloučenin kyslíku 318
17 CHALKOGENY .. 320
17.1 Vazebné možnosti chalkogenů 320
17.2 Chemické vlastnosti síry, selenu a telluru 325
17.3 Binární sloučeniny chalkogenů ..
17.4 Ternární kysličaté sloučeniny síry 331
17.5 Ternární kysličaté sloučeniny selenu a telluru 339
17.6 Výroba a použití technicky významných sloučenin síry 340
18 DUSÍK A FOSFOR .. 345
18.1 Vazebné možnosti dusíku a fosforu 345
18.2 Chemické vlastnosti dusíku a fosforu 349
18.3 Binární sloučeniny dusíku 349
18.4 Binární sloučeniny fosforu 358
18.5 Ternární kysličaté sloučeniny dusíku 362
18.6 Ternární kysličaté sloučeniny fosforu 364
18.7 Výroba a použití technicky významných sloučenin dusíku 368
18.8 Výroba a použití technicky významných sloučenin fosforu 371
19 UHLÍK A KŘEMÍK .. 374
19.1 Vazebné možnosti uhliku a křemíku 374
19.2 Chemické vlastnosti uhliku a křemíku 377
19.3 Binární sloučeniny uhliku 378
19.4 Binární sloučeniny křemíku 383
19.5 Ternární kysličaté sloučeniny uhliku 387
19.6 Ternární kysličaté sloučeniny křemíku 389
19.7 Výroba a použití technicky významných sloučenin uhliku 394
19.8 Výroba a použití technicky významných sloučenin křemíku 398
Předmluva

Tato kniha je vysokoškolskou učebnicí obecných základů chemie a současně těž uvedením do chemie anorganické. Je určena především posluchačům vysokých škol chemickotechnologických a plně odpovídá osnovám předmětu Obozně a anorganické chemie, který se přednáší v prvních dvou semestrech tohoto studia. Může však posloužit i jako studijní literatura pro posluchače chemických disciplín na jiných vysokých školách.

Jemným sepsáním jsme se pokusili doplnit českou chemickou literaturu o moderní vysokoškolskou učebnici obecně a anorganické chemie, v níž jsou zdůrazněny vztahy, zákonnosti, souvislosti a logika předmětu a je požadována stránka fenomenologická.

Na některých místech se v učebnici používá snad poněkud nevyhýbnost způsob vykladu a nezcela běžné je i rozvržení látky do kapitol. Některé teoretické představy jsou zjednodušeny, ovšem vždy je na tuto skutečnost v textu upozorněno. Pokud k danému problému existuje více alternativních myšlenkových přístupů, zvolili jsme většinu jen jediný z nich a o ostatních se pouze zmíníme. Celková koncepce knihy vyplývá z dlouholetého hledání optimálního přístupu k obsahové i formální stránce předmětu. Užitý styl vykladu se nám v naší pedagogické praxi plně osvědčil, je studenty příznivě přijímán a vedle k dobrým studijním výsledkům.

V učebnici se odráží i naše snaha napsat učebnici, který respektuje přestavbu vysokoškolského studia chemie a přispívá k její úspěšné realizaci. Zdůraznili jsme zejména návaznost předmětu na následné technologické disciplíny. V kapitolách věnovaných systematické anorganické chemii jsme podtrhli průmyslové významné chemické děje. Přitom jsme však nemohli ani nechtěli přehlédnout, že moderní chemie má svůj náročný teoretický aparát, jehož alespoň rámcová znalost je nutná i v oborech aplikované chemie.

Velkou pomoc nám při práci na knize byly náměty a připomínky obou recenzentů, prof. Ing. Jana Gaže, DrSc., člena korespondenta ČSAV a SAV, a prof. RNDr. Jiřího Vacíka, DrSc. Jsme jim za jejich kritickou spolupraci velmi vděční. Poděkování si zasluží i naši nejблиžší spolupracovníci za plodné diskuse a pomoc při připravě a úpravě textu.

V Pardubicích a Praze 7. 6. 1982

Autoři
1 Hmota a její vlastnosti

Lidé od pradávna vědomé shromažďují poznatky o světě, který je obklopují. Soubor těchto poznatků spolu s jejich výkladem a zobecněním tvoří náplň přírodních věd. Hlavním cílem vědeckého bidání je získávání vědomosti o podstatě a struktuře světa a o zákonitostech, kterými se přírodní děje řídí, a jejich využití ve prospěch lidstva.

Hluboký a kritický rozbor obsahu a dosavadních poznatků všech přírodních věd i výsledků veškeré praktické činnosti lidstva umožňuje vedecké marxisticko-leninské filozofii formulovat neobyčejně závažné zjištění, že svět má jedinou, a to hmotnou podstatu. Hmota vystupuje jako obsah a základ jevů v přírodě. V celém vesmíru jsou všechny změny i děje vždy spojeny s pohybem hmoty. Není pohybu a vlastností, které by nebyly pohybové a vlastnostmi hmoty.

1.1 POJEM HMOTY

S rozvojem přírodních věd a filozofie byl postupně vymezen pojem hmoty. Nejobecnějším znakem hmoty, umožňujícím definovat ji ve smyslu filozofickém, je skutečnost, že hmota ve všech svých formách existuje nezávisle na lidské vůli a na vědomí vůbec. Říkáme, že existuje objektivně. Současně však hmotné objekty působí na naše smysly, vyvolávají v nás počitky, vjemy a představy a jejich prostřednictvím se odrážejí v našem vědomí a jsou poznávány. Hmota je objektivní realita, jež působí na naše smyslové orgány, a tak se odráží v našem vědomí (Lenin 1908).

Z uvedené definice jednoznačně plyne, že hmotá jako objektivní realita je nezávislá na vědomí, kdežto vědění jako realita subjektivní povahy je závislé na hmotě. Vědomí se objevuje teprve tehdy, když hmotá dosáhla vysokého stupně organizace.

Pro takto definovaný pojem hmoty je ve světových jazycích obvykle název materii. V našem jazyce se pojem hmota občas užívá ještě v dalších dvou významech: mluví pojmou hmotnost, sloužícího k vyjadření setkávací a třeba vlastnosti hmotných objektů, a mluví pojmou latka, kterým se označují všechny formy hmoty mající přetážitou strukturu. V našich dalších úvahách se budeme takovýmto záměram vyhýbat a jednotlivé pojmy budeme přesně rozúzevat.

1.2 FORMY HMOTY

Hmota tvoří jedinou podstatu vesmíru, ale přitom se vyskytuje v nekonečně mnoha kvalitativně rozdílných formách.

Jedním ze základních kritérií pro klasifikaci forem hmoty je zjištění přetážitosti nebo nepřetážitosti její struktury.

Formy hmoty, které mají přetážitou (diskrétní) strukturu, se nazývají latky. Skládají se z rozličných druhů částic majících určitou energii a nenulovou kladovou hmotnost. Korpuskulární struktura je pro látky typická a je závažnějším rysem než jejich vlnový charakter. Částice vytvázejí

1) Těž korpuskulární (tj. tvořenou částicemi).
strukturu látek budou mají elektrický náboj, nebo jsou elektrostatické. Hmotné objekty s diskrétními strukturami a nematovou hmotnou hmotností nemohou vztahu k libovolným inertním souřadnicím nebo vztahům rychlosti světla (či dokonce rychlosti výše).

K látkovým formám hmoty řadíme:
1. *elementární částice* (elektrony, protony, neutrony aj.),
2. složitější *mikročástice* (atomy, iony, molekuly aj.),
3. makroskopická tělesa a systémy v různém skupenství (tuhé látky, kapaliny, plyny aj.),
4. *biologické útvary* (viry, bakterie, rostliny, živočichy aj.),
5. *kosmické útvary* (planety, hvězdy, galaxie, metagalaxie aj.).

Pro nepřerušitelné formy hmoty se používá název *pole*. Tyto formy hmoty mají klidovou hmotnost rovnou nulu a jejich výrazným rysem je vlnová povaha. Zprostředkují vznikamené působení mezi diskrétními formami hmoty, jednotlivými částicemi, tělesy aj. Pole se šíří vzdálenost konstantní rychlosti, a to rychlosti světla ($c = 299792458 \frac{m}{s}$).

Studiem vzájemného vztahu látek a polí se zjistilo, že za určitých podmínek se mohou částice látky měnit v kvanta pole, a naopak. Například při vzniknění světelného otisku v pozitronem mohou vznikat fotony. Naopak za jiných podmínek může být fotonu vznikat dvojice elektron–pozitron. Fyzika zjistila i další obdobné transformační procesy. To vše svědčí o hlubokých souvislostech a jednotě forem hmoty.

Je tedy důležité, že nálezy fyzikální studie o hmotě, o její struktuře a o změnách její struktury jsou v důsledku nekonečné rozmanitosti těchto jevů dosud neúplné. Soustavně se doplňují a zpřesňují novými objevy.

1.3 ZPŮSOBY EXISTENCE HMOTY

Způsoby (formami) existence hmoty rozumíme takové její vlastnosti, kterými se hmoty vznakou je zcela nezvále na konkrétních podmínkách své existence. Ze všech vlastností hmoty vybírají téměř požadavku pouze *pohyb, prostor a čas*. Protože jsou vzdálenost konstantní, má hmotnost polí vznik originální střídavé vzniknutí dvojice elektron–pozitron. Fyzika zjistila i další obdobné transformační procesy. To vše svědčí o hlubokých souvislostech a jednotě forem hmoty.

Způsoby forem pohybu hmoty je nečtěné množství. Lze je rozdělit na *příznaky forem hmoty*.

1. *mikrofyzikální* – zahrnuje pohyb elementárních částic a polí, nitrojaderný pohyb a pohyb mikročástic,
2. *chemický* – pohyb atomů při vzniku chemických vazeb,
3. *makrofyzikální* (mechanický) – přemístování těles a systémů v prostoru, změny jejich struktury,
4. *biologický* – funkce a vývoj živých organismů,
5. *společenský* – procesy probíhající ve společnosti.

Obr. 1-1. Hierarchie základních forem pohybu hmoty

Také dva další atributy hmoty, prostor a čas, jsou od hmoty neoddělitelné.
Pod filozofickým pojmem prostor chápeme rozprostraněnost hmotných objektů a vzájemný vztah mezi každým z nich a jej obklopujícími hmotnými objekty.
Trvání existence hmotných objektů a jejich struktur a vzájemný vztah každého z nich k předcházejícím a následujícím hmotným objektům a jejich strukturám se nazývá čas.
Prostor a čas jsou s hmotou ježí spjaté, ale i na ní přímo závislé. Jejich existence je podmíněna existencí hmoty a jejího pohybu. Tato poučka dialektického materialismu je potvrzovala i výsledky moderní vědy. Ukazuje se, že jak struktura a uspořádání prostoru, tak i tok času závisí na pohybu a uspořádání zejména látkových forem hmoty.

1.4 PŘEDMĚT FYZIKY, CHEMIE A BIOLOGIE

Formální třídění pohybu hmoty na jeho jednotlivé druhy se odráží v existenci a struktuře jednotlivých přírodovědných disciplín. Pohyb v mikrosructuře hmoty, tj. na úrovni elementárních částic, atomů, iontů a molekul, je předmětem zkoumání chemie, fyziky a molekulární biologie. Tyto tři obory zkoumají vnitřní vztahy a zákorností těchto hmotných objektů z rozdílných hledisek.
Chemie se zabývá vzájemnými vztahy mezi atomy, ionty a molekulami a také zákornostími, jimiž se řídí sdružování atomů a iontů ve složitéjší celky a transformace těchto celků. Lze znovu a přesněji definovat, že jako chemické se označují takové formy pohybu hmoty, které jsou spojené se změnami vnitřní struktury látek, způsobovanémi pohyboem atomů, jmenovitě jejich elektronů, a nejsou provázeny změnami atomových jader.
Studium vlastností a struktury elementárních částic i procesů tvorby, rozpadu a změn atomových jader je předmětem atomové fyziky. Klasická fyzika naproti tomu zkoumá pohyb hmotných objektů, při němž se vnitřní struktura látek principiálně nemění.
Předmětem biologie je zkoumání pohybu živých objektů. Molekulární biologie sleduje tyto procesy až do oblastí pohybu molekul. Specifickost biologického pohybu spočívá v neustálém obnovování chemického složení živých těl v důsledku látkového metabolismu a v jejich schopnosti reprodukovat se ve formě nových jedinců.

Tyto skutečnosti se projevují v tom, že pokrok vědního oboru věnujícího se elementárnější úrovní pohybu hmoty vždy vede k pokroku oborů na něj navazujících. Proto např. rozvoj fyziky do jisté míry působí na pokrok v chemických a biologických vědách.

1.5 ZÁKONY ZACHOVÁNÍ HMOTNOSTI A ENERGIE

Z materialistického pojetí hmoty i z hodnocení výsledků všech uskutečněných experimentů vyplývá záveď o nestoječnosti a nezmenšitelnosti hmoty a jejího pohybu, o nekonečnosti její existence v prostoru a čase.

Fyzikálním vyjádřením nestoječnosti a nezmenšitelnosti hmoty a jejího pohybu jsou zákony zachování hmotnosti a energie.

- Zákonn zachování hmotnosti

Při objevu nezmenšitelnosti hmoty měl významnou úlohu zákon zachování hmotnosti. Jeho poznání je jednou z prvních základních etap v historii exaktní přírodovedy (Lomonosov 1758, Lavosier 1774 až 1777). Na počátku našeho století byla jeho platnost experimentálně ověřována s nejvyšší dostatečnou přesností měření hmotnosti (10⁻⁶ g) zkoumaného systému (Landolt 1908 a Eötvös 1909).

Z chemického hlediska je vhodným vyjádřením zákona zachování hmotnosti tato formulace:

Reagující spolu chemické látky v izolované soustavě (str. 154), je součet hmotností molekula chemické reakce roven součtu hmotnosti reakčních produktů. Před pojemem izolovaná soustava se přitom rozumí část reálného světa oddělena od okolí jednoznačně vymezene hranici a vyznačující se tím, že přes tuto hranici v žádném z obou možných směrů nepřechází ani látky, ani energie.

Z tohoto zákona vyplývá, že hmotnost izolované sestavy je rovna součtu hmotnosti jednoduchých látok (prvků) ji skládajících. Dalším důsledkem v oblasti chemie, tedy v oblasti dějin, které nemění strukturu jader atomů, je platnost odvozeného zákona zachování chemických prvků (str. 26).

Chemické prvky obsažené ve východních látkách jsou ve stejných duchu a ve stejném množství obsaženy také v reakčních produktích, ať u nich vytvářejí jakékoliv složeniny.

Zákonn zachování hmotnosti však vyhovuje k popisu reálných systémů jen v prvním přiblížení. Jako všeobecný přírodní zákon je přechodný teprve ve své integrované formě, tj. ve spojení se zákonem zachování energie a při zahrnutí vztahu ekvivalence hmotnosti a energie.

- Zákonn zachování energie

Energie je veličina charakterizující vnitřní nebo vnější stav pohybu hmotně soustavy. Změny energie se mohou exaktně zjišťovat fyzikálním měřením. Zákonn zachování energie lze formuloval takto:

Energie izolované sestavy se nemění, ať už probíhá jakýkoliv děj.
První obecnou formulaci tohoto zákona můžeme opět připsat Lomonosovovi (1760), který svým géliem dalším předstihl dobou. Lomonosovova formulace upadla v zapomnění a zákon znovu objevil Mayer (1842). O experimentální ověření platnosti zákona se zasloužil Joule a o jeho použití v chemii Hess.

Vztah mezi hmotností a energií

Koncem minulého a začátkem našeho století byla v oblasti fyziky vyslovena řada revolučních myšlenek a získáno mnoho překvapivých experimentálních výsledků.

Experimenty Lebedjëvy (1891) prokázaly, že světlo vyvolává tlak při dopadu na povrch tělesa. To znázorňuje, že pohybojící se foton - kvantum elektromagnetického pole - v okamžiku dopadu na povrch tělesa předává tomuto hmotnému objektu hybnost, a že tedy foton má při svém pohybu nemalouvanou hmotnost.

Michelson a Morley (1887) se pokusili experimentálně dokázat existenci a vlastnosti čerstvě vykřiknuté věty, v němž je skutečně - jak se předpokládalo - šíření všechna fyzikální pole. Jejich velmi důvěrný experiment, vycházející z předpokladu, že rychlost světla se mění v závislosti na směru jeho šíření od pohybojícího se světelného zdroje, byl zcela negativní. Tím vyšlo na největší nevěropláznost hypotezy čerstvě vykřiknuté. Současně se tak fyzikově setkal s platností dosud neznámého a pro klasickou fyziku zcela neuvěřitelného principu: rychlost světla ve vakuu je vždy konstantní, bez zátěže na jakýkoliv pohyb zdroje světla nebo pozorovatele.

Ve svých důsledcích vedly tyto a další výsledky experimentů k vypracování speciální teorie relativity a relativistické mechaniky (Einstein 1905). Jednou z jejich základních rovnic je vztah mezi hmotností částice m, a hmotností m_0, kterou částice nabyvá, když se pohybuje rychlosti v (v závislosti rychlost světla ve vakuu):

$$m = \frac{m_0}{\sqrt{1 - \left(\frac{c}{v}\right)^2}}$$

Ze vztahu je zřejmé, že rychlost v měřitelně ovlivňuje hmotnost pohybující se částice jen tehdy, když se řadově přiblížuje rychlosti světla. Při rychlosti $v = 0,1c$ se hmotnost částice m proti m_0 zvýšuje asi o 0,5%, při rychlosti $v = 0,9c$ je přiblížek jenice několik procent. Dostatečně velikou rychlost se spolehlivě měření relativistických efektů mají jedinece elementární částice, jako jsou elektrony, protony, neutrony aj. Makroskopická tělesa vykazují při dosažitelných rychlostech zanedbatelně malý přírůstek hmotnosti.

Například u umělých druhů pum $m - m_0 < 10^{-9}m_0$.

Z rovnice (1-1) odvodil Einstein velmi jednoduchý vztah mezi hmotností pohybující se částice a její energií:

$$E = E_0 = mc^2(m - m_0)$$

kde E je energie pohybující se částice a E_0 - energie částice v klidu. Posléze vyslovil domněnku, že celá hmotnost částice je ekvivalentní energii ve smyslu rovnice

$$E = mc^2$$

Naprostá platnost této Einsteinovy rovnice byla potvrzena i řadou experimentů s elementárními částicemi a při štěpeno atomových jader. Vytvořila velké diskuse nejen ve fyzice, ale i ve filozofofii. V klásické fyzice byla v té době nepřehlédnutelná hmotnost jako jednoznačně mítí množství hmoty. To se však důsledcích vedlo k idealizovanému výkladu této rovnice a k představě, že je možné měnit hmotu v enerzi a z energie vykázat hmotu. Skutečnost je však jiná. Einsteinova rovnice nevyjadřuje nic jiného než ekvivalencí dvou různých forem hmoty, přetížení a neptastně více, a kvantitativně popisuje energetické a hmotnostní změny, které provázejí jejich transformace. Výsaduje skutečnost, že poměr čelkové energie hmotného objektu k jeho hmotnosti je vždy konstantní a je roven četným rychlostem světla.

Je zajímavé, jak se tyto vztahy uplatňují při chemických reakcích, které jsou, jak uvidíme později, doprovázery uvolněním nebo spotřebováním energie. Toplo je, je se vyvíje při zreagování jednoumol nějaké sloučeniny, zpravidla nepřehlédně 1,2 MJ.
Platí tedy, že změna hmotnosti Δm reagující soustavy za předpokladu vzniku právě tohoto reakčního tepla $\Delta E = 1.2$ MJ bude

$$\Delta m = \frac{\Delta E}{c^2} = \frac{1.2 \cdot 10^9 J}{\left(3 \cdot 10^8 m/s\right)^2} = 1.33 \cdot 10^{-11} kg$$

Hmotnost chemické soustavy se tudíž po uvolnění tepla zmenší o $1.33 \cdot 10^{-8} g$. Abychom pokles hmotnosti mohli změřit, museli bychom umět zvážit daný systém s přesností nejméně $10^{-8} mg$. To je však přesnost o čtyři řády větší, než jaké při svých experimentech dosáhl Landolt.

Změny hmotnosti reagující soustavy, k nimž dochází při běžných chemických reakcích, nejsou experimentálně postižitelné. Při velkých změnách energie, jaké provázejí např. jaderné procesy, tře ovšem změny hmotnosti měřit velmi dobře.
2 Chemie jako věda. Jeji historický vývoj

Chemie patří do velké skupiny přírodních věd, jejichž úkolem je hledat a nalézat zákonitosti působící v přírodě, popisovat a vysvětlovat všedké přírodní dění a využívat získané poznatky v praxi, tj. při materiální činnosti lidí směřující ke změně, přestavbě okolní skutečnosti.

Zákonitosti, jimiž se řídí proces našeho poznávání světa, a praktické postupy, jimiž je poznávací proces realizován, jsou společné pro všechny vědy.

Jedinec, který porozumí cestám, jimiž se ubírá lidské poznání, je metodicky lépe připraven k této činnosti, dodržuje lépe překonávat vystavující obsahu a snaze se vyhně chybovém a omylům.

Než přístoupíme k výkladu specifických oblasti chemie, venujeme tuto kapitolu zcela elementárnímu nástupu základních pojmů z oblasti metodologie věd a povětšiněm sciznamení s velmi poučnou historií i současností vývoje chemie jako přírodní vědy.

2.1 POZNÁVÁNÍ SVĚTA

Okolní svět se tvrde promítá do vědomí každého jedince prostřednictvím jeho smyslových orgánů. Vytvořený obraz je dále v mozku zpracováván, abstrahován a ukládán. Úkolem je v podstatě ihlastejší, který z úseků věděního světa byl takto ve vědomí zaznamenán. Tento proces se ve filozofické terminologii označuje jako proces poznání. Podstatou poznání je tedy odrážení skutečnosti, uvědomělé napodobení známého objektu, jeho vlastností a vztahů formou ideálních obrazů ve vědomí člověka. Poznávání se realizuje dvojí cestou: cestou smyslového poznání a cestou abstraktního myšlení.

Smyslové poznání je prosté zobrazení skutečnosti ve vědomí. Uskutečňuje se formou počítání a vjemů. Počítač je první obraz vzniklý působením skutečnosti na určitý smyslový orgán. Naproti tomu vjem je integrální obraz, vzniklý v vědomí jako výsledek celkového působení daného objektu na smyslové orgány jedince. Lze říci, že vjem je součtem, superpozicí počitů. Smyslové poznání má empirický, popisný (fenomenologický) charakter, vzniká to, co je na povrchu jevů.

Prominknout pod povrch věcí, odhadit skrytě vnitřní vztahy a souvislosti, zobecnit jevové poznámané a předvídat výsledek vědomých zásahů do chodu věcí nám umožňuje dějovej, vyšší forma poznávacího procesu — abstraktní myšlení.

Myšlení je poznávací proces vytvářející určité stránky nebo vlastnosti zkoumaného jevu nebo objektu. Jeho cílem je získat nové, obvykle obecnější, a tedy závažněji poznatky. Myšlením se v lidském vědomí vytváří tzv. pojmy. Pojmy jsou ideální obrazy zbavené hrubé závislosti na konkrétním a odrážejícím obecně, široce platné vztahy a vlastnosti předmětů a jevů. Abstraktní myšlení pak manipuluje s těmito pojmy, vytváří je a sjednocuje s cílem získat nové poznatky. Člověk tak dospívá od empirického poznání k poznání teoretickému.

Všechny úvahy, které jíme zde až dosud rozhodovaly, platí zcela obecně pro každý poznávací proces, tedy i ve vědě. Je však těha zdůraznit, že při vědeckém bádání se vše nez v jiných oblastech poznávání využívají určité vyzkoušené a ověřené metody. Nejzákladnější z nich zde nyní stručně uvedeme.
Pozorování je cílevedomé, záměrné vnímání jevů týkajících se zkoumaného objektu. Vede k získání informací o pozorováném objektu a je významnou metodou empirického poznávání přírody.

Experiment je postup vědeckého zkoumání, při němž se ve specificky připravených podmínkách uskutečňují určité jevy nebo změny objektů. Od pozorování se tedy experiment odlišuje tím, že je uměle inscenován a že zkoumaný jev by se bez vále a činností člověka v daném místě a čase nerealizoval.

Myslenkový postup nazývaný *srovnávání* slouží k odhalení shody nebo rozdílu mezi zkoumaným jevem a jinými jevy. Předpokládá existenci poznatků (získaných experimentem, pozorováním nebo myšlením) o dvou a více obdobných jevech.

Hledání analogie je myšlenkový postup, při němž se z toho, že dva objekty nebo jevy mají určité shodné vlastnosti, usuzuje, že se patrně shodují i v některých dalších vlastnostech.

Způsob myšlení, při kterém se z řady poznaných konkrétních jevů usuzuje na obecný průběh jevů obdobného typu, se nazývá *indukční postup*.

Naopak při *dedukčním postupu* vytváříme nové závěry jako logický důsledek platnosti dříve popsaných tezí o průběhu jevů určitého typu.

Myslenkovému členění objektu poznaní na jeho jednotlivé stránky se říká *analýza*. Myslenkové sjednocování vydělených stránek do jiných logických celků a abstrakcí se nazývá *synetza*.

Jednou z významných forem vědeckého myšlení je konstrukce hypotézy. Hypotéza je určitý předpoklad o příčinách zkoumaných jevů. Je vyslovována na základě zjištěných faktil a údajů a ihned se zpětně ověřuje praxi. Široce platná a ověřená hypotéza se stává vědeckou teorií.

Při zpracovávání výsledků experimentů a pozorování se lidské vědomí prakticky vždy ubírá právě naznačenými cestami. Myslenkové postupy vedou nakonec po formulaci hypotéz a teorií k vytvoření bezpodmíněně platných a hranice věd překračujících *přiroděních zákonn*.

Ve filozofických úvahách v teorii poznaní se používají ještě různé další pojmy a další závažné metody poznávání světa. Ale již uvedené elementární zázadky postačí k pochopení výkladu přírodovědných oborů.

22 ZÁKLADNÍ CHARAKTERISTIKY VĚDY

Věda vznikla tehdy, když lidé v určité historické etapě vývoje společnosti shromažďili výsledky smyslového poznaní jistého úseku vnějšího světa a snažili se cestami abstraktního myšlení dojít k jeho poznaní teoretickému.

Studium dějin věd nás poučuje, že každá vědní oblast vzniká a dale se využívá na základě praktických potřeb lidstva, tj. *výroby*.

Souhrn všech věd je jednou ze zázadních forem *společenského vědomí*, představuje soustavu lidských vědomostí o přírodě, společnosti a myšlení.

Lze také říci, že vědy jsou svým obsahem soustavou přesně definovaných abstraktních pojmen, hypotéz, teorií a zákonů formulovaných na základě smyslového poznaní jevů a na základě abstraktního myšlení.

Vědecké poznávání má charakter postupného, stálého hlubšího pronikání do podstaty objektů a jevů. Každý objekt i jev jsou nevyčerpatelné svým obsahem nekonečné rozmnožovat vlastnosti.
Věda dnes objevila jistou zvláštnost moderních vědeckých teorií. Vyznačují se tím, že mají danou sféru působnosti a uvnitř této sféry jistý aproximativní charakter. Proto se setkáváme s tím, že určité jevy ve vědě jsou popisovány a vysvětlovány z hlediska různého teoretického přístupu. Taková situace není škodlivá a velmi často naopak využívá vytváření nových pravdivějších pohledů na skutečnost.

Obsah moderních vědeckých teorií v oblasti jejich platnosti bývá takový, že další vývoj vědy je již nevyvratný, nýbrž integruje, začleňuje do nového obrazu reality. Tim je dána jistá ne-pomíjivost moderních vědeckých teorií.

Věda je významným společenským jevem. Je neoddělitelně spojena s výrobou. Odhalování zákonných působení a vývoje jevů vnějšího světa poskytuje výrobě nezbytné podklady pro cílevečné přetváření přírody, pro tvorbu materiálních hodnot potřebných pro život a rozvoj lidské společnosti.

Věda je proto třeba dávat bezvýhodně do služeb lidí, aby sloužila jejich zájmům a potřebám. V dějinách vědy nalézám mnoho příkladů, že právě největší genií si takto počinat.

2.3 HISTORICKÉ ETÁPY VÝVOJE CHEMIE

První zkušenosti, které bychom dnes mohli označit za chemické, člověk nepochybně nabyl až tehdy, když se naučil ovládat ohni. Celé věky však uplynuly, než jej použil k vyplálení hlímných nádob, a mnoho dalších let uběhlo, než mu posloužil k vytváření kovů z rud.

V období, kdy se na troskách prvobytné pospolitosti upevňovala společnost otrokářská, se začali velcí mystitelský kulturní národové starověku zabývat otázkou, jak vznikl tento svět a jaká je jeho podoba. Nejdtiře vznikaly představy o složení světa z jedné pralítky.

Jeden z nejstarších filosofů Thales z Miletu (VII. až VI. století př. n. l.) používal za pralítku vodu. Staročteti filozofové pohlželi na pralítku jako na něco spojitého, a nedovolili proto vysvětlovat příčiny vznících vlastností látek. Neprávě na myšlenku, že vlněš změny v vlastnostech látek jsou způsobovány jejich hlubším vnitřními změnami. Naopak, postupně přijali představu, že vlastnosti jsou podkladem, z něhož se látky samy tvoří.

![Obr. 2-1. Znázornění vzniku Empedoklových živlů ze čtyř vlastností látek](image)

Výrazem tohoto pojetí bylo učení největšího staročtěního filosofa Aristotela (IV. století př. n. l.) vybudované na tetrasomální teorii Empedoklova (V. století př. n. l.). Aristotelas vycházel z předpokladu, že lidské smyly umožňují poznat čtyři základní protikladné vlastnosti látek (principy): teplo, chlad, sucho a vlhké. Kombinací principů s pravopočetními blíže neurčenými substrátem (podkladem) vysvětloval vznik čtyř Empedoklových živlů (elementů): vzduch, voda, ohně a země. Později k nim Aristotels připojil ještě řadu pátý, vše pronikající etér. Jednotlivým živlům přislouží vždy dvě základní vlastnosti, jak to vyjadřuje schéma na obr. 2-1. Ohně je kombinace sucha a tepla, voda vlhkosti a chladu atd. Pravopočetní substrát (později označený „prima materia“) je jediný a jeho rozdílné vlastnosti mu dávají živly.

jiné učení o podstatě světa, které více než 100 let před Aristotelem formulovali staročtění filozofové Leukippos a Demokritos (okolo r. 450 př. n. l.) předpokládalo přetížení výstavby látek. Soudí, že základem všech těles je pralítko, složená z velice malých, dále nedělitelných častic.
které nazvali atomy (tecky atomos — nedělitelný). Předpokládali, že atomy se od sebe liší tvarem a velikostí, a tím vysvětlovávali rozmanitost vlastností látěk. Například pevnost zelého vysvětloval Demokritos představou hranatého tvaru jeho atomů a z něho vyplývající menší pravdepodobnost vzájemného posunu a klouzání. O atomech vody tito filozofové předpokládali, že jsou kulaté, a proto je voda tekutá. Tento přístup byl prvním intuitivně naplněným názorem spojovaným srovnaně vysvětlovací diskriminativní (přetržitou) strukturou látek.

Niemně autorita Aristotelova byla velká a jeho učení bylo ve starověku obecně přijato, takže atomistické názory ustoupily na dlouhá staletí do pozadí. Aristotelovo učení se sítělo všude, kam zasáhla heilská kultura, zejména do Egypta a do řečtí římské.

Období vzniku chemie. Alchymie a iatrochemie

V Egyptě byla již ve III. století před n. l. založena Alexandrijská akademie věd, první vědecký vědecký ústav, a mělo by být vysoce příznačné přírodě vědy. Mezi členy této instituce postupně patřili např. Euclid (počtek III. století před n. l.), Archimedes (III. století před n. l.), Ptolemaeus (II. století př. n. l.) aj. Podíl na teorii zpracování látek se nedochovalo, neboť roku 391 náboženští fanatikové zničili a spálili budovu akademie, mezi nimi i čtrnáct Serapóv se slavnou knihovnou se 700 000 rukopisů.

V první polovině III. století před n. l. klesla velkou zkušenost s chemií, která byla vyvinuta v Egyptě a Řecku. Chemická laboratoře se začala rozvíjet v různých částech světa, včetně Řecka, kde se vytvořila první chemická laboratoř, která se specializovala na zpracování kovů.

Prvními vynálezci chemických prohlubovacích byli Džabir ibn Hašán (VIII. století), rvaný Geber, a Abu Ali ibn Sín (X. století), známý pod jménem Avicena.

Ve středověku, kdy alchymie pronikla do Evropy, byli jejími hlavními evropskými představiteli Albertus Magnus, Roger Bacon a Raymund Lullius.

![Symboly a názvy]

Obr. 2-2. Symboly a názvy sedmi kovů a jejich protější mezí sedmi těles Střední světa.

Tato přehled šíření chemických věd umožňovalo Aristotelovo učení, jen v poněkud modifikované formě, po celé středověku.

Nespívavě vytéčený cíl (transmutace kovů) spojující se mystickým charakterem celého učení způsobil, že alchemie zůstala svým teoretickým obsahem stále na úrovni Aristotelova myšlení.

Zvláště nenecháno bylo situace ve XIV. století, kdy alchemie se hledala látky mající omlazující účinek. Elixír života i perspektiva transmutace obecných kovů na zlato byly velmi atraktivní cíle a způsobily, že v krizích šlechty se stalo zvykem vydíravat alchemisty a podporovat jejich „búdání“.

O tom, jak alchemie byla prostoupena mystikou, svědčí např. to, že ještě v XVI. století alchemie připomíná jen existenci sedmi kovů, známých již Egiptanům. Byly to kovy „spojené“ se sedmi známými těžkými Slunce se soustavy (obr. 2.2).

Za více než jedno tisíce let byly tedy přínos alchemie k rozvoji chemie velmi skromný. V podstatě byly pouze rozšířeny poznatky o kovech a připraveny některé nové chemické sloučeniny (kyseliny, zásady, soli). Významnější byl přispěvek k rozvoji laboratorních operací (rozporušení, krystalizace, sublimace, destilačních procesů a) a laboratorních zařízení (pece, vodní lázně, destilační přístroje aj.).

V XVI. století se však již výraznější oživily hlasy, aby se chemie vzdala nerealních cilů a vytlačil si úkoly praktické. Stalo se tak na zásah praktičtějšího měšťanstva, které bylo pokrokovou složkou společnosti. Představitelé těchto snah byli svýcarkýs lekař Paracelsus (poč. XVI. stoł.) Podle něho hlavním posláním nauky o přeměně látek bylo poznávání léčiv a jejich výroby. Vznikla tak interiarcie (z řec. ětros – lekař). Svou teorií zůstávala nadíle alchymistická, dokonce doplnila sulfó-merkuriovou „teorii“ zavedením nového elementu, a to „principu tavitelnosti“. Přece však vůbec postupoval v tomto období již rychleji dopředu, zejména proto, že alchemie se zabírala tajemství alchemie a umožnila vzájemnou výměnu zkušeností.

Kromě přípravy léčiv se v té době budovaly i základy jiných chemických výrobě, zejména chemických, keramických, sklářských a barvařských. O rozvoji metalurgických technologií se začal Agricola (poč. XVII. stoł.), který úředně dobu působil i u nás v Jáchymově. Francez Pallissy (XVI. stoł.) vybudoval nové základy keramických výrobě. Německ Glauber (XVII. stoł.) se stal zakladatelem technologií anorganických látek.

* Období vzniku vědecké chemie

V XVII. století poznatky chemické praxe natolik přespravily chemickou teorii strávovacích na alchymistických představách, že již necelého zabrání jejímu pádu. Cestu k tomuto zásadnímu obratu navíc otevřel historicky vývoj společnosti. Není náhodou, že znáte mloucí kritika názorů panujících v chemii přišla z Anglie několik let po dovršení anglického burzovní revoluce. Vystoupil s ní roku 1661 anglický fyzik a chemik Boyle ve spise „Pochyboucí chemik, cíl rozpravy a pokus, které se obyčle konají na důkaz čtyř elementů a tří principů ve smíšených látkách“.

Jeho velkou zásluhou je, že podal definitivně pravdu, sloučeniny a směsí, tedy pojmy pro další rozvoj chemie v tehdajší situaci nejdušetřích.

Novou metodou zkoumání chemických jevů charakterizovalo heslo oxfordské vědecké společnosti, jež organizoval chemik, byl i Boyle: „Nullus in verbo“.

1) Zaači „nic ve slovech“ – tedy vše z experimentu.
Období budování vědeckých základů chemie

Vědecem, který prochopil a odhalil dávno před tím, než flogistonová teorie přestala být uznávána, směr dalšího vývoje chemie byl ruský bádalatel Lomonosov (XVIII. století). Představu o fluidech vyvratil ve své práci „Uvody o příčině tepla a chladu“. Objevem zákona zachování hmotností látok při chemických reakcích správně vysvětlil pochánci hoření a učinil z atomistických představ nedílnou součast chemické vědy. Podal přesné definice prvků a molekul.

Úplný pád flogistonové teorie přineslo dílo francouzského chemika Lavoisiera. Podobně jako Lomonosov kládl velký důraz na hmotnostní relace při složování a rozkladu látkek a potvrdil osmnáct let starý Lomonosovův objev zákona zachování hmotností. Rozvinul kvantitativní analýzy a syntézy látkek do velké dokonalosti a umožnilo rozdělit známé látky na prvky a složeniny a přebudovat tak vlastně celou tehdejší chemii. Od Lavoisiera pochází první seznam chemických prvků. Zasloužil se i o chemické názvosloví. Lavoisier také určil chemii další směr jejího vývoje, který spatřoval ve zjišťování povahy a vlastností látkek pomocí chemických analýz a syntéz.

Chemie, která se až do té doby rozvíjela jako jednotná věda, se počala štěpiti na chemii obecnou, anorganickou, organickou, fyzikální, analytickou a na chemické technologie. Současně se diferencovala od vědních oborů, jako je mineralogie, hnutictví aj., které s ní dříve tvořily ne-rozložené svazek.

Podoby společnosti si vynutily vznik a rozvoj chemického průmyslu.

Období moderní chemie

Teoretická i užitá chemie přitomně doby je vybudována na základě prokázane atomové struktury látkek a elektronové podstaty chemických vazeb mezi atomy. Její prudký rozvoj je ovšem evidentní úspěch ostatních věd, zejména fyziky, a rostoucími potřebami lidské společnosti.

Moderní chemie se vyznačuje dalším štěpěním na samostatné budí čestě chemické disciplíny (kolloidní, makromolekulární, koordinacní chemie), nebo disciplíny hranící s jinými obory [elektrochemie, chemická fyzika, radiochemie, krystalové chemie, geochimie, kosmochemie, biochemie, agrochemie aj.]

Přítom chemie dosáhla pomocí široce platných metod kvantové mechaniky vysokého stupně zvětšeného, čímž byla velmi zvýrazněna její vnitřní jednotka. Velmi se zdokonaluje a důležitý rozvoj chemické preparativní techniky. Totéž platí o používaných měřicích metodách.

Chemický a huti prý jenž byl v prvních desetiletích byl umožněn rozvojem chemické technologie, zabýváce se národy chemické výroby. Chemické intenzivně je nově vyvětrový obor, zaměřený na techniku operací, které jsou společně rozděleným výrobním postupům.

Dnesl chemie jako celek je jezdá soutěží vědců oborů chemie, majíce předně vyvětrový předně zkoumání. Objevy chemie podporují a mnohdy i podmínění rozvoj ostatních vědních
Obecná a anorganická chemie

Obecná chemie tvoří teoretický základ celé soustavy chemických poznatků. Jídem chemie jsou chemie anorganická a chemie organická.

Anorganickou chemii současné doby definujeme jako jednotlivé vědu o tvorbě, složení, struktuře a reakcích chemických prvků a sloučení s výjimečnou většinou sloučením uhliku. Chemie organická je pak chemie naprosté většiny sloučenin uhličů.

Již v roce 1828 vytištěla Wöhlerova syntéza organické látky močoviny z anorganické látky kyanatenu amoníkový vzorek těchto dvou disciplín. Reakc, která dokázala, že ke vzniku organické látky není třeba žádné tajemné „životní síly“, vyjadřuje rovnice

\[
\text{(NH}_3\text{)}_2\text{CO} \rightarrow \text{(NH}_3\text{)}_2\text{S}\]

kyanatan amonín močovina

I nadále se však z praktických důvodů vyvíjí anorganická a organická chemie se paralelně, ačkoli samostatně. Hranice mezi nimi je ovšem novodobým výzkumem stále více stírana. Svědčí o tom existence rozsáhlého hraniciho oboru chemie organokovových sloučenin.

Anorganický výzkum se dnes zaměřuje na studium struktury a vlastností známých nebo nově připravených látek. Obvykle postup studia anorganické látky lze vyjádřit schématem na obr. 2-3.

Prvním krokem při zkoumání nové anorganické látky je nalezení způsobu její připravy vhodnou preparativní metodou nebo sešedem takových metod. Po připravě následuje chemická analýza, kterou se určuje složení látky, a zjištění jejich fyzikálních vlastností. Oba postupy jsou velice důležité, neboť většina identitu (fotočásti) látky a umožňují opakovaně tato ověření zjednodušeným postupem získat v budoucnu.

V další fázi obvykle dochází k experimentálnímu studiu struktury a reaktivit látky. Detailní výzkum struktury látek, který zahrnuje studium pozice chemické vazby (zkoumání délky a energie vazeb), teoretické vysvětlení vazeb, energetické hierarchie molekulových orbitalů atd.) a stereochemie (geometrii a vazebně uspořádání základních stavebních jednotek látky, strukturu krystalové mířky atd.), je jedním z nejméně různějších úseků chemického výzkumu. Využívá znalost matematicky náročného aparátu kvantové mechaniky a myšlenkových přístupů kvantové chemie i znalost řady experimentálních metodik. Hlavní principy vazebné a strukturní chemie však nejsou obtížné

Obr. 2-3. Schéma postupu studia anorganické látky
a umožňují nalézt vysvětlení pro chemické chování látek a provádět vědeckoobecnění. I nespeciali-
zaný pracovník může porozumět jejich závěrům a řídit se těmito principy ve své práci.

Odborné tvrzení platí pro studium reakčnosti látek. Při něm se u každé zkoumané reakce
dané látky věnuje pozornost zejména zjišťování a identifikací reakčních produktů, vyšetření ener-
tických ponurých pří reakce a získávání informací o dynamice průběhu a o škrývání mikromechanizmu reakce.

Výsledky strukturního studia a studia reaktivnosti umožňují předpovídat některé další vlast-
nosti látky a zejména ukazují možnosti jejího praktického využití.

Anorganický chemik tedy pro úspěšnou práci potřebuje přiměřené znalosti matematiky,
porozumění řadě kapitol z fyziky a dobrý rozhled v mnoha chemických oborech, jako jsou fyzikální,
analytická a organická chemie a chemická technologie. Neobejde se též bez znalostí teoretického
aparátu významných experimentálních metodik, bez osvojení manuální rychlosti v provázání
laboratorních operací a předešlím bez hlubokého teoretického porozumění a praktického zvládnutí
uzlů specializovanej oblasti, která je jeho pracovní náplní.

Anorganická chemie se dnes prudce rozvíjí. Je prováděn systematický výzkum chemie
sloučenin prvku, zejména prvku třetí až šesté skupiny periodického systému a některých dalších,
včetně uněle připravených. Značná pozornost je věnována studiu tuhých látek typu hydridů,
peroxidů, boridiů, nitridů, karbidů, silicidů, sulfidů, selénidů, telluridů atd., které mají velké praktické
využití jako látky velmi reaktivní nebo naopak žárovzdorné, jako látky izolační, mimořádně
tvrdé nebo jako polovodivé, odporové a optoelektronické materiály. Tyto tuhé látky vyznačující
se specifickými vlastnostmi se významně uplatňují v chemickém a elektrotechnickém průmyslu,
in metalurgii, ve vojenství, u zařízení pro transformaci a přenos energie atd.

Zvláštní pozornost se zřetelem k nebezpečí postupného vyčerpání dosavadních přírodních
zdrojů se venuje izolaci kvůli polyetilenským radům nekvalitních a z průmyslových odpadů.
Zavádí se nové technologie přípravy látek o vysokém stupně čistoty. Mnoho nových objevil
využitelných v praxi přináší chemický výzkum koordináčních sloučenin i organokovových látek.
Některé z těchto látek mají dnes význam jako neobyčejně účinné a výhodné katalyzátory např.
in oblasti celého komplexu petrochemických výrob i jinde. Prvé vývojové způsoby se rozvinula
těž hranění oblasti mezi zdánlivě odlišnou anorganickou chemii a biochemi. Vznikla bioanorganická
chemie orientovaná např. na procesy tvorbě komplexů ionů některých kvůli biologicky
významnými látkami (protein, enzýmy aj.) nebo na studium anorganických látek s protinukleová-
ymi účinky atd.

Pro anorganickou chemii stojí jako pro kterýkoliv jiný vědní obor platí, že ve spolupráci
s výrobou vytváří jiné, nejednoznačnější perspektivní směřově výrobů i vědecko-výzkumné práce a hledá
cesty a formy využití nových objevů ve prospěch lidské společnosti.
3 Atomové jádro

Vývoj fyziky a chemie v minulém a tomto století jednoznačně potvrdil atomovou hypotézu, jejíž kořeny sahají až do starověku. Představa atomární struktury látěk se ukázala podnětou praktiky pro všechny přírodovedné obory a byla již tolikrát průkazné experimentálně provržena a využívá v praxi, že dnes nepochybováme o opravdovosti atomové teorie. Přesvědčili jsme se o existenci atomů a poznali jsme do značné míry i jejich složitou vnitřní strukturu. Vime, že vnitřní uspořádání atomů rozhoduje o chemickém a fyzikálním chování prvků, které jsou jim tvořeny.

Z filozofického hlediska lze obecně říci, že chemická reaktivita látěk, tj. schopnost k chemicky formě pohybu hmoty, je bezprostředně podmiňována dispozicí jejich atomů k vnitrozemové formě pohybu hmoty.

K pochopení zákonitosti chemických disciplín je proto nutné porozumět fyzikálnímu pojetí struktury atomu.

V této kapitole se po jednoduchém objasnění celkové struktury atomů zaměříme na výklad uspořádání, vlastností a chování jejich jader.

3.1 STRUKTURA ATOMU

Experimenty provedené na počátku tohoto století nezvratně dokázaly, že atomy chemických prvků jsou složeny z kladně nabytých atomových jader a z oběl, jejichž náboj je zaporný a ve své absolutní hodnotě vždy stejný jako náboj jádra. Atomy jsou tedy navenek elektroneutrální.

V nejnovější době přiblížení lze atom považovat za útvar přibližně kulovitého tvaru. V jeho středu je atomové jádro vystavené z protonů a neutronů (Heisenberg a Ivaněnko 1932). Obal atomu tvoří elektrony.

Protony, neutrony a elektrony jsou tzv. elementární částice hmoty, které lze označit za stálé stavbové jednotky atomu. Protony jsou nositeli kladného náboje, elektrony jsou nabití záporné.

Některé údaje o těchto částicích uvádíme v tab. 3-1.

<table>
<thead>
<tr>
<th>Tabulka 3-1. Elementární částice tvorící atom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementární částice</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>proton</td>
</tr>
<tr>
<td>neutron</td>
</tr>
<tr>
<td>elektron</td>
</tr>
</tbody>
</table>

25
Navodobá experimentální jaderná fyzika odhalila velmi složitou strukturu atomových jader a pokusila se na základě několika různých teoretických přístupů a představ o její objasnění. Za nesporné prokázána zde považováno, že protony a neutrony přítomné v jádru ztrácí svou individuální a podléhají hluboké vzájemné interakci.

Přesto platí, že elementární představa o vybudování atomového jádra prostou kombinaci protonů a neutronů je dobrou a vyhovující aproximací téměř ve všech moderních disciplínách chemie i v řádu obecně samotné fyziky. Budeme ji proto nadále používat.

Efektivní průměr atomu zjištěný experimentálně, se pro různé atomy pohybuje v mezích od 100 do 600 pm (1 pm = 10^{-12} m). Velká část hmotnosti atomu je soustředěna do jádra. Hmotnost obalu atomu je ve srovnání s hmotností jádra zanedbatelná. Pozoruhodné je, že atomové jádro, představující téměř veškerou hmotnost atomu, má efektivní průměr pouhých 10 000krát menší než atom ~ asi 0,01 pm. Hmotnost atomu je tedy soustředěna do velmi malého prostoru. Hustota jádra má ochromnou hodnotu, řádově 10^{12} g cm^{-3}. Krychle o objemu 1 cm³, naplněně pouze atomovými jádry, by měla hmotnost řádově 10^{10} tun.

Ostatní prostor atomu, tzn. elektronový obal, je oblastí velmi složitého a pro chemické procesy nesmírně závažného pohybu elektronů. Ale hmotnost elektronového obalu je nepatrná.

3.2 ATOMOVÉ, NEUTRONOVÉ A NUKLEONOVÉ ČÍSLO

Počet protonů přítomných v jádru udává současně počet elementárních kladných nábojů jádra atomu daného prvku. Je-li atom v elektronovému obalu, je jeho cílem výjimkou a počet elektronů a počet záporných elementárních nábojů v atomovém obalu. Toto číslo je základní veličinou charakterizující atom. Jednoznačně určuje prvek, jeho poradové číslo, a tím i jeho počet elementárních nábojů v jádru, a značí se Z. Pro tento počet se uvádí jako levý dvojitý index u chemického symbolu prvku (např. 3Li, 7C, 23Na).

Počet neutronů v jádru atomu je označován jako neutronové číslo a přiřazuje se mu symbol N. Nebývá zvykem uvádět je u znaky prvku.

Pro protony a neutrony jako částice tvořící atomové jádro se někdy používá společný název nukleony (z lat. nucleus – jádro). Pak je přirozeně nazývat cílem vyjadřující součet počtu protonů a počtu neutronů v jádru řízeno nukleonů. Vyznačuje se symbolem A a podle potřeby se toto číslo uvádí jako levý horní exponent u chemického názvu prvku (např. 2\text{7}Li, 13\text{2}C, 18\text{2}O). Je zřejmé, že všechna tři čísla vyjadřující počet elementárních částic mohou být pouze celá a kladná a že jsou vzájemně spojena vzťahem

\[A = Z + N \]

Významná je nomenklatura souborů atomů, jejichž čísla Z, N a A splňují některé podmínky.

Látka tvořená souborem četně totálních atomů, nelíšících se číslem Z ani N, a tvořících se podmínce [3.1] ani číslem A, se nazývá nuklid. Nuklidem je tedy např. soubor libovolného počtu atomů \text{1}O, jiným nuklidem je soubor atomů \text{15}O, další nuklidem je soubor atomů \text{18}F a opět jiný nuklid je tvořen třeba tony \text{19}F.

Látka představovaná souborem atomů, které mají shodné číslo Z (číslem N, a tím i A, se mohou, ale nemusí se sebě lišit), se nazývá prvek. Podle této definice je tedy prvkem např. soubor tvořený třemi druhy atomů, \text{1}O, \text{15}O a \text{17}O (jejich Z = 8, N = 8, 9 a 10). Jiný prvek tvoří tři atomy \text{12}F, \text{13}F a \text{14}F (jejich Z = 19, N = 18, 19 a 20). Právě tak je prvkem soubor atomů \text{19}F. Tento poslední soubor atomů je ovšem současně i nuklidem.

Dva a více nuklidů téhož prvku (právě tak jako dva a více konkrétních atomů téhož prvku,
lísticích se od sebe neutrovným číslem) nazýváme izotopy). Je to prvek, který je tvořen více než jedním nuklidem, se nazývá izotopie. Jako izotopy označíme tedy např. jak trojici atomů ^{14}O, ^{16}O, ^{18}O, tak i tři soubory těchto atomů, tj. tři nuklidy ^{14}O, ^{15}O a ^{16}O.

Atomy nebo soubory atomů, které mají stejné neutronové číslo A, se nazývají izohary. Její existenci téměř často atomů se jmenuje izohorie. Podle této definice dva atomy ^{40}K a ^{40}Ca, jsou izohary právě tak jako dva soubory těchto atomů, tj. nuklidy ^{40}K a ^{40}Ca.

Spíše výjimečně se používá ještě pojem izotonii ^{12}Ca k označení atomu nebo nuklidu, které mají shodnou hodnotu neutronového čísla. Jako příklad izotonii lze uvést dvoují závěs nuklidů ^{25}Mg a ^{25}Al nebo trojici ^{27}Ar, ^{30}K a ^{32}Ca.

K dokreslení právě popsánych jevů může posouvat tab. 3-2 s dalšími příklady.

<table>
<thead>
<tr>
<th>Izotopy</th>
<th>^{25}S</th>
<th>^{26}S</th>
<th>^{27}S</th>
<th>^{28}Ti</th>
<th>^{29}Ti</th>
<th>^{30}Ti</th>
<th>^{36}Sr</th>
<th>^{85}Sr</th>
<th>^{86}Sr</th>
<th>^{112}Sn</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z = \text{konst}$</td>
<td>^{12}Sn</td>
</tr>
<tr>
<td>Izohary</td>
<td>^{40}S</td>
</tr>
<tr>
<td>$A = \text{konst}$</td>
<td>^{14}Fe</td>
</tr>
<tr>
<td>$A = 36$</td>
<td>^{15}N</td>
</tr>
<tr>
<td>$A = 48$</td>
<td>^{16}O</td>
</tr>
<tr>
<td>$A = 58$</td>
<td>^{18}O</td>
</tr>
<tr>
<td>$A = 70$</td>
<td>^{19}F</td>
</tr>
<tr>
<td>$A = 86$</td>
<td>^{20}Ne</td>
</tr>
<tr>
<td>$A = 130$</td>
<td>^{22}Ne</td>
</tr>
<tr>
<td>$A = 192$</td>
<td>^{24}O</td>
</tr>
</tbody>
</table>

3.3 ATOMOVÁ HMOTNOST

Pod pojmem hmotnost atomu vždy rozumíme kladovu hmotnost daného atomu $\frac{m}{2}X$ jako celku. Označujieme ji symbolem $M(X)$ a v souladu s požadavkem soustavy fyzikálních jednotek SI ji můžeme vyjádřit v kilogramech. Získáme tak vesměs velmi malé číselné hodnoty. Například pro atomy nuklidů vodíku, uhlíku a stříbra platí:

\[
M(\frac{1}{2}H) = 1,673 \times 10^{-27} \text{ kg}
\]

\[
M(\frac{1}{2}C) = 1,991 \times 10^{-26} \text{ kg}
\]

\[
M(\frac{1}{2}Ag) = 1,775 \times 10^{-25} \text{ kg}
\]

S tak malými čísly se nepohodlně operuje a jsou malo přehledná. Proto se častéji dává přednost vyjadřování hmotností elementárních částic i atomů jednotkou daňeného menší, než je kilogram. Její přesně jednou vynutitelnou hmotnost atomu nuklidu $\frac{1}{2}C$. Tato tzv. atomová hmotnost jednotky se označuje symbolem μ a je množinou veličiny, která se nazývá atomová hmotnost konstanta (m_u).

Poměr atomové hmotnosti jednotky ke kilogramu vyplývá ze vzorce

\[
m_u = \frac{1}{12} M(\frac{1}{2}C) \approx 1,660 \times 10^{-27} \text{ kg} \approx 1 \text{ u}
\]

1) Z řeck. isos – stejný, topos – místo.
2) Z řeck. baros – váha.
3) Z řeck. tonos – napětí.
Nejběžnější, zejména při vyjadřování hmotnosti atomů, je použití tzv. relativní atomové hmotnosti (dříve atomová váha). Tato veličina je definována jako poměr atomové hmotnosti \(M(X) \) k atomové hmotnosti konstantě \(m_n \) tedy vztahem

\[
M_n(X) = \frac{M(X)}{m_n}
\]

(3-3)

V němž k označení relativní atomové hmotnosti je použit symbol \(M_n(X) \).

Přibližně jsou relativní atomové hmotnosti určeny rovnicí

\[
M_n(X) = \frac{[M(X)] \text{ kg}}{1,660 \ 53 \cdot 10^{-27} \text{ kg}}
\]

(3-4)

kde symbolem \([M(X)]\) označujeme číslovou hodnotu veličiny \(M(X) \). Rovnice (3-4) je přibližná, protože jednotka u se v ní uvádí jen na omezený počet cifer, které se dosud podařilo experimentálně stanovit.

Hmotnost jíž uvedených nuklidů vodíku, uhličku a stříbra bude při tomto relativním způsobu vyjadření dána těmito hodnotami:

\[
M_n^1(\text{H}) = 1,0078
\]

\[
M_n^1(\text{C}) = 12,0000
\]

\[
M_n^{107}(\text{Ag}) = 106,905
\]

Stoji za povšimnutí, že relativní hmotnosti protonu a neutronu, tj. číselné hodnoty jejich hmotnosti vyjádřené v násobcích jednotky u, jsou čísla velice se blíží jedničce (viz tab. 3-1). Poslední jadra atomů jsou vystavěna z protonů a neutronů, mají prakticky všechny známé nuklidy relativní atomovou hmotnost blízkou celým číslům, která značí počet nukleonů v jádru (tj. nukleonovým číslem).

Vedle určování hmotnosti atomů nuklidu, která je vždy zcela reálná a u každého z atomů daného nuklidu stejná, musíme často, zejména v chemii, přistoupit k určování virtuálních (zdánlivých) atomových hmotností některých prvků. Týká se to prvky, které jsou vytvořeny více než jediným nuklidem, tedy prvky, které mají izotopy. Tyto prvky jsou vytvořeny atomy nejméně dvou neutronových čísel, tedy atomy o nejméně dvou hmotnosti. V tomto případě se v chemických výpočtech užívá fiktivní střední relativní atomové hmotnost \(M_n(X) \), určená jako aritmetický průměr relativních atomových hmotností jednotlivých izotopů, vážený se ztěžením na molární \(^1\) zastoupení izotopů v přírodní směsi. K výpočtu tedy užíváme vztah

\[
M_n(X) = \sum_i M_i(X) \cdot \sigma_i(X)
\]

(3-5)

kde \(M_i(X) \) je relativní atomová hmotnost i-tého nuklidu daného prvku \(X \) a \(\sigma_i(X) \) – molární zlomek tohoto nuklidu v přírodní smísi atomů \(X \).

Početní postup při určování střední relativní atomové hmotnosti prvku si ukážeme na příkladu:

Přírodní dusík je snad dvou izotopů, \(^{14}\text{N} \) a \(^{15}\text{N} \), z nichž první má relativní atomovou hmotnost \(M_n^{14}(\text{N}) = 14,003 \) a druhý \(M_n^{15}(\text{N}) = 15,000 \). Nuklid \(^{14}\text{N} \) je v přírodní směsi atomů dusíku zastoupen více než 99,63%, nuklid \(^{15}\text{N} \) z 0,364 molárních procent. Střední relativní atomovou hmotnost dusíku je možné vypočítat podle vztahu (3-5). Procentové vyjadření obsahu obou izotopů předvedeme na molární zlomek vydělením součtu.

\[
M_n(\text{N}) = M_n^{14}(\text{N}) \cdot \sigma^{14}(\text{N}) + M_n^{15}(\text{N}) \cdot \sigma^{15}(\text{N}) = 14,003 \cdot 0,99936 + 15,000 \cdot 0,00064 = 14,006 \ 70
\]

\(^1\) Viz pojem molů, str. 142.
Svěřní relativní atomovou hmotnost přírodní směsi izotopů lze přibližně vypočítat i tehdy, když nejsou známy přesné hodnoty relativní atomové hmotnosti \(M_i/X \) jednotlivých nuklidů. Místo nich můžeme do vztahu (3-5) dosadit přímo nukleonová čísla.

V něm řešeném příkladě pak přibližně platí

\[
M_i / N \approx 14 \cdot 0,99636 + 15 \cdot 0,00364 = 14,00360
\]

PŘÍRODNÍ NUKLIDY A PRVKY

Podle posledních výzkumů se v přírodě vyskytuje 329 nuklidů, z nichž 273 je stábnich a 56 radioaktivních. Mimoto byly připraveny četné nuklidy různých prvků uměle. Jmí se však v tomto odstavci nebudeme zabývat.

Vschny v přírodě se vyskytující nuklidy jsou uvedeny v tab. 3-3. Vedle atomových čísel a symbolů prvků obsahuje tato tabulka údaje o jejich experimentálně zjištěné relativní atomové hmotnosti a u každého nuklidu jeho nukleonové číslo \(A \) (v závorce je uvedeno procentové zastoupení nuklidu v daném přírodním prvku).

Údaje o zastoupení nuklidů v prvcích, uváděné v tab. 3-3, i hodnoty středních relativních atomových hmotností prvků byly již mnoholetými experimentálně ověřovány u prvků pocházejících z rozličných přírodních zdrojů a bylo shledáno, že jsou prakticky konstantní. Obsah izotopů ve smíšených prvcích, tak jak je nalezáme v přírodě nebo jak je z přirozených surovin připravujeme, je stejný a pro daný prvek charakteristický. Jen u několika málo prvků jejich střední relativní atomová hmotnost poněkud kolísá \((\pm 0,003)\) v důsledku proměnného izotopového složení. Je tomu tak především u vodíku, boru, uhliku, kyslíku, argonu, mědi, rhenia, křemíku, stříbra a wolframu.

Velké kolísání izotopového složení vykazuje pouze olovo, které je konečným členem přirozených radioaktivních rozpadových řad. Izotopová skladba olova, jež kromě neuradiogenického nuklidu \(^{206}\text{Pb} \) (tj. nuklidu, který nevzniká radioaktivním rozpadem) obsahuje i radiogenní izotopy \(^{208}\text{Pb} \) a \(^{207}\text{Pb} \), kolísá v závislosti na druhu rudy i na jejím geologickém stáři.

V tab. 3-3 si lze povšimnout ještě dalších skutečností:

1. Prvky s čidly atomových čísel \(Z \) jsou vždy bud čisté, nebo alešpoň nemají více než dva přírodní izotopy (Astonovo pravidlo). Výjimkou je vodík a draslík, které mají po třech izotopech.

2. Prvky se sudým atomovým číslem \(Z \) jsou obvykle tvořeny větším počtem nuklidů (dvěma a více). Výjimkou je beryllium, jež má pouze jediný přírodní nuklid.

3. Prvky se sudým \(Z \) nemají většinou více než dva izotopy s čidly \(Z \).

4. Neexistují dva stabilní izotopy léčicí se od sebe v atomovém čísle o jednotku (pravidlo Mattauchova). Až dosud byly nalezeny pouze tři dvojice stabilních nuklidů, které se z tohoto pravidla vymykají:

\[
\begin{align*}
^{144}\text{Cd} & - ^{144}\text{In} \\
^{123}\text{Sn} & - ^{123}\text{Sb} \\
^{125}\text{Te} & - ^{125}\text{I}
\end{align*}
\]

Platnost Mattauchova pravidla formálně objasňuje, proč prvky \(41\text{Te} \) a \(61\text{Pm} \), dlouho v přírodě hledané, nenichali nít stabilní nuklidy. Nukleonová čísla, která by měla příslušet nuklidům těchto prvků, patří stabilním nuklidům sousedních prvků \(\begin{align*}
41\text{Mo} & \text{ a } 41\text{Nd}, \\
64\text{Ru} & \text{ a } 64\text{Sm}.
\end{align*}\]
<table>
<thead>
<tr>
<th>Atomové číslo</th>
<th>Symbol prvku</th>
<th>Molekulová hmotnost</th>
<th>Nukleonová čísla nuklidů prvku a jejich zastoupení v přírodní směsi izotopů (vyjádřené v molárních procentech)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>1,007 97</td>
<td>1 (99,9855); 2 (0,0145); 3</td>
</tr>
<tr>
<td>2</td>
<td>He</td>
<td>4,002 60</td>
<td>4 (99,9999); 3 (0,0001)</td>
</tr>
<tr>
<td>3</td>
<td>Li</td>
<td>6,941</td>
<td>7 (92,02); 6 (7,98)</td>
</tr>
<tr>
<td>4</td>
<td>Be</td>
<td>9,012 18</td>
<td>9 (100)</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>10,81</td>
<td>11 (81,28); 10 (18,71)</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>12,011 15</td>
<td>12 (98,892); 13 (1,108); 14</td>
</tr>
<tr>
<td>7</td>
<td>N</td>
<td>14,006 7</td>
<td>14 (99,636); 15 (0,364)</td>
</tr>
<tr>
<td>8</td>
<td>O</td>
<td>15,999 4</td>
<td>16 (99,76); 18 (0,20); 17 (0,04)</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>18,998 4</td>
<td>19 (100)</td>
</tr>
<tr>
<td>10</td>
<td>Ne</td>
<td>20,179</td>
<td>20 (90,92); 22 (8,82); 21 (0,26)</td>
</tr>
<tr>
<td>11</td>
<td>Na</td>
<td>22,989 77</td>
<td>23 (100)</td>
</tr>
<tr>
<td>12</td>
<td>Mg</td>
<td>24,305</td>
<td>24 (78,6); 26 (11,3); 25 (10,1)</td>
</tr>
<tr>
<td>13</td>
<td>Al</td>
<td>26,981 54</td>
<td>27 (100)</td>
</tr>
<tr>
<td>14</td>
<td>Si</td>
<td>28,086</td>
<td>28 (92,3); 29 (4,7); 30 (3,0)</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>30,973 76</td>
<td>31 (100)</td>
</tr>
<tr>
<td>16</td>
<td>S</td>
<td>32,06</td>
<td>32 (95,06); 34 (4,18); 33 (0,74); 36 (0,02)</td>
</tr>
<tr>
<td>17</td>
<td>Cl</td>
<td>35,453</td>
<td>35 (75,4); 37 (24,6)</td>
</tr>
<tr>
<td>18</td>
<td>Ar</td>
<td>39,948</td>
<td>40 (99,60); 38 (0,34); 38 (0,06)</td>
</tr>
<tr>
<td>19</td>
<td>K</td>
<td>39,098</td>
<td>39 (93,08); 41 (6,91); 40 (0,01)</td>
</tr>
<tr>
<td>20</td>
<td>Ca</td>
<td>40,08</td>
<td>40 (99,9); 44 (2,1); 42 (0,6); 48 (0,2); 43 (0,1); 46 (10^-7)</td>
</tr>
<tr>
<td>21</td>
<td>Sc</td>
<td>44,955 9</td>
<td>45 (100)</td>
</tr>
<tr>
<td>22</td>
<td>Ti</td>
<td>47,86</td>
<td>48 (73,5); 46 (8,0); 47 (7,7); 49 (5,5); 50 (15,3)</td>
</tr>
<tr>
<td>23</td>
<td>V</td>
<td>50,944 1</td>
<td>51 (99,76); 50 (0,24)</td>
</tr>
<tr>
<td>24</td>
<td>Cr</td>
<td>51,996</td>
<td>52 (83,8); 53 (9,5); 50 (4,3); 54 (2,4)</td>
</tr>
<tr>
<td>25</td>
<td>Mn</td>
<td>54,938 0</td>
<td>55 (100)</td>
</tr>
<tr>
<td>26</td>
<td>Fe</td>
<td>55,847</td>
<td>56 (91,68); 54 (5,84); 57 (2,17); 58 (0,31)</td>
</tr>
<tr>
<td>27</td>
<td>Co</td>
<td>58,933 2</td>
<td>59 (100)</td>
</tr>
<tr>
<td>28</td>
<td>Ni</td>
<td>58,71</td>
<td>58 (67,76); 60 (26,16); 62 (3,60); 64 (1,16); 61 (1,25)</td>
</tr>
<tr>
<td>29</td>
<td>Cu</td>
<td>63,546</td>
<td>63 (69,09); 65 (30,91)</td>
</tr>
<tr>
<td>30</td>
<td>Zn</td>
<td>65,38</td>
<td>64 (48,9); 66 (27,8); 68 (18,6); 69 (4,1); 70 (0,6)</td>
</tr>
<tr>
<td>31</td>
<td>Ga</td>
<td>69,72</td>
<td>69 (60,5); 71 (39,5)</td>
</tr>
<tr>
<td>32</td>
<td>Ge</td>
<td>72,59</td>
<td>74 (36,7); 72 (27,4); 70 (20,6); 76 (7,7); 73 (7,6)</td>
</tr>
<tr>
<td>33</td>
<td>As</td>
<td>74,921 6</td>
<td>75 (100)</td>
</tr>
<tr>
<td>34</td>
<td>Se</td>
<td>78,96</td>
<td>80 (49,8); 78 (23,5); 82 (9,2); 76 (9,0); 77 (7,6); 74 (0,9)</td>
</tr>
<tr>
<td>Atomové číslo</td>
<td>Symbol prvků</td>
<td>Střední relativní atomová hmotnost</td>
<td>Nukleonová čísla nuklidů prvků a jejich zastoupení v přírodní směsi isotopů (vyjádřené v molárních procentech)</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Z</td>
<td>X</td>
<td>M(N_eX)</td>
<td>4 (zastoupení v přírodní směsi isotope prvků)</td>
</tr>
<tr>
<td>35</td>
<td>Br</td>
<td>79,904</td>
<td>79 (50,52); 81 (49,48)</td>
</tr>
<tr>
<td>36</td>
<td>Kr</td>
<td>83,80</td>
<td>84 (56,9); 86 (17,4); 88 (11,5); 83 (11,5); 80 (2,3); 78 (0,3)</td>
</tr>
<tr>
<td>37</td>
<td>Rb</td>
<td>85,467</td>
<td>85 (72,15); 87 (27,85)</td>
</tr>
<tr>
<td>38</td>
<td>Sr</td>
<td>87,62</td>
<td>88 (82,6); 86 (9,9); 87 (7,0); 84 (0,5)</td>
</tr>
<tr>
<td>39</td>
<td>Y</td>
<td>88,905</td>
<td>89 (100)</td>
</tr>
<tr>
<td>40</td>
<td>Zr</td>
<td>91,22</td>
<td>90 (51,5); 94 (17,4); 92 (17,1); 91 (11,2); 96 (2,8)</td>
</tr>
<tr>
<td>41</td>
<td>Nb</td>
<td>92,906</td>
<td>93 (100)</td>
</tr>
<tr>
<td>42</td>
<td>Mo</td>
<td>95,94</td>
<td>98 (24); 96 (17); 95 (16); 92 (16); 97 (9); 94 (9); 100 (9)</td>
</tr>
<tr>
<td>43</td>
<td>Ru</td>
<td>101,07</td>
<td>102 (31); 104 (18); 101 (17); 99 (13); 100 (13); 96 (6); 98 (2)</td>
</tr>
<tr>
<td>44</td>
<td>Rh</td>
<td>102,905</td>
<td>103 (100)</td>
</tr>
<tr>
<td>46</td>
<td>Pd</td>
<td>106,4</td>
<td>106 (27); 108 (27); 105 (23); 110 (13); 104 (9); 102 (1)</td>
</tr>
<tr>
<td>47</td>
<td>Ag</td>
<td>107,868</td>
<td>107 (51,35); 109 (48,65)</td>
</tr>
<tr>
<td>48</td>
<td>Cd</td>
<td>112,40</td>
<td>114 (39); 112 (24); 111 (13); 110 (13); 113 (12); 116 (8); 106; 108 (1)</td>
</tr>
<tr>
<td>49</td>
<td>In</td>
<td>114,82</td>
<td>115 (95,77); 113 (4,23)</td>
</tr>
<tr>
<td>50</td>
<td>Sn</td>
<td>118,69</td>
<td>120 (33); 118 (24); 116 (14); 119 (8); 117 (8); 124 (6); 122 (5); 112 (1); 114 (0,6); 115 (0,4)</td>
</tr>
<tr>
<td>51</td>
<td>Sb</td>
<td>121,75</td>
<td>121 (57,25); 123 (42,75)</td>
</tr>
<tr>
<td>52</td>
<td>Te</td>
<td>127,60</td>
<td>130 (34); 128 (32); 126 (19); 125 (7); 124 (5); 122 (2); 123 (1); 120</td>
</tr>
<tr>
<td>53</td>
<td>I</td>
<td>126,904</td>
<td>127 (100)</td>
</tr>
<tr>
<td>54</td>
<td>Xe</td>
<td>131,30</td>
<td>132; 129; 131; 143; 136; 130; 128; 124; 126</td>
</tr>
<tr>
<td>55</td>
<td>Cs</td>
<td>133,905</td>
<td>133 (100)</td>
</tr>
<tr>
<td>56</td>
<td>Ba</td>
<td>137,34</td>
<td>138; 137; 136; 135; 134; 130; 132</td>
</tr>
<tr>
<td>57</td>
<td>La</td>
<td>138,905</td>
<td>139 (99,91); 138 (0,09)</td>
</tr>
<tr>
<td>58</td>
<td>Ce</td>
<td>140,12</td>
<td>140 (89); 142 (11); 138; 136</td>
</tr>
<tr>
<td>59</td>
<td>Pr</td>
<td>140,907</td>
<td>141 (100)</td>
</tr>
<tr>
<td>60</td>
<td>Nd</td>
<td>144,24</td>
<td>142; 144; 146; 143; 145; 148; 150</td>
</tr>
<tr>
<td>62</td>
<td>Sm</td>
<td>150,4</td>
<td>152; 154; 147; 149; 148; 150; 144</td>
</tr>
<tr>
<td>63</td>
<td>Eu</td>
<td>151,96</td>
<td>153 (52,23); 151 (47,77)</td>
</tr>
<tr>
<td>64</td>
<td>Gd</td>
<td>157,25</td>
<td>158; 160; 156; 157; 155; 154; 152; 156</td>
</tr>
<tr>
<td>65</td>
<td>Tb</td>
<td>158,925</td>
<td>159 (100)</td>
</tr>
<tr>
<td>Atomové číslo</td>
<td>Symbol prvku</td>
<td>Střední relativní atomová hmotnost</td>
<td>Nukleonová čísla nuklidů prvků a jejich zastoupení v přírodní směsi izotopů (vyjádřené v molarních procentech)</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>-----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Z</td>
<td>X</td>
<td>(M(ZX))</td>
<td>A (zastoupení v přírodní směsi izotopů prvků)</td>
</tr>
<tr>
<td>66</td>
<td>Dy</td>
<td>162.50</td>
<td>164; 162; 163; 161; 160; 158</td>
</tr>
<tr>
<td>67</td>
<td>Ho</td>
<td>164.9304</td>
<td>165 (100)</td>
</tr>
<tr>
<td>68</td>
<td>Fr</td>
<td>167.26</td>
<td>166; 168; 167; 170; 164; 162</td>
</tr>
<tr>
<td>69</td>
<td>Tm</td>
<td>168.9342</td>
<td>169 (100)</td>
</tr>
<tr>
<td>70</td>
<td>Yb</td>
<td>173.04</td>
<td>174; 172; 173; 171; 176; 170; 168</td>
</tr>
<tr>
<td>71</td>
<td>Lu</td>
<td>174.97</td>
<td>175 (97.40); 176 (2.60)</td>
</tr>
<tr>
<td>72</td>
<td>Hf</td>
<td>178.49</td>
<td>180; 178; 177; 179; 176; 174</td>
</tr>
<tr>
<td>73</td>
<td>Ta</td>
<td>180.9479</td>
<td>181 (99.99); 180 (0.01)</td>
</tr>
<tr>
<td>74</td>
<td>W</td>
<td>183.85</td>
<td>184; 186; 182; 183; 180</td>
</tr>
<tr>
<td>75</td>
<td>Re</td>
<td>186.2</td>
<td>187 (62.93); 185 (37.07)</td>
</tr>
<tr>
<td>76</td>
<td>Os</td>
<td>190.2</td>
<td>192; 190; 188; 187; 186; 184</td>
</tr>
<tr>
<td>77</td>
<td>Ir</td>
<td>192.22</td>
<td>193 (61.5); 191 (38.5)</td>
</tr>
<tr>
<td>78</td>
<td>Pt</td>
<td>195.09</td>
<td>195; 194; 196; 192; 190</td>
</tr>
<tr>
<td>79</td>
<td>Au</td>
<td>196.9665</td>
<td>197 (100)</td>
</tr>
<tr>
<td>80</td>
<td>Hg</td>
<td>200.59</td>
<td>202; 200; 199; 201; 198; 204; 196</td>
</tr>
<tr>
<td>81</td>
<td>Tl</td>
<td>204.37</td>
<td>205; 203–206; 207; 208; 210</td>
</tr>
<tr>
<td>82</td>
<td>Pb</td>
<td>207.2</td>
<td>208; 206; 207; 204–210; 211; 212; 214</td>
</tr>
<tr>
<td>83</td>
<td>Bi</td>
<td>208.9804</td>
<td>209 (100) – 211; 212; 214; 215</td>
</tr>
<tr>
<td>84</td>
<td>Po</td>
<td>210</td>
<td>210; 211; 212; 214; 216; 218</td>
</tr>
<tr>
<td>85</td>
<td>At</td>
<td>210</td>
<td>210; 211; 215; 216; 218</td>
</tr>
<tr>
<td>86</td>
<td>Rn</td>
<td>222</td>
<td>219; 220; 222</td>
</tr>
<tr>
<td>87</td>
<td>Fr</td>
<td>223</td>
<td>223</td>
</tr>
<tr>
<td>88</td>
<td>Ra</td>
<td>226.0254</td>
<td>223; 224; 226; 228</td>
</tr>
<tr>
<td>89</td>
<td>Ac</td>
<td>227</td>
<td>227; 228</td>
</tr>
<tr>
<td>90</td>
<td>Th</td>
<td>232.0381</td>
<td>232 (100) – 227; 228; 230; 231; 234</td>
</tr>
<tr>
<td>91</td>
<td>Pa</td>
<td>231.0359</td>
<td>231 (100); 234</td>
</tr>
<tr>
<td>92</td>
<td>U</td>
<td>238.029</td>
<td>238 (99.28); 235 (0.71); 234 (0.006)</td>
</tr>
</tbody>
</table>

3.5 VAZEBNÁ ENEGIE JÁDRA

Na konci první poloviny dvacátého století se atomová fyzika setkala s velmi překvapivým jevem. Experimentálně bylo zcela přílišné zjistit, že hmotnost každého stabilního atomu jako čelo je vždy o něco menší než prostý algebraický součet hmotností elementárních částic, z nichž je atom vytvořen. Tuto skutečnost lze nejlepší vyjádřit nerovností

\[
M(ZX) < Z M(\overline{p}) + (A - Z) M(\overline{n}) + Z M(\overline{\gamma})
\]

kde \(M(\overline{p}) \), \(M(\overline{n}) \) a \(M(\overline{\gamma}) \) značí kladivou hmotnost protonu, neutronu a elektronu, \(M(ZX) \) je
experimentálně stanovená hmotnost atomu prvku A_X a ostatní symboly mají stejný význam jako v předchozích odstavcích.

Z uvedeného zjištění vyplývá, že syntéza atomového jádra z elementárních částic představuje vlastně jadernou reakci, při níž se uvolní energie ekvivalentní příslušnému úbětku hmotnosti.

Vyjadříme-li tento úbětek hmotnosti (označovaný také pojmy hmotnostní schodek, rozdíl, popř. defekt) ΔM jako diferencii mezi levou a pravou stranou nerovnosti (3-6), dostaneme rovnici

$$\Delta M = Z \, M(p) + (A - Z) \, M(n) + Z \, M(\text{He}) - M(^2 \text{He})$$ \hspace{1cm} (3-7)

Množství uvolněné energie E_i je pak dán Einsteinovým vztahem

$$E_i = \Delta M \cdot c^2$$ \hspace{1cm} (3-8)

Tato energie se nazývá vazebná energie jádra a je definována takto: Vazební energie E_j jádra atomu daného nuklidu je energie, která se uvolní při vzniku tohoto jádra z volných nukleonů. Je až na znaménko ekvivalentní energii potřebné k rozčlenění jádra na jednotlivé volné nukleony.

Je velmi poučná vypočitat pomocí rovnic (3-7) a (3-8) vazebnou energii jádra konkrétního atomu, abychom získali představu o velikosti popisovaných efektů. Provedeme tento výpočet pro jeden ze znejčesších atomů — pro atom $^3 \text{He}$. K výpočtu použijeme tyto veličiny vypořádávané v jednotkách soustavy SI: experimentálně zjištěnou hmotnost atomu $^3 \text{He}$

$$M(^3 \text{He}) = 6,64644 \cdot 10^{-27} \text{ kg},$$

experimentálně zjištěné kladové hmotnosti elementárních částic

$$M(p) = 1,67252 \cdot 10^{-27} \text{ kg},$$

$$M(n) = 1,67482 \cdot 10^{-27} \text{ kg},$$

$$M(\text{He}) = 9,1091 \cdot 10^{-31} \text{ kg}.$$

parametry atomu

$$Z = 2, \quad N = 2, \quad A = Z + N = 4,$$

rychlost světla ve vakuu

$$c = 2,997925 \cdot 10^8 \text{ m/s},$$

Dosažení do rovnic (3-7) vypočítáme úbětek hmotnosti:

$$\Delta M = 2 \cdot 1,67644 \cdot 10^{-27} \text{ kg} + 2 \cdot 1,67482 \cdot 10^{-27} \text{ kg} +$$

$$+ 2 \cdot 9,1091 \cdot 10^{-31} \text{ kg} - 6,64644 \cdot 10^{-27} \text{ kg} =$$

$$= 5,00618 \cdot 10^{-28} \text{ kg} \quad (= 0,00315 \text{ eV})$$

Tento úbětek hmotnosti čini asi 0,75\% hmotnosti elementárních částic před vytvořením jádra. Dosaďme vypočtenou hodnotu ΔM do rovnic (3-7) a dostaneme množství energie uvolněné při vzniku atomu helia ze dvou protonů, dvou neutronů a dvou elektronů. Vyjadříme-li dosazenou hodnotu hmotnostního schodek ΔM v kilogramech a rychlost světla c v metrech za sekundu, získáme údaj energie v joulech:

$$E_i = 5,00618 \cdot 10^{-28} \cdot (2,997925 \cdot 10^8 \text{ m/s})^2 \text{ kg m}^2 \text{ s}^{-2} =$$

$$= 4,50 \cdot 10^{-12} \text{ J} \quad (= 28,1 \text{ MeV})$$

Abychom si vedeli představit, jak velké je toto množství energie, musíme přejít od dimenzi mikrosvěta do oblasti fyzikálních „rozmerů“ nás obklopujících předmětů. Jeden mol (viz str. 147) atomů helia, tj. asi 6,023 \cdot 10^{23} těhoty atomů, má hmotnost přibližně 4 g. Je zřejmé, že vynásobením energie E_i uvolněné při vzniku 1 atomu helia čistě 6,022 \cdot 10^{23} zjistíme energii uvolněné při vzniku asi 4 g helia z elementárních
částic. Nalezneme tak hodnotu 2.71·10^{12}. To je energie, která by ve formě tepla postačila k obřazí asi 6 500 t vody z hodu těsného ledu až do vody.

Zbývá nám povšimnout si velikosti vazebné energie jádra a přírodních nuklidů a protomics. Je přirozené, že vazebné energie jáder je tím větší, čím větší počet nukleonů jádra obsahuje. V řadě nuklidů a protomics se stvázení podle vzrostajícího nukleonového čísla A tato energie monotónně vzrůstá. Abychom mohli srovnávat stabilitu atomových jáder jednotlivých nuklidů vzájemně mezi sebou, definujeme vazebnou energii jádra každého nuklidu jeho nukleonovým číslem. Tak získáváme hodnoty vazebné energie případučí na jeden nukleon.

Tyto hodnoty vyjadřují pevnost vazby, jakou je poutání každý jednotlivý nukleon v jádru daného nuklidu, a jsou dobrym kritériem stability jádra jako celku.

Obrazem závislosti vazebné energie případučí na jeden nukleon, E/A, (říkáme ji někdy těž nukleonová vazebná energie), na nukleonovém čísle A je křivka na obr. 3-1. Analýza jejího průběhu podává mimořádně závažné informace o stabilitě atomových jáder. Budeme se ji zahývati v příštím oddíle.

3.6 STABILITA ATOMOVÝCH JADER

Stabilita atomových jáder je odrazem jejich velmi složité vnitřní struktury. Alternativní teoretické přístupy slouží k popisu a vysvětlení struktury, chování a vlastností atomových jader jsou složitě souvislostí logickou naplní i formálním matematickým vyjádřením. Jeffxaktní výklad je plně přístupné jen specializovaným pracovníkům. Zde se proto omežíme pouze na jevovou (fenzemologickou) stránku problému. Budeme spíše hovořit o tom, jakými pravidly se stabilita atomových jáder řídí, než o tom, proč se jim řídí.

- **Vliv vazebné energie jáder na jejich stabilitu**

Zjednodušeně lze říci, že mezi vazebnou energiou jáder a jejich stabilním je přímí souvislost. Jádra s největší vazebnou energií na nukleon obvykle nejvíce tendencí k rozpadu nebo sdružení

Bylo již uvedeno, že závislost vazebné energie na nukleon E_n, A atomových jader všech přirozených nuklidů na hodnotě nukleonového čísla A je znázorněna křivkou na obr. 2-1. Ze závislosti je vidět, že prvky v oblasti nukleonových čísel přibližně od $A = 28$ do $A = 120$ (z 14 až 50) vykazují největší hodnotu této energie. Proto jsou prvky s atomovými čísly v oblasti přibližně od $Z = 14$ (Si) do $Z = 50$ (Sn) nuklearně velmi stabilní.

Opakná situace je na obou koncích uvedené řady nuklidů. Prvky o malých atomových číslech a relativně malé hodnotě vazebné energie na nukleon (vodík, lithium aj.) by měly patřit mezi nuklearně méně stabilní. Skutečně také u nich nacházíme schopnost k jaderným přeměnám, jmenovitě k syntetickým jaderným procesům. Extrémně vysoké teploty (o hodnotě miliónů kelvinů), které odstraní z obalu atomu všechny elektrony, umožňují vzájemné přiblížení jader lehkých prvků a jejich sroubování do složitějších, ale stabiličnějších celků. Přitom se uvolňuje ohromné množství energie dané rozdílem vazebné energie zanikajících lehkých a vznikajících těžších jader. Problému tzv. termonukleární syntéza. Jejím příkladem mohou být procesy probíhající na Slunci nebo při explozi vodíkové pumy.

\[
\begin{align*}
\frac{1}{2}H + \frac{1}{2}H &\rightarrow \frac{1}{2}H + \frac{2}{1}He + \frac{1}{0}\gamma \\
\frac{1}{2}He + \frac{1}{2}He &\rightarrow \frac{1}{2}He + \frac{1}{1}H + \frac{1}{0}H \\
\frac{1}{13}C + \frac{1}{2}H &\rightarrow \frac{1}{12}N + \frac{1}{0}\gamma
\end{align*}
\]

Do oblasti syntetických jaderných procesů mužeme též zařadit interakce typu

\[
\begin{align*}
\frac{1}{2}He + \frac{1}{13}Be &\rightarrow \frac{1}{12}C + \frac{1}{1}n \\
\frac{1}{13}Al + \frac{1}{1}n &\rightarrow \frac{1}{12}Al + \frac{1}{0}\gamma
\end{align*}
\]

Na druhém konci řady nuklidů stoji prvky s těžšími jádry, jejichž vazebná energie na nukleon je také poněkud menší než vazebná energie prvků nuklearně stabilních. Projevuje se to schopností jader těchto prvků podléhat řetězným procesům (mnohdy probíhajícím řetězovou reakcí), které opět uvolňují velké množství energie a vedou ke vzniku stabilních jader ze střední oblasti řady nuklidů. Řetězové procesy se uplatňují v jaderných reaktorech a při atomových exploziích. Příkladem těchto procesů mohou být rovnice řetězí: $$^{232}U$$ (pomalými termickými neutrony):

\[
\begin{align*}
^{232}U + \frac{1}{0}n &\rightarrow ^{228}Kr + ^{146}Ba + \frac{3}{0}n \\
^{233}U + \frac{1}{0}n &\rightarrow ^{229}Sr + ^{144}Xe + \frac{2}{0}n
\end{align*}
\]

Projevem dispozice těžkých atomů ke řetězným dějům je i jejich samovolný radioaktivní rozpad. Prvky s hodnotou čísla Z větší než 83 jsou již všemi radioaktivní. Radioaktivitu se budeme zabývat v posledním oddíle této kapitoly.

1) γ je kladná nabitá „elektron“, tzv. pozitron.
2) γ značí energii vytvořenou ve formě krátkodobého elektromagnetického záření.
Je pozoruhodné, že u všech atomových jader, tedy i u relativně těžších atomů, se může za vhodných experimentálních podmínek projevit tendence k syntetickým nukleárním dějinám. Proces spočívá v zachycování elementárních částic nebo jejich uskupení atomovými jádry. Protony, neutrony, deuterony (\(^{1}\text{H}\)), heliová jádra\(^{1}\) (\(^{4}\text{He}\)) a jiné částice mohou pronikat do atomových jáder a vytvářet tzv. složená atomová jádra. Pokud se vzniklé složené atomové jádro ihned po svém vzniku nerozpade a reaguje např. jen emisí fotonů, říkáme, že došlo k záchytu částice jádrem. Nukleonové číslo jádra vzniká a jsou tak syntetizovány těžší nukleidy nebo prvky. Příkladem těchto reakcí mohou být děje

\[
\begin{align*}
^{78}\text{Br} + ^{1}\text{H} & \rightarrow ^{79}\text{Br} \\
^{138}\text{La} + ^{4}\text{He} & \rightarrow ^{142}\text{Ce}
\end{align*}
\]

- **Závislost stability atomových jader na poměru a hodnotách čísel \(N\) a \(Z\)**

Zložitost struktury atomových jader se projevuje mimo jiné i tím, že velikost vzezřelé energie není jediným faktorem podmínujícím stabilitu daného atomového jádra. Významnou úlohu má u každého atomového jádra i poměr čísel \(N\) a \(Z\).

Stabilní přírodní nuklidy obhajují vyzroutěné a velmi málo pronásledované protony a neutrony. Pro většinu nuklidů platí, že \(N\) je \(1,0\) až \(1,6\). U jader nejlehčích až \(N / Z\) hodnotu \(1:1\). Se zvýšujícím atomovým číslem prohnutá stále stoupá přeběh nuklidů nad protony, až u nejtěžších jader nabývá poměr \(N / Z\) hodnoty \(3:2\).

![Obr. 3-2. Grafické znázornění stabilních jader přírodních nuklidů v souhrnních \(N\) a \(Z\)](image)

Názorným vyjádřením této situace je obr. 3-2. V souladnících \(N\) a \(Z\) jsou na něm vyobrazeny všechny přírodní nuklidy. Je vidět, jak body zobrazující reálná atomová jádra nuklidů migrují při vztahu \(Z\) od přímký \(N / Z\) při \(Z=1,5Z\).

Umělé připravené nuklidy, najdeme vykazovat alespoň krátkodobou stabilitu svého jádra, a měli by takový poměr \(N / Z\) při daném \(Z\), aby jejich ubytování v uvedeném grafu bylo v odběr statistického vymezeného souboru přírodních nuklidů.

Dalším faktorem, který rozhoduje o stabilitě atomového jádra, je urost šich čísel \(N\) a \(Z\).

Můžeme se o tom přesvědčit, když soubor 27ů přírodních stabilních (neradioaktivních) nuklidů rozdělíme do čtyř skupin podle toho, k jaké kombinaci čísel \(Z\) a \(N\) patří. Ziskáme tak rozdělení uvedené v tabulce 3-4.

Vidíme, že nejhojnější (v důsledku své velké stability) jsou v přírode zastoupena jádra se sudými čísly \(Z\) a \(N\). Tyto nuklidy toho typu, \(^{16}\text{O}\), \(^{19}\text{Mg}\), \(^{25}\text{Si}\) a \(^{32}\text{Ca}\), jsou zvlášť hojně rozšířeny a vytvářejí téměř 70 \% hmotnosti zemské kůry.\(^{1}\)

\(^{1}\) Větší symbolka atomových jader obvykle neurčí jejich náboj. Písmenně např. místo \(^{4}\text{He}\) pouze \(^{4}\text{He}\).
Jádra, u nichž je jedno z čísel liché, jsou již méně častá. To svědčí o jejich podstatně menší stabilitě.
Jádra s lichými hodnotami \(Z\) a \(N\) se samovolně rozpadají (jsou radioaktivní). Výjimku tvoří pouze atomy s \(A < 14\). Existují jen čtyři stabilní nuklidy s lichým \(Z\) i \(N\). Jsou to \({}_1^1\text{H}\), \({}_5^5\text{Li}\), \({}_6^8\text{B}\) a \({}_7^1\text{N}\).
Nakonec je těžba znovu konstatovat, že nuklidy s hodnotou čísla \(Z > 83\) jsou již při jakémkoliv zastoupení počtu protonů a neutronů v jádru nestabilní. Jejich nestabilita se projevuje radioaktivitou.

Tabulka 3-4. Vliv hodnot čísel \(Z\) a \(N\) na stabilitu jádra

<table>
<thead>
<tr>
<th>Kombinace</th>
<th>Počet stabilních nuklidů</th>
</tr>
</thead>
<tbody>
<tr>
<td>sadé sadé</td>
<td>164</td>
</tr>
<tr>
<td>sadé liché</td>
<td>55</td>
</tr>
<tr>
<td>liché sadé</td>
<td>50</td>
</tr>
<tr>
<td>liché liché</td>
<td>4</td>
</tr>
</tbody>
</table>

Pozoruhodné je zjištění, že některé hodnoty nukleonového čísla \(A\) znamenají zvlášť velkou stabilitu příslušných jáder. Jsou to čísla 4, 8, 12, 16, 20, 24 a 28 (viz obr. 3-1). Jejich dosti složitou podstatu a je dosud nedokončené složité struktury atomových jader. Veškeré čísla odpovídají zejména případům zaplnění protonových a neutronových slopek v jádru.
Ukázalo se, že pokud počet protonů nebo počet neutronů v jádru dosáhne čísel 2, 8, 20, 28, 50, 82 a pravděpodobně i 114, 126, 164 a 184 (tzv. magicích čísel), vykazují vzniklá jádra zvýšenou stabilitu. Tak např. velmi stabilní je jádro olova \(^{207}_{82}\text{Pb}\) (\(Z = 82, N = 126\)), které je podle hodnot svého protonového a neutronového čísla „dvoujádrové“, případem „magicího jádra“.
Tato představa umožňuje předvídat výskyt zvýšené stability u těchto atomových jader dosud neobjevených prvků.

3.7 Radioaktivita

Radioaktivní rozpad atomových jader — právě tak jako jejich tendence podléhat syntetické nebo štěpné jaderné reakci — je projevem nestabilit jader. Jev spočívá v samovolné eliminaci některých elementárních částic nebo jejich skupin z prostoru jádra ve formě tří družstev záření, která tradičně označujeme písmeny \(\alpha\), \(\beta\) a \(\gamma\). Byl poprvé pozorován Becquerelem (1896) na sloučeninách uranu. Curie a Curie-Sklodovská (1898) mu dali správný výklad i dnesní název — radioaktivita.
Samovolný rozpad atomových jader se omezuje na čtyři základní druhy:

- **Přeměna \(\beta\)**
 Jádra nuklidů s nadbytekem neutronů (např. \(\text{H}, \text{P}, \text{Sb}\)) zmenšují jejich počet vnitrojaderným procesem, při němž se uskutečňuje děj
 \[\beta_n \rightarrow \uparrow p + \downarrow e \]

 Vzniklý proton zůstává v jádru, avšak elektron jako tzv. částice \(\beta\) — jádro opustí. Dochází tak k transmutaci atomového jádra podle rovnice
 \[\beta_X \rightarrow z + ^{1}Y + \downarrow e \]

 Příklad:
 \[\text{H} \rightarrow \uparrow ^{1}S + \downarrow e \]

37
• Přeměna β+

Uměle lze připravit nuklidy, které mají v jádru relativní nadbytek protonů. Jejich jádra se rozpadají za vyzražováním pozitronů $^{\gamma}e$. Vnitrojaderní přeměna spočívá v procesu

$$^1p \rightarrow ^0n + ^\gamma e$$

Neutron zůstává v jádru, pozitron $^\gamma e$ jako částice β+ jádro opouští. Vyzrazení pozitrony velmi rychle zanikají při rekombinaci s elektronem za vzniku fotonů.

Proces transmutace prvku lze vyjádřit obecnou rovnicí

$$^{2}X \rightarrow z\gamma Y + ^\gamma e$$

Příklad:

$$^{12}C \rightarrow ^{12}B + ^\gamma e$$

• Záchyt elektronů

Relativní nadbytek protonů v jádru může být upraven jádrem tak, že proton jádra pohltí elektron z některé hladiny elektronového obalu. (Podle toho, z které hladiny byl elektron jádem zachycen, se děj označuje jako záchyt K, záchyt L apod.) Elektron v jádru interaguje s protonem podle rovnicí

$$^2e + ^1p \rightarrow ^0n$$

a jádro podléhá přeměně, kterou lze obecně vyjádřit rovnicí

$$^{2}X + ^1e \rightarrow z\gamma Y$$

Příklad:

$$^{12}Be + ^1e \rightarrow ^{	ext{32}}Li$$

Elektronový obal je po tomto ději v excitovaném stavu (viz kap. 4), místo po zachycením elektronu nezůstane prázdný, nýbrž je zaplněno elektronem z některého z vyšších atomových orbitalů. Současně dojde k emisii kvanta elektromagnetického záření, tj. fotonu.

• Přeměna α

U příliš těžkých jader dochází k samovolnému odštěpování velice stabilních částic α, tj. heliumových jader ^{4}He. Je tomu tak vždy, když jádro má $^{A}A > 210$. Tímto druhem rozpadu vzniká nuklid, který má ^{A}A o 4 jednotky a ^{Z}Z o 2 jednotky menší než původní rozpadající se nuklid:

$$^{2}X \rightarrow ^{2}Z\gamma Y + ^{4}He$$

Příklad:

$$^{224}\text{Ra} \rightarrow ^{222}\text{Rn} + ^2\text{He}$$

Jádra, která se tvoří některým ze čtyř uvedených radioaktivních rozpadů, nemusí být po svém vzniku ve svém základním, tj. energeticky nejnižším stavu. Dosáhnou ho teprové tehdy, když vyzražené částice energeticky nejen do jádra vniknou, ale i do vnějších částí jádra.
Kinetika radioaktivního rozpadu

Časový chod samovolně přeměněných jader při radioaktivním rozpadu se řídí zákaznostmi, které lze velmi dobře matematicky formulovat. Jejich odvození a vyvěšení důsledků z nich plynoucích se budeme zabývat v tomto oddíle.

Poněvadž téměř při každém experimentování s radioaktivním materiálem se pracuje s ohroženími počty atomů (i když třeba z hlediska hmotnosti jde o styčná postřehnutelná množství), můžeme při vyjádření kinetiky rozpadu právem předpokládat, že pro daný děj platí zákaznosti počtu pravděpodobnosti.

Při tom je radioaktivní rozpad jader děl nezávislý na běžných okolních podmínkách něčeho světa. Nesmí jej např. ovlivnit změnu teploty a tlaku nebo působením elektrických a magnetických polí aj.

Pro libovolné jadro radioaktivního nuklida je pravděpodobnost \(P \) jeho rozpadu v časovém intervalu \(\Delta t \) závislá jedině na délce tohoto intervalu a pro dostatečně malé \(\Delta t \) je délce tohoto intervalu přímo úmerná:

\[
P = k \Delta t
\]

(3.9)

Konstanta úměrnosti \(k \) má pro všechny atomy daného radioaktivního nuklida stejnou a zcela určitou hodnotu. Nažádou se rozpovídá konstanta.

Pravděpodobnost, že jadro nepodléhá radioaktivní přeměně, je \(1 - P \) a je dana vzávem

\[
1 - P = 1 - k \Delta t
\]

(3.10)

Pravděpodobnost, že se tak nestane ani po uplynutí \(n \) časových intervalů \(\Delta t \), je složená pravděpodobnost, daná výrazem (1 - \(P \))^\(n \). Plut tedy

\[
\left(1 - P\right)^n = \left(1 - k \Delta t\right)^n
\]

(3.11)

Označíme-li výraz \(n \Delta t \) symbolem \(\tau \), lze vztah (3.11) upravit na

\[
\left(1 - P\right)^n = \left(1 - \frac{\tau}{\tau_0}\right)^n
\]

(3.12)

Konverguje-li \(\Delta t \) k nule a \(n \) k nekonečnu, při čemž je stačí splnit podmínka \(n \Delta t = \tau \), je limity hodnota pravé strany rovnice (3.12) dana vzávem

\[
\lim_{n \to \infty} \left(1 - \frac{\tau}{\tau_0}\right)^n = e^{-\frac{\tau}{\tau_0}}
\]

(3.13)

Pravděpodobnost, že jadro daného radioaktivního nuklida po čase \(\tau \) zůstává bez přeměny, je tedy \(e^{-\frac{\tau}{\tau_0}} \).

Označíme-li symbolem \(B_0 \) původně (v čase \(\tau = 0 \)) přítomný počet všech atomů nuklida a symbolem \(B \) počet atomů nerozpudlých po čase \(\tau \), můžeme napsat rovnici

\[
B = B_0 e^{-\frac{\tau}{\tau_0}}
\]

(3.14)

která vyjadřuje základní kinetický zákon, jimž se řídí velké radioaktivní procesy.

Graf znázorňující závislost hodnoty \(B \) na čas \(\tau \) je uveden na obr. 3.1.

![Obr. 3.1. Pokles počtu nerozpudlých atomů radioaktivního nuklida s časem](image-url)
Vědec rozpadové konstanty k charakterizuje radioaktivní rozpad i délku časového intervalu τ_1, během něhož se rozpadá polovina přítomných jader daného nuklidu (viz obr. 3-3). Teto době se říká poločas rozpadu. Je to doba potřebná k tomu, aby nastala situace vyjádřená rovnicí

$$ B = \frac{1}{2} R_0 $$ \hspace{1cm} (3-15)

Spojením vzáhl (3-14) a (3-15) dostaneme

$$ \frac{1}{2} = e^{-\tau_1 k} \Rightarrow \tau_1 = \frac{\ln 2}{k} = 0,692 \frac{\ln 2}{k} \hspace{1cm} (3-16) $$

Poločas radioaktivního rozpadu je konstantou nezávislou na původním množství přítomné radioaktivní látky B_0, jeho hodnotu nemůžeme snadno odvozit. Poločasy se mohou polybovat v intervalu $[0, \infty)$. Jde tam, u nichž by mohlo dojít počtu protonů a neutronů, který někdy vzniká, mají nulový poločas rozpadu. Například stabilitní nuklidi se nedozadávají buď vůbec, nebo tak pomalu, že jejich životnost nelze experimentálně zjištět - mají neskončený nebo prakticky neskončený poločas. Uvítí toto intervalu jsou obsaženy experimentálně zjištěné poločasy od malých zlomků sekundy (232Th má $\tau_1 = 3 \times 10^{-7}$ s) až po milióny tisíc let (232Th má $\tau_1 = 1,4 \times 10^{10}$ let).

Kinetské rovnice (3-14) radioaktivního rozpadu a její grafické znázornění naznačují, že radioaktivní rozpad probíhá prakticky do někonečna. Po určité době však nabitý počet nerozpadojících jader tak nesmí definitivní hodnoty, že jejich radioaktivitou uniká naším pozorováním možnostem. Po uplynutí deseti poločasů klesá počet atomů radioaktivního nuklida asi na tisícinu původní hodnoty. Deset poločasů je proto doba, za kterou radioaktivní látku prakticky „vyumíle“. Radioaktivní nuklidy, které se vyskytují v přírodě, mají buď poločas rovnoměrný se stářím Země, nebo se prakticky vytvářejí přírodním jaderným procesem.

Většina nuklidů prvků se $Z > 83$ má velmi krátký poločas, jen 232Th, 235U a 238U překážají geologická období. Můžeme se oprávněně domnívat, že v procesu nukleogeneze (tj. tvorby atomových jader) při vzniku sluneční soustavy existovaly v přírodě i prvky transuratoidní, které však již důvěrně zanikly svým rozpadem.
4 Elektronový obal atomu

Experimentalní zkoumání rozptylu částic z při průchodu kovovými fóliemi, uskutečněné Rutherfordem (1911), vedlo ke zjištění, že hmotnost atomů je soustředěna v jejich kladně nabitém jádru, které má nepatrné rozměry ve srovnání s velikostí atomu (str. 26).

Z této skutečnosti logicky vyplýnulo, že záporně nabité elektrony, kompenzující kladný náboj jádra, se pohybují ve zbytku prostoru atomu. Pro svou malou hmotnost nejsou překážkou, která by výrazně ovlivnila průchod částic z tohoto mimojáderného prostoru (obr. 4-1).

![Obr. 4-1. Rozptyl částic z na kovové fólii. Pouze ty částice, které se dostanou do přímého styku s jádrem atomu, mění podstatně směr svého pohybu (obrazec je schematizován, rozměr jádra a celého atomu vzhledem nekorespondují)](image)

Ve smyslu klasických fyzikálních představ, tj. představ vytvořených na základě poznatků z našeho makrosvěta, je ovšem takovéto uspořádání atomu zcela nerealné.

Pokud si představíme elektrony rozmístěné v okolí jádra prakticky bez pohybu, shledáme, že vzniklé uskupení musí být naprosto nestabilní. Záporně nabité elektrony budou okamžitě elektrostatickými coulombovskými silami přitaženy ke kladně nabitému jádru. Atom tak, jak jsme si jej představili, přestane existovat.

Příspěvěm-li systému elektronů krouživý pohyb kolem jádra tak, abych atom připomínal např. Sluneční soustavu (Rutherfordův model), dosáheme situace, kdy se vzniklé elektrony rozmístí v druhé a třetí orbite kolem jádra. V této situaci je však jasné, že elektrony budou v první orbite elektrony jednou na jeden, zatímco elektrony v druhé orbite budou více jednou na jeden.

Ani jakákoli představa nebo sebedůmyslnější model vytvořený pouze v intencích klasické mechaniky nemůže vysvětlit existenci atomu a jednoduchý Rutherfordův experimentální pozorování o jeho uspořádání.

Toto překvapivě zjištění nebylo jediné, s kterým se fyzika na začátku tohoto století setkala. V desátých a dvacátých letech se fyzikové na řadě dalších experimentů postupně přesvědčovali o značných rozdílech mezi fyzikálními zákonitostmi platnými pro částice mikrosvěta (mikroobjekty) a částice makrosvěta.}

1) Pod pojmem částice mikrosvěta (mikročástice, mikroobjekt) rozumíme jednak elementární částice (str. 25), jednak i jejich složitější celky: atomová jádra, atomy, ionty, molekuly.
a fyzikálním chováním klasicckých makroskopických hmotných objektů, které nás obklopují.

Teprve počátkem třicátých let byla tato nesmírně závažná skutečnost ve fyzice v podstatě akceptována a nad to byly oštro formulovány principy mechaniky mikročástic (kvantová, resp. vlnová mechanika). Započalo období jejich využívání v různých oblastech fyziky, mezi jiným i ve výkladu struktury atomu, jeho vlastností a jeho „pohybu“ ve smyslu filozofickém.

4.1 FYZIKÁLNÍ ODLIŠNOSTI SVĚTA MIKROOBJEKTŮ

V oblasti klasiccké mechaniky při popisu a řešení libovolného souboru a těles nejdříve vytvoříme soustavu 3x diferenčních rovnic druhého řádu (Lagrangovy rovnice). V rovniciích vystupují veličiny celkové energie, souřadnice, hybnosti a jejich derivace. Pak integrací pohybových rovnic získáme řešení, které nám dává informaci o souřadnicích a hybnostech systému (tedy o stavu systému z hlediska mechanického) v jeho libovolném minulosti i budoucnosti.

Takovýto postup nelze obecně použít u mikroobjektů, zejména ne u mikročástic, z nichž je vytvářen atom. V mnoha situacích tak nelze postupovat ani při popisu pohybu atomů jako celku a dokonce ani při vyjadřování pohybu některých uskupení atomů.

Je tomu tak proto, že mikroobjekty mají řád pozoruhodných vlastností, které brání přímě aplikaci klasicckých fyzikálních představ. Je to především
1. kvantování energie mikročástic,
2. daaliskácky, tj. korpuskulárně-vlnový charakter mikroobjektů,
3. nemožnost určovat s libovolnou přesností fyzikální veličiny charakterizující stav dané mikročástice.

Těmito jevy se nyní budeme postupně zabývat.

- **Kvantování energie mikročástic**

Klasiccká tělesa a částice mohou nabývat při pohybu ve světě našich dimenzí energii, které v podstatě tvoří kontinuum (obr. 4-2). Mikročástice naproti tomu často nabývají jen energií zcela určitých hodnot. Jejich energie je tedy *kvantována* a přípustné energie vytvářejí soubor *diskrétních energetických hladin* (obr. 4-3). U mikročástic však nastává kvantování jen v určitých situacích a třeba i jen v určitých rozsahu hodnot energie (obr. 4-4).

![Obr. 4-2. Klasiccké částice při svém pohybu podél časové nebo prostorové souřadnice nabývá libovolné energie](image)

![Obr. 4-3. Kvantovaný pohyb mikročástice. Částice se vyskytuje pouze na jedné z energetických hladin](image)

V reálném souboru diskrétních hladin energie může mikročástice zaujmout vždy pouze jedinou z nich. Hodnoty energie mezi hladinami jsou pro částic „zakázány“. Termín „zakázaná oblast energii“ je nutno chápat jako konstatování skutečnosti, že experimentálně nemůžeme prokázat existenci mikročástice, která by se v této oblasti zdržovala po měřitelný časový interval.
Přechod mikročástice z jedné energetické hladiny na druhou je zásadně možný, ale je spojen s příjemem nebo odevzdáním množství energie, která odpovídá energetické vzdálenosti hladin (obr. 4-5). Energie se přitom odevzdává nebo přijímá v různých svých formách, velmi často ve formě kvantu elektromagnetického záření (zářivé přechody), jindy ve formě energie tepelného pohybu atd. (nezřídka přechody).

Obr. 4-4. Systém kvantovaný v určité oblasti hladin energetického kontinuum

Energie kvantovaná energetické hladině

Energie kvantovaná energetické hladině

Obr. 4-5. Přechody mikročástice mezi kvantovými hladinami

Energie kvantovaná energetické hladině

Energie kvantovaná energetické hladině

Obr. 4-6. Základní a excitované stavy systému s jedinou mikročásticí

Pravděpodobnost přechodu mikročástice mezi energetickými hladinami a pravděpodobnost jejího setrvání na dané hladině lze vyjádřit ve vzorcích na pravděpodobnostní koefficient. O jejích hodnotách rozhodují některé primární principy a z nich plnění vybíráme pravidla a způsob rozminšení (populace) ostatních mikročástic na jednotlivých hladinách.

Ve shodě s klasičeskými zákaznostmi i mikročástice podle možnosti obsahují hladiny s nejnižšími energiemi tak, aby energie celé soustavy byla minimální. Stav s minimem energie označujeme jako základní, ostatní uspořádání jsou stavy rozčleněné (excitované) (obr. 4-6).

S myšlenkou kvantování energie u některých mikroobjektů vystoupil poprvé na samém počátku našeho století Planck. Aby vysvětlil překvapující poznatky o závislosti vlnové délky elektromagnetického záření, vycházejícího z tzv. absolutně černého tělesa, na teplotě téhoto tělesa, musel přijmout představu přetížené struktury emitovaného záření. Odvodil, že energie elementárního kvanta záření je závislá na frekvenci záření v 1):

\[E = h \nu \]

(4-1)

1) Frekvence \(\nu \) je definována jako počet kmitů za jednotku času a souvisí s vlnovou délkou záření \(\lambda \) vztahem

\[\nu = \frac{c}{\lambda} \]
kde \(h \) značí konstantu. Předpoklad kvantování umožnil Planckovi podat věrohodné vysvětlení experimentů.

Bry nato velmi úspěšně využil kvantovou hypotézu Einstein (1905) k vysvětlení tzv. fotoelektrického jevu. Později ještě prokázal, že představa o energetických kvantech platí zejména obecně pro většinu druhy absorbce a emise zářivé energie látek. Od té doby byla realnost kvantování energie ještě mnohokrát experimentálně potvrzována.

Konstanta úměrnosti \(h \) ve vztahu (4-1) má povahu univerzální (všeobecně platná) přirození konstanty a byla nazývána Planckovou konstantou. Má hodnotu \(h = (6,6256 \pm 0,0005) \cdot 10^{-34} \text{Js} \). Představuje elementární kvantum každé fyzikální veličiny, která s ní má stejný fyzikální rozměr.

K výkladu moderních teorií chemické vazby není Bohrův model atomu vhodným výchozí diskusem. Nebudeme se jím proto podrobněji zabývat.

- **Korpuskulárně-vlnový charakter mikroobjektů**

 Klasická fyzika důsledně rozlišuje pojem částice (korpuskule) a pojem vlnění. Částicí se rozumí takový hmotný útvar nenulové hmotnosti, jehož podstatným znakem je:

 1. meznost přesné lokalizace v prostoru,
 2. existence definované trajektorie (křivky dráhy) při pohybu,
 3. ostačí vymezené povrchu, tj. hranice s ostrými útvary obdobjeňního typu.

 Jako vlnění je naproti tomu označováno šíření vzrušení v jakémkoli hmotném prostředí. Vyznačuje se přítomností difrakčních (ohybových) a interferenčních jevů.

 Pohyb částice se řídí principem „minima obecného pohybu“, formulovaného de Maupertuisem (1747). Plati, že směr pohybu částice je takový, abych součin její dráhy a rychlosti byl minimální.

 ![Obr. 4-7. Interferenční obrazček vzniklý difrakcí elektronů při průchodu kovovou fólií](image)

 1) \(1 \text{J} = 1 \text{kg} \text{m}^2 \text{s}^{-1} \).

 2) Pod pojmem izolovaný atom se rozumí atom, který je mimo sfinť vlivu ostatních součástí soustavy, k nimž patří, zejména není v prokazatelné interakci s jinými atomy, mikročasticemi apod.
Vlnění se řídí principem časově nejkratší dráhy, který vynalezl Fermat (1650). Směr šíření vln v prostoru je dán podmínkou, že podíl jejich dráhy a rychlosti musí být minimální.

V dimencích našeho světa dovedeme v úvaze i experimentu bez problémů přisoudit každému objektu charakter bud korpuskulární, nebo vlnový. Obstává nastávající představa do oblasti mikrovln. Experimenty jednoznačně ukazují, že u mikroobjektů je nutné připustit dvojskost (dualismus) jejich chování. Taž mikročástice v závislosti na druhu a uspořádání experimentu vykazuje jednou korpuskulární, jindy vlnový charakter. Proud elektronů, atomů nebo i molekul – tedy objektů, jež jsou na základě mnoha experimentů nakloněni považovat spíše za částice – způsobuje při svém rozptylu na polykristalických fóliích kvůli monokrystalické látce typické interferenci jevy specifické pro vlnění (obr. 4-7). Naopak tok elektromagnetických vln při dopadu na tahu nebo na podložku již je pouze neutrašně hynoucí, která dokonce může být při vhodném experimentálním uspořádání při zpracování mechanického pohybu podložky. Při se vzniku a vzkříšení elektronů (fotodiodický jev)

Podobných jevů je znám více. Jednoznačně dokazuje, že čistě korpuskulární nebo čistě látových forem hmoty v oblasti mikroobjektů nevychází právě tak, jako vlnová představa není jediným možným popisem např. světelného pole.

Dualismus chování byl nejprve předpokládán a zjištěn u elektromagnetického záření. Řada optických jevů byla vysvětlená jak představou vlnové, tak korpuskulární povahy světla. Připustění existence kvant světla, jejichž energie vyjadřuje rovnice (4-1), znemožnilo definitivní přijetí myšlenky dvojasyntropičnosti a pohybu světelného polí. Spojením Planckova vzorce a Einsteinovy rovnice (1-3) byl vyjádřen vztah mezi energií fotonu ε a jeho hmotností m_p při pohybu rychlostí světla c i závislostí hmotnosti pohybujícího se fotonu m_v na jeho frekvenci ν:

\[\epsilon = m_v c^2 \]
\[m_v = \frac{\epsilon}{c^2} \]

Bylo možno vyjádřit i hynost fotonu p_v jako součin jeho hmotnosti a rychlosti m_v a s použitím rovnice (4-3) a definici podmínky ν = ε/c² i ve formě vztahu:

\[p_v = m_v c = \frac{h}{\nu} = \frac{h}{c \nu} \]

Rovnice vyjadřuje dualismus chování fotonu tím, že formálně spojuje jeho hynost jako veličinu vystihující korpuskulární charakter objektu s vlnovou delkou, resp. frekvencí, tedy s veličinami typickými pro její vlnové povahy.

Zjištění dualismu u elektromagnetického pole vedlo k vyloučení odvážné hypotézy (de Broglie 1924), že dualismus není jen zvláštní vlastností optických jevů, nýbrž má platnost všeobecně.

De Broglieova myšlenka spočívala v představě, že právě tak, jako je geometrická optika se svou představou světelného paprsku jen zvláštní oblasti obecnější optiky vlnové, musí i klasická newtonovská mechanika součástí jiné, univerzálnější platné vlnové mechaniky, kterou bylo možno použít pro popis pohybu v oblasti mikrovln.

Zobecněním vztahu (4-4) byl posléze vysloven předpoklad, že každé mikročástice o hmotnosti m, pohybující se rychlosti v a mající tedy vlnovou p_v = m_v, přidržuji se, jejíž delka λ je dán vztahem

\[\lambda = \frac{h}{mv} = \frac{h}{\nu} \]

1) Říkáme uvážněn vztah z jiných principů a podmíněn nelze, neboť sám je primárním předpokladem. Jednáním kritériem jeho správnosti a oprávněnosti je kladná hodnota (a shoda dobolečejší z platnosti) s experimentem.
Dělá de Broglieových vln, kterým se běžněji řiká *heznotové* vlny, je velmi malá. Je tím menší, čím větší je hmotnost částice a čím větší je její rychlost.

Platnost vztahu (4-5) byla experimentálně plně potvrzena, a to nejdtive diferenci elektronů (Davidson a Germer 1927; obr. 4-7) a později i částic, jako protonu a dokonce i chlóru molekul vodíků (Demster, Esterman, Stern 1930). Hmotové vlny jsou tedy skutečnou součástí každé pohybující se mikročástice.

- **Heisenbergův princip neurčitosti**

 Vlastnosti mikročástic jsou tak zvláštní, tak nepodobné chování makroskopických těles, že každý pokus o jejich názornou představu a srovnání s jevy nás obklopujícího makrosvěta selhává. Vlastnosti, které jsme ochotni připsat klasicistickým vlnám, jsou diameterně odlišné od vlastností klasicistických částic. Je proto vyloučeno, abychem obraz vlnového-pokusového chování reálné mikročástice získal prostřednictvím součtu vlastností vln a částic. Určitý objekt není mít současně všechny vlastnosti klasicistické částice a všechny vlastnosti klasicistické vlny, když některé z těchto vlastností jsou všechny přesně vyloučeny.

 Udržíme-li se proto k takovému způsobu popisu, musíme počítat s tím, že výrazně rozdílné vlastnosti částice a vlny se u mikroobjektu neobjeví a místo nich zjistíme vlastnosti kvalitativně jiné a nové. Takovou skutečnost je ovšem zpětně promítána do klasicistického korpuskulárního nebo vlnového přístupu k popisu mikročástice. Tak např. připustíme-li, výsledek vlnových vlastností u izolovaného elektronu, musíme odhodlat určitou část představit použitých v klasicistickém korpuskulárním popisu jeho polohy.

 Nejvýznamnějším projektem střetnutí vlnové představy s představou korpuskulární z toho vyplývající významnou vlastnostmi mikročástic je, že pro ně platí trv. Heisenbergův princip neurčitosti.

 Podle něho součin každého dvojice dynamicky proměnných veličin, která má rozdír Planckovy konstanty, nemůže být stanoven s menší nepřesností, než je hodnota Planckovy konstanty.

 U mikročástic proto není možné současně přesně změřit např. polohu a hybnost částice (a tím i její rychlost). Čím přesněji měříme např. hybnost částice, tím větší nepřesnost se objeví v údaje její polohy. Heisenbergův vztah pro tento případ, označme-li \(\Delta p \) nepřesnost určení hybnosti \(p \), a \(\Delta x \) nepřesnost určení souřadnice \(x \) částice, lze vyjádřit rovnicí

\[
\Delta p \cdot \Delta x \geq \hbar \quad (4-6)
\]

Podobně i nepřesnost určení energie \(\Delta E \) je Heisenbergovým vztahem spojena s nepřesností určení času \(\Delta t \):

\[
\Delta E \cdot \Delta t \geq \hbar \quad (4-7)
\]

U částic stacionárních objektů mikrovlna (např. izolovaného atomu), jež nás budou v dalších kapitolách nejvíce zajímat, se Heisenbergov vztah (4-7) uplatňuje zvláštním způsobem. Atomoví mají vzhled struktury, která není funkční čas. Časový, „souřadnice“ existence atomu tedy může být určena s libovolnou (prakticky i nekonečnou) nepřesností (\(\Delta t \rightarrow \infty \)), aniž by atomu dojde ke změně struktury. Vztah neurčitosti v takovémto případě přípustí plné určení energie jeho stacionárního stavu (\(\Delta E \rightarrow 0 \)). Jak uvedli později, dali se k srovnáníchování velmi přesně určit energie hladin, na nichž se vyskytují elektrony v potenciálovém poli jádra atomu.

Souladné lze říci, že vztahy neurčitosti umožňují stanovit, s jakou omezenou přesností můžeme popisovat pohyb mikročástic pomocí fyzikálních veličin, které jsme načlenili a zvýšili si

1) **Rozměr** \(m = \mu \) je \(\text{kg} \cdot \text{m}^2 \cdot \text{s}^{-1} \) a **rozměr** \(x \) je \(m \), takže jejich součin je rozměrové hodnoty s rozdírem Planckovy konstanty (\(\text{kg} \cdot \text{m}^2 \cdot \text{s}^{-1} \)).

2) **Rozměr** \(\Delta E \) je \(\text{kg} \cdot \text{m}^2 \cdot \text{s}^{-2} \), **rozměr** \(\Delta t \) je \(s \). Jejich součin má opět rozměr Planckovy konstanty (\(\text{kg} \cdot \text{m}^2 \cdot \text{s}^{-1} \)).
používat v makrosvětě. Jsou v plném souladu se statistickým charakterem zákona popisujícím chování mikročástic. Odrážejí skutečnost, že ve světě atomových rozmezí, v němž se odehrávají velmi rychlé pohyby a procesy mající velmi krátké trvání, jsou zákony jistoty nahrazeny zákoným pravděpodobnosti.

4.2 VLNOVÁ FUNKCE

V předchozích odstavcích jsme viděli, že de Broglie svými pracemi a myšlenkami ukázal nutnost vytvořit řeše pro platnost (tj. platící v oblasti mikrosvětu i makrosvětu) mechniku - tzv. mechaniku kvantovou, resp. vlnoovou. Základy tohoto teoretického přístupu položili Heisenberg (1925) a Schrödinger (1926). Schrödinger z analogie s rovnicemi popisujícími chování klasických vln (např. zvukových vln, kmitu struny apod.) formuloval obecnou diferenciální rovnici, kterou musí splňovat funkce popisující stav libovolného mikroobjektu i makroobjektu. Tato funkce, nazývaná a označována nejčastěji jako vlnová funkce \(\psi \), obsahuje informace o popisovaném objektu a podává obraz jeho chování. V případě mikročastic, např. elektronů, má čtverec vlnové funkce \(\psi^2 \) fyzikální význam pravděpodobnosti výskytu této částice. Známé-li průběh vlnové funkce \(\psi \) určitého elektronu v určitém prostoru (tj. předem, jakými hodnoty jeho funkce \(\psi \) mává v kterémkoli bodě tohoto prostoru), můžeme určit konkrétní hodnoty \(\psi^2 \) zjistit, ve kterých místech je výskyt sledovaného elektronu nejpravděpodobnější. Tam, kde funkce \(\psi \) má nízké kladné nebo nezáporné hodnoty, je pravděpodobnost výskytu elektronu velká, neboť \(\psi^2 \) je kladné číslo. Tam, kde má funkce \(\psi \) hodnoty blízké nebo rovné nule, je pravděpodobnost výskytu elektronu malá nebo nulová, neboť veličina \(\psi^2 \) je nulová či malé, resp. rovná nule.

Rekli jsme, že vlnová funkce \(\psi \) mikroobjektu musí vyhovovat diferenciální rovnici sestavené Schrödingarem. Rovnice, již říkáme rovnice Schrödingera, nemá odvozena, ale sestavena, a její platnost je postupována. Předpokládá, že rovnice platí, a není osvědčují a je základním kamenem kvantové mechaniky.

Největším a nejúspornějším tvarem Schrödingerovy rovnice, velmi vhodným pro formulaci většího množství chemických problémů, je zápis

\[
\mathcal{H} \psi = E \psi
\]
(4.8)

kde \(\psi \) je vlnová funkce daného mikroobjektu, \(E \) - jeho celková energie a \(\mathcal{H} \) - tzv. Hamiltonův operátor celkové energie\(^1\). Rovnice (4.8) nám řiká, že působení operátoru \(\mathcal{H} \) na funkci \(\psi \) se rovná této funkce násobené veličinou \(E \), tj. energii. Je třeba si uvědomit, že funkce klasické mechaniky jsou v kvantové mechanice nahrazeny operátory. Toto tvrzení je jedním ze základních postulátů kvantové mechaniky. Využívá je, že každé pozorovatelné veličiny odpovídají operátory, které musíme aplikovat (nechat působit) na funkci \(\psi \), abychom pozorovatelnou veličinu dostali.

Funkce \(\psi \), pro kterou je rovnice (4.8) splněna, se nazývá vlastní funkce operátoru \(\mathcal{H} \). Přípustné hodnoty veličiny \(E \), tj. energie, jsou označovány za vlastní hodnoty operátorové rovnice. Jak vlastní funkce, tak vlastní hodnoty energie lze považovat za řešení Schrödingerovy rovnice.

\(^1\) Operátorem se rozumí symbol pro provedení určité matematické operace. Je to předpis, jak získat na jakou funkci z řady operátory vyjadřující nějakou součást vztahů mezi obecnými symboly. Význam \(\mathcal{H} \) nezavírá užívat se jeho názvu do řešení Schrödingerovy rovnice, platné pro časové stacionární číslo, ma tvar

\[
\mathcal{H} = -\frac{\hbar^2}{8\pi^2 m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) + E_0
\]

kde \(E_0 \) je potenciální energii závislé na souřadnicích \(x, y, z \), \(\hbar \) - Planckova konstanta, \(m \) - hmotnost mikroobjektu.
4.3 ATOMOVÉ ORBITÁLY

Problém struktury izolovaného atomu, zejména uspořádání jeho elektronového obalu z hlediska energii jeho jednotlivých elektronů a jejich prostorového rozmístění, může být objasněn řešením Schrödingerovy rovnice. Předtím se ovšem musí do jej obecné formulace vnést údaje charakterizující uspořádání atomu, zejména údaje o hmotnosti a nábojí jej tvůrcích částic, a fyzikální výsledky uspořádání potenciálního pole jádra.

Přesné řešení Schrödingerovy rovnice je však možné jen pro dvojici hmotných částic. Proto také jen u atomu vodíku (proton + elektron) a/nebo u jednoelektronových atomů tzv. vodíkového typu \(^1\) můžeme přesně vypočítat vlastní hodnoty energie \(E\) a určit vlastní vlnovou funkci. Naštěstí se zjistilo, že přechod od vodíku k atomům vyšších atomových čísel znázorňuje postupné změny kvantity fyzikálních vztahů jádro–elektron a působení v podstatě drobných repulzních (odpudivých) sil mezi elektronky. A tak výsledky přesného řešení Schrödingerovy rovnice pro atom vodíku jsou velmi dobrým prototypem představ o uspořádání atomů všech dalších známých chemických prvků.

Vlastní hodnoty energie a vlastní vlnová funkce \(\psi\) charakterizují stav elektrona v atomu, tj. vymezení jakoukoliv existenciální oblast elektronu v atomu. Tato oblast nejpravděpodobnějšího výskytu elektronu se říká atomový orbitál \(^2\). Vlastní vlnová funkce každého atomového orbitálu (dále již jen AO) je určena svou závislostí na souřadnicích vztahového systému. Početek systému souřadnic je vždy umístěn do jádra atomu. Používá se buď kartézská soustava pravoúhlých souřadnic \(x, y, z\), nebo běžněji a výhodněji sférické souřadnice \(r, \theta, \phi\) (obr. 4–8). Vlnovou funkci pak lze formálně vyjádřit dvojím způsobem:

\[
\psi(x, y, z) = \psi(r, \theta, \phi)
\]

V konkrétním případě je soubor vlnových funkcí, charakterizujících atomové orbitály, dán dosti komplikovaným matematickým výrazem. Tento výraz vždy obsahuje tři druhy veličin (viz tab. 4–2, str. 60):

1. některé základní fyzikální konstanty (Planckova konstanta \(h\), hmotnost elektronu \(M_e\), náboj elektronu \(e\), číslo \(n\)),
2. veličiny přizpůsobené pro daný systém (atomové číslo \(Z\), souřadnice \(x, y, z\) nebo \(r, \theta, \phi\)),
3. tři tzv. kvantová čísla \((n, l, m)\), jež vyplývají z řešení Schrödingerovy rovnice.

\(^1\) Atom vodíkového typu je kation o náboji jádra \(Z^+\) (\(Z\) je atomové číslo) s jediným elektronem v obalu. Jeho řešením se do výsledných vlnových funkcí zavdí elektronové číslo \(n\), což je výhodné pro další zobrazování platnosti výsledků pro složitéjší atomy.
\(^2\) Název orbitál vznikl od němčina orbit, kterého se původně užívalo pro Bohrův představovaný kruhový, resp. eliptické dráhy elektronu v atomu. Ve vlnové mechanickém modelu atomu však orbitál označuje oblast elektronu, nebyť pouze stav elektronu, vzácnější je určitým rozložením pravděpodobnosti výskytu elektronu v prostoru okolo jádra.
Tři kvantová čísla nabývají pouze celočíselných hodnot, přesné specifikovaných postupem řešení. Jsou významnými parametry jednotlivých AO. Každá přípustná kombinace čísel \(n, l \) a \(m_l \) přesně definuje jediný AO. Jeho vlnovou funkci \(\psi(\text{AO}) \) můžeme symbolicky zobrazit vztahem

\[
\psi(\text{AO}) = \psi_{n,l,m}(r, \theta, \phi) \tag{4-9}
\]

Zjistilo se, že vlnová funkce každého AO má velmi důležitou vlastnost. Může být vyjádřena jako součin dvou funkcí. Říkáme jim *radiální* a *polární* (angulární) část funkce \(\psi \). Radiální část, označovaná \(R_{n,l}(r) \), závisí pouze na souřadnici \(r \) a obsahuje kvantová čísla \(n \) a \(l \). Polární část, \(Y_{n,l,m}(\theta, \phi) \), je funkci souřadných úhlů \(\theta, \phi \) a je parametrizována kvantovými čísly \(l \) a \(m_l \). Tuto skutečnost vyjadřuje rovnice

\[
\psi_{n,l,m}(r, \theta, \phi) = R_{n,l}(r) Y_{n,l,m}(\theta, \phi) \tag{4-10}
\]

Již dříve jsme uvedli, že každý atomový orbital popsává vlnovou funkci je charakterizován energií, kterou nabude elektron po zaujatí porce na tomto orbitalu. Musí to být vždy jedna z hladin energii, jež jsou vlastními hodnotami příslušného tvaru Schrödingerovy rovnice. Pozoruhodně je, že některé AO v atomu mají shodnou energii. Skupiny orbitálů shodné energie označujeme jako "degenerované orbitály" a jev samotný, tj. přítomnost skupin energeticky rovnocenných orbitálů v atomu, se nazývá "energetická degenerace AO".

Ze všeho, co jsme až doposud uvedli, vyplývá, že řešení vodičového nebo vodiču podobného atomu ziskáváme ze Schrödingerovy rovnice o AO údaje trojhodru:

1. vlnové funkce jednotlivých AO, charakterizované určitou kombinací kvantových čísel \(n, l \) a \(m_l \),
2. hodnoty energii všech AO; tyto energie jsou vlastními hodnotami energie řešené Schrödingerovy rovnice,
3. přeběh vlnové funkce \(\psi \), resp. jejího čtverce \(\psi^2 \) v závislosti na prostorových souřadnicích okolí jádra atomu, a tím i představu o rozprostranění hustoty pravděpodobnosti výskytu elektronu (obrazujícího daný orbitál) v prostoru atomu.

V dalších třech oddílech této kapitoly postupně podrobně rozebereme tyto tři druhy výsledků.

4.4 KVANTOVÁ ČÍSLA

Hlavní kvantové číslo \(n \) rozhoduje o energii daného AO. Nabývá výhradně kladných celočíselných hodnot

\[
n = 1, 2, 3, 4, \ldots \tag{4-11}
\]

Vlnové funkce \(\psi_{n,l,m} \) je vlastní funkci řešené Schrödingerovy rovnice pouze pro tyto hodnoty čísla \(n \).

Vedlejší kvantové číslo \(l \) určuje směr a tvar rozložení elektronového obalu. U složitějších atomů (s počtem elektronů větším než jeden) ovlivňuje též poněkud energii AO. Nabývá také celočíselných kladných hodnot včetně nuly a u dané vlnové funkce je limitováno jejím hlavním kvantovým číslem \(n \), tak že může mít hodnotu nejvýše \(n - 1 \). Platí tedy

\[
l = 0, 1, 2, \ldots, n - 1 \tag{4-12}
\]

Magnetické kvantové číslo \(m_l \) souvisí s polární části vlnové funkce a určuje konkrétně orientaci AO k souřadnému systému. Vlnové funkci s vedlejším kvantovým číslem \(l \) přísluší \(l + 1 \) hodnot magnetického kvantového číslo \(m_l \). Jsou to hodnoty

\[
m_l = -l, -l + 1, \ldots, -1, 0, +1, \ldots, +l - 1, +l \tag{4-13}
\]

49
<table>
<thead>
<tr>
<th>Kvantová čísla</th>
<th>Symbol AO</th>
<th>Degenerace</th>
<th>Obsazení elektrony</th>
<th>Symbol zaplněných AO</th>
<th>Vrstva</th>
<th>Obsazení vrstvy elektrony</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>l</td>
<td>m<sub>l</sub></td>
<td>1s</td>
<td>není</td>
<td>2</td>
<td>1s<sup>2</sup></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2s</td>
<td>není</td>
<td>2</td>
<td>2s<sup>2</sup></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>2p</td>
<td>není</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2p</td>
<td>3krát</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>+1</td>
<td>2p</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3s</td>
<td>není</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-1</td>
<td>3p</td>
<td>není</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3p</td>
<td>3krát</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>+1</td>
<td>3p</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>-2</td>
<td>3d</td>
<td>3krát</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>-1</td>
<td>3d</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0</td>
<td>3d</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>+1</td>
<td>3d</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>+2</td>
<td>3d</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4s</td>
<td>není</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-1</td>
<td>4p</td>
<td>3krát</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4p</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>+1</td>
<td>4p</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>-2</td>
<td>4d</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>-1</td>
<td>4d</td>
<td>3krát</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0</td>
<td>4d</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>+1</td>
<td>4d</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>+2</td>
<td>4d</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>-3</td>
<td>4f</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>-2</td>
<td>4f</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>-1</td>
<td>4f</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>0</td>
<td>4f</td>
<td>7krát</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>+1</td>
<td>4f</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>+2</td>
<td>4f</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>+3</td>
<td>4f</td>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

50
Rozvoj kvantových čísel \(n, l \) a \(m_l \)

Jestliže nyní použijeme znalosti o dovolených hodnotách a dovolených kombinacích kvantových čísel, můžeme vytvořit jednoduchý „adresát“ AO, vyskytujících se v atomu. Podívá nám jej sloupec 1 tab. 4.1.

Jsou zde uvedeny všechny přípustné kombinace kvantových čísel \(n, l \) a \(m_l \) pro hodnoty hlavního kvantového čísla \(n = 1, 2, 3, 4 \). Lze se snadno přesvědčit, že každé jiné uspořádání kvantových čísel by porušovalo již uvedené principy jejich rozvoje. Tak např. pro kvantové číslo \(n = 3 \) jsou v tabulce uvedeny hodnoty vedlejšího kvantového čísla \(l = 0, 1 \) a 2. To je v plném souladu s podmínkou (4-12), podle níž l nabývá kladných celočíselných hodnot včetně nully, ale nejvýše \(n - 1 \). Magnetické kvantové číslo \(m_l \) pak pro \(l = 0 \) má jedinou hodnotu \(m_l = 0 \), pro \(l = 1 \) může nabývat hodnot \(-1, 0, +1\) a konečně pro \(l = 2 \) může mít hodnoty \(-2, -1, 0, +1, +2\).

Označování AO číslovedou kombinací \(n, l, m_l \) se prakticky neužívá. Místo toho se jednotlivé orbitály označují symboly obsahující hlavní kvantové číslo \(n \) a písmeno, které odpovídá hodnotě vedlejšího kvantového čísla \(l \). Písmena jsou přiznána k vedlejšímu kvantovému číslu \(l \) takto:

\[
\begin{align*}
l = 0 & \rightarrow s \\
l = 1 & \rightarrow p \\
l = 2 & \rightarrow d \\
l = 3 & \rightarrow f \end{align*}
\]

Kvantové číslo \(m_l \) se v označení vynořívá. Užívaná symbolika je pro každou kombinaci kvantových čísel uvedena v tab. 4.1.

Na několika příkladech si procvičíme její použití:

1. označení 2s znamená AO s \(n = 2, l = 0, m_l = 0 \)
2. označení 3p znamená AO s \(n = 3, l = 1, m_l = -1, 0, +1 \)
3. označení 3d znamená AO s \(n = 3, l = 2, m_l = -2, -1, 0, +1, +2 \)
4. označení 4s znamená AO s \(n = 4, l = 0, m_l = 0 \)
5. označení 4d znamená AO s \(n = 4, l = 2, m_l = -2, -1, 0, +1, +2 \)

Za povinností stoji, že orbitály typu \(p, d \) a \(f \) jsou realizovány se zdečtem k hodnotě magnetického čísla \(m_l \) několikrát. Ponevadž o energii AO rozhodují hodnoty \(n, l, m_l \), nikoli \(m_l \), znamená to, že v každé skupině orbitálů, které mají stejné hlavní i vedlejší kvantové číslo, leží jednotlivé orbitály na téže energeticky hladině. Jak jsme již dříve uvěděli, hovoří se v tomto případě o energetické degeneraci orbitálů.

Orbitály s jsou nedegenerované
\(p \) jsou 3krát degenerované
\(d \) jsou 5krát degenerované
\(f \) jsou 7krát degenerované atd.

Tento skupinám degenerovaných orbitálů se někdy říká podvrstvy, avšak toto označení není vžitě, vyhýbáme se mu a nejčastěji odrážíme skupiny degenerovaných orbitálů od jednotlivých orbitálů užitím množného a jednotného čísla v jejich názvu. Skupina orbitálů d jmenujeme např. „orbitály 3d“. Jediný z nich je „orbitála 3d“. Jestliže chceme hovořit o určitém orbitalu 3d třeba s hodnotou \(m_l = -1 \), přizpůsobíme ji jako index k písmensému symbolu orbitalu, tedy „orbitála 3d -1“.

1) Písmena s, p, d, f jsou začátkem písmen anglických názvů sérií spektrálních čar (viz dále) vyvážených alkalickými kovy (s - sharp, ostrý, p - principal, hlavní, d - diffuse, difúzní, f - fundamental, základní). Větší hodnoty kvantového čísla \(l \) (\(l > 3 \)) se vyjadřují dalšími písmeny podle abecedního pořadí (\(l = 4 \) označme g, \(l = 5 \) je h atd.).
Elektronový spin

K popisu pohybu elektronu v atomu nestačí samotná vlámová funkce \(\psi_{n,l,m} \). Některé elementární částice, mezi něž patří i elektron, mají totiž zvláštní vlastnost, která nemá analogii v oblasti klasické mechaniky a která souvisí s jejich vlámovou mechanikou pohybu. Touto vlastností je tzv.
\[\text{vnější moment hybnosti} \]
neboli prosté spinové důkaz existence spinu vyplývá z relativistického řešení problemu pohybu elektrona v elektromagnetickém poli. Pro praktické účely je však výhodnější pracovat se spinem elektronu jako s pozorovatelnou veličinou typu momentu hybnosti.

Elektron se z hlediska svého spinu může vyskytovat ve
\[\text{dvou diskrétních kvantových stavech,} \]

v nichž jeho fyzikální působení na okolí do určité míry připomíná účinky rotující nabízené kuličky (tj. má určitý magnetický moment). Z hlediska vlámové mechaniky není samozřejmě nezbytné se domnívat, že elektron vykonává skutečnou fyzikální rotaci, nýbrž stačí předpokládat, že se chová, jako by měl navíc jeden stupni volnosti, které může mít pouze jednou ze dvou možných hodnot.

Existenci spinu elektronu prokázali Uhlenbeck a Goudsmit (1925). Teoretický výklad spinu elektronu podal Dirac (1928).

Při popisu polohy elektronu v atomu je třeba k existenci spinu přihlédnout a zavést další součásti, kterou označíme \(\sigma \) a která formou spinové funkce charakterizuje stav elektronu v atomu.

Spinová funkce \(\sigma \) nabývá v důsledku dvou možných spinových stavů elektronu pouze dvou číselných hodnot,

\[\sigma_1 = \frac{1}{2} \text{ a } \sigma_2 = -\frac{1}{2} \]

Zlomky \(\frac{1}{2} \) a \(-\frac{1}{2}\) značí parametry spinové funkce, který se označuje jako
\[\text{dvojcinečný spinový číslo} \ m, \]

její je třeba zdůraznit, že spinové kvantové číslo je jen jedno ze čtyř kvantových čísel nevyplývajících ze Schrödingerovy rovnice.

Celková vlámová funkce elektronu na určitém AO (tzv. spin-orbital) tedy musí být složena z vlnové funkce AO \(\psi_{n,l,m} \) a z vyjádření spinu elektronu. Vyslovíme-li předpoklad, že vlnová funkce \(\psi_{n,l,m} \) a spinové funkce jsou na sobě nezávislé a určují celkovou skutečnou vlnovou funkci elektronu svým součinem, a přihlédneme-li k tomu, že spinová funkce nabývá pouze dvou hodnot, \(\sigma_1 \) a \(\sigma_2 \), můžeme pro případné celkové vlnové funkce \(\psi \) a \(\psi \) elektronu v atomu psát

\[\psi_1 = \psi_{n,l,m}\sigma_1 \]
\[\psi_2 = \psi_{n,l,m}\sigma_2 \]

(4-14)

Libovolný AO je tedy za této situace charakterizován dvojcinečnou vlnovou funkcí

\[\psi_{n,l,m}(r, \beta, \varphi, \sigma) \]

Její dvojcinečnost vyplývá z toho, že spinové kvantové číslo \(m \) zcela nezávisí na ostatních kvantových číslech nabývá výhradně dvou hodnot, které se někdy vyjadřují graficky formou opačné orientovaných šipk.

\[m_s = \pm \frac{1}{2} \{ \frac{1}{2} \} - \frac{1}{2} \{ -\frac{1}{2} \} \]

Absolutní hodnoty \(m_s \) jsou totálně \(\{ \frac{1}{2} \} = \{-\frac{1}{2} \} \), reálné hodnoty se liší o jednotku stejně jako ostatní kvantové číslo \(\{ \frac{1}{2} - (-\frac{1}{2}) = 1 \} \).

\[\bar{1} \]

\(Z \) angl. spin – vr, rotace.
Velmi závažným projevem existence spinu je vzájemné ovlivňování dvou elektronů, které se k sobě přiblíží.
1. Dva elektryny s rozdílnými spiny se snaží k sobě přiblížit.
2. Dva elektryny se stejnými spiny se snaží zůstat oddělené.
To má dalekosídelné důsledky jak při budování obalu víceelektronového atomu, tak při vzniku vazebných sil mezi atomy.

Pauliho princip výlučnosti
V roce 1925 vyslovil Pauli na základě studia atomových spektrov předpoklad o platnosti závažného principu, který se podřizuje elektronové konfigurace atomů majících více než jeden elektron.
Podle Pauliho principu žádné dva elektryny nemohou v atomu existovat ve stejném kvantovém stavu. Vlnové funkce každého elektronu musí být odsouzená od vlnových funkcí ostatních elektronů souborem svých kvantových čísel. Vlnové funkce se musí vzájemně lišit v hodnotě nejméně jednoho z kvantových čísel n, l, m_l a m_s.
Z toho plyne, že každý AO určený vlnovou funkcí \(\Psi_{n,l,m_s} \) může být obsazen pouze dvěma elektrony. Tyto elektrony musí mít rozdílný spin, tj. jejich vlnové funkce musí být \(\Psi_{n,l,m_s} \uparrow \) a \(\Psi_{n,l,m_s} \downarrow \).

Obsazení AO elektrony
Nyní, když jsme se seznámili jak s existencí čtyř kvantových čísel, tak i s Pauliho principem, můžeme se opět vrátit k tab. 4-1. Ve sloupci 4 je uveden počet elektronů, jež mohou obsadit každý z AO charakterizovaných kvantovými čísly n, l a m_s. Vidíme, že v souladu s tím, co jsme uvedli, může být každý z AO obsazen dvěma elektrony. Degenerované skupiny orbitalů typu p, d, f,... mohou být obsazovány maximálním počtem elektronů, který je vždy dvojnásobkem stupné degenerace daného orbitalu. Maximální obsazení orbitalů p je proto 6, orbitalů d 10 a orbitalů f 14 elektrónů.
Zcela zaplněné AO o hlavním kvantovém čísle n = 1, 2, 3 a 4 jsou uvedeny ve sloupci 5 tab. 4-1. Obsazení AO, resp. skupin degenerovaných AO určitým počtem elektronů je vyjádřeno exponentem u písmenného symbolu AO nebo skupiny AO.

Příklady:
1. 3d⁶ značí soubor pěti orbitalů d (n = 3), které nejsou obsazeny žádným elektronem (tzn. vakantní, prázdné orbitaly).
2. 4s⁴ značí orbital s a hlavním kvantovým číslem n = 4, obsazený jediným elektronem.
3. 5s³ značí soubor tří orbitalů s (n = 5), obsazený třemi elektrony.¹)

Poslední úvaha související s rozvojem kvantových čísel a s uspořádáním souboru AO se týká srovnávání jednotlivých AO do skupin podle hodnoty hlavního kvantového čísla n. Skupině AO téhož n říkáme n-kvantovou sféru (esferu). Kvantové sféry jsou totožné se starším pojmem sfer (vrstev, slupek) K, L, M, N, O,... (tab. 4-1, sloupec 6). Nejvyšší počet elektronů, jimž může být

¹) Symbole či „tři dě nula“ (nikoli „tři dě na nulou“), „čtyři es jedna“, „pět pě II“. 53
obsazena daná sféra s hlavním kvantovým číslem \(n \), určuje tzn. Stonerovo pravidlo, maximální počet elektronů \(N \) je dán vztahem

\[
N = 2n^2 = 2 \sum_{l=0}^{n-1} (2l + 1)
\]

(4-16)

Člen \((2l + 1)\) určuje počet všech AO v dané skupině degenerovaných orbitálů. Pro \(n = 1, 2, 3, 4 \) se tak získají počty elektronů 2, 8, 18, 32, jak je uvedeno ve sloupci 7 tab. 4-1.

4.5 ENERGIE ATOMOVÝCH ORBITÁLŮ

Energetické schéma atomu vodíku (a principálně též všech ostatních složitějších atomů) získané řešením Schrödingerovy rovnice je uvedeno na obr. 4-9. Souřadnice \(r \) na tomto obrázku znázorňuje vzdálenost elektronu od jádra atomu. Souřadnicí \(E \) je vyjadřena energie, které nabývá soustava tvořená jádrem a elektronem. Definitivicky bylo zvoleno, že energie \(E \) soustavy \(jadro-\)–elektron při takové jejich vzdálenosti, kdy na sebe vzájemně fyzikálně nepůsobí \((r \to \infty)\) a ve vztahu ke společné soustavě souřadnic se nepohybuji nebo se pohybují rychlostí \(v \to 0 \), bude považována za rovnou nulu. Tento dvourozměrný systém souřadnic je velmi vhodný pro vyjadření Schrödingerem nařízeného řešení atomu vodíku.

Schrödinger určil, že jeho rovnice má jednoznačné řešení pro libovolnou kladnou hodnotu \(E \). Znamená to, že \(vlastní hodnoty \ E \geq 0 \) tvoří kontinuum. Další fyzikálně významné řešení rovnice představují zcela určité nekonečné soubor záporných hodnot energie. Jinými slovy, \(vlastní hodnoty \ E < 0 \) jsou kvantovány a tvoří soustavu diskrétních energetických hladin.

Tento výsledek lze chápat tak, že:

1. elektron, jehož celková energie \(E \) je kladná (v důsledku existence kinetické energie \(E_k \) vzájemného pohybu jádra a elektronu nemulovou rychlostí), nebude mít tuto energii kvantovat a boč se pohybovat v oblasti energetického kontinua,
2. elektron, který se blíží k jádru rychlosti \(v \to 0 \) (tedy za splnění podmínky \(E_k \to 0 \)), se pohyboje po jedné z poloh příslušně \(E = 0 \),
3. elektron o energii \(E < 0 \) je na některé kvantované hladině a bý žádrem zachycen. Tato situace nastane tehdy, když měl elektron možnost uvolnit část své energie (v formě kvant elektro-
magnetického záření nebo jinak). Tehdy — a jen tehdy — říkáme, že se elektron stal součástí atomu.

Nemůže se z něho uvolnit, aniž by byla vynaložena práce potřebná k tomu, aby nabyl energii alespoň $E = 0$. Elektron je v t.t. potenciálové jízdě jádra na jedné z hládek označených $n = 1, 2, \ldots$.

Znázornění energií souboru AO na obr. 4-9 je dosti zjednodušené. Každá ze znázorněných hládek představuje celou jednu n-kvantovou sféru.

Energetická posloupnost orbitalů tvořících n-kvantové sféry je však u atomu vodíku nebo jiného jednoelektronového atomárního útvaru jiná než u všech ostatních víceelektronových atomů. Budeme se proto těmito případy zabývat odděleně.

Energie AO jednoelektronového atomu

Energetické hládky AO jednoelektronového atomu jsou znázorněny na obr. 4-10. V levé části obrázku je pro názornost zakreslen atom jako potenciálová jáma se zjednodušeným souborem hládek. V pravé části obrázku je symbolicky rozpis všech existujících AO kladných kvantových čísel $n = 1, 2, 3, 4$. AO jsou znázorněny čtvercemi. Vertikální souřadnice středu čtverce vyjadřuje energii příslušného AO. Horizontální souřadnice nemá fyzikální smysl.

![Obr. 4-10. Schéma energetických hládek AO jednoelektronového atomu](image)

Z obrázku je vidět, že u jednoelektronového atomárního systému mají všechny orbitály těž n-kvantové sféry zcela stejnou energii. Energeticky není mezi hládkami s tř. s, p, d a f žádný rozdíl. Každá n-kvantová sféra je energeticky n^2-krát degenerována.

Uvedené uspořádání AO je experimentálně potvrzeno výsledky studia emisních spektrov atomů vodíkového typu.

Emisní spektrum vodíku

Experimentální potvrzení fyzikální reality tohoto schématu je založeno na rozboru spektrálního složení (tj. zastoupení vlnových délek) světla vyslaného soucery excitovaných jednoelektronových atomových útvarů, jako jsou např. atomy vodíku nebo ionty He$^+$, Li$^{2+}$, Be$^{3+}$, B$^{4+}$ atd. Uvedeme si jednoduché vysvětlení mechanismu vzniku těchto spektrov.

Elektron v atomu vodíku, jde o v základním stavu (viz odd. 4.1), tj. na orbitálu 1s, může být do- dáním energie (v elektrickém ohlušku, elektrickou jízku apod.) energeticky vztyčen − excitován − a může zaútočit prakticky kteroukoli z výše uvedených n-kvantových sfér. Životnost excitovaného stavu je omezená, atom se snáší svou energii opět zmenšit a elektron se po velmi krátké době za vyzvednutí fotonů
vrací jedním nebo několika přeskoky do základního stavu. Při každém přesoku (např. z hladiny n' na hladinu n) je uvolňován jeden foton. Energie e a frekvence v fotona jsou spojeny s energetickým rozdílem hladin $E_n - E_{n'}$ podmínkou [viz rovn. (4.1)]

$$e = hv = E_n - E_{n'}$$ \(4.17\)

Představme si nyní, že uvedenému procesu existuje a návrz do základního stavu podléhá celý velký součet atomů vodíku. Z takového souboru atomů musí vycházet proud fotónů. Frekvence v, resp. vlnová délka λ každého z těchto emitovaných fotónů musí odpovídat vzájemné energetické vzdálenosti několika dvojic hladin atomů vodíku. Emission spektrum vodíku bude obsahovat pouze záření určitých vlnových délek a bude tedy spektem čárym. Tento charakter emisního spektra vodíku je však znám ve fyzice téměř dvě stol, i je přímým experimentálním potvrzením existence diskretní struktury dovolených hladin energie, jež může elektron v atomu vodíku zaujmout.

Režim Schrödingrovy rovnice se zjistí, že energie elektronu na n-kvantové dráze vodíkového atomu je funkcí hlavního kvantového čísla n. Energie E_n je neprimo úmerná n^2:

$$E_n = -\frac{k_e}{n^2} = -\frac{m c^2}{8 \pi \varepsilon_0^2} \frac{1}{n^2}$$ \(4.18\)

kde $m c^2$ je hmotnost elektronu, e je jeho náboj a ε_0 je permittivita vakuua. Spojením vztahů (4.17) a (4.18) dostaneme

$$hv = k_e \frac{c}{\lambda} = E_n - E_{n'} = -\frac{m c^2}{8 \pi \varepsilon_0^2} \frac{1}{n^2} - \frac{1}{n'^2}$$ \(4.19\)

Formální opravu získáme ze vztahu (4.19) rovnice pro sluneční 1/2 jednotlivých spektrálních čár

$$\frac{1}{\lambda} = \frac{m c^2}{8 \pi \varepsilon_0^2} \frac{1}{n^2} - \frac{1}{n'^2}$$ \(4.20\)

Tuto rovnici můžeme splňovat (pro hodnoty $n', n'' = 1, 2, 3, \ldots$) vlnová délka každé čáry obsažené v emisním spektru vodíku. Rovnici (4.20) je známa ve svém empirické náleženém iaru

$$\frac{1}{\lambda} = R_\infty \left[\frac{1}{n'^2} - \frac{1}{n^2} \right]; \quad n' \quad \text{resp.} \quad n'' = 1, 2, 3, \ldots$$ \(4.21\)

již od konce minulého století jako tzv. Rydbergův vzorek. Popisuje položku čár (tj. vlnové délky λ) v emisním spektru vodíku. R_∞ je tzv. Rydbergova konstanta, která má hodnotu

$$R_\infty = 1,097 373 177 \cdot 10^7 \text{ m}^{-1}$$

Shoda mezi vztyahy (4.20) a (4.21), tj. shoda mezi vlnočty spektrálních čár v emisním spektru vodíku vypočtených ze Schrödingrovy rovnice v průběhu experimentálně, je potvrzením oprávněnosti užití Schrödingrovy rovnice v moderní chemii.

Povinností si nyní schématu na obr. 4.11, kde jsou šipkami vyjádřené možnosti přeskoků, jež mají v atomu vodíku elektron vraťecí se z některého z excitových stavů. Význam znásel cíle sestě sém přeskolků končících na téže n-kvantové hladině a vycházejících postupně ze všech hladin energeticky vyšších. Sérií přeskoků by měly odpovídat série čár v emisním spektru vodíku. Skutečně také byla existence série čár probíhána, a to již koncem minulého století. Poloha čár série se šídly Rydbergovým vzorcem, v němž n' má jedinou konstantní hodnotu. Série čár byly pojmenovány po svých objevitelcích. Jsou známy tuto sérii:

Lyanova (ultraľaľové oblasty spektroka)

$$\frac{1}{\lambda} = R_\infty \left[\frac{1}{n'^2} - \frac{1}{n^2} \right]; \quad n' = 1; \quad n'' = 2, 3, \ldots$$ \(4.22\)

1) Musí platit $|E_n| < E_{n'}$, jinak by foton nebyl uvolňován, a naopak by k přesoku elektronu mohlo dojít po absorpci fotona o potřebné energii.

2) Veličina $1/\lambda$ je známá pod názvem vlnočt, označuje se také $\tilde{\nu}$ a používala se zejména ve spektroukopii, jako její jednotka se nejčastěji používala cm$^{-1}$. 56
Balmerova (oblast viditelného světla)

\[
\frac{1}{\lambda} = R_n \left(\frac{1}{n^2} - \frac{1}{(n')^2} \right) ; \quad n' = 2 ; \quad n = 3, 4, \ldots, \infty
\]
(4-23)

Paschenova (infračervená oblast spektra)

\[
\frac{1}{\lambda} = R_n \left(\frac{1}{3^2} - \frac{1}{(n')^2} \right) ; \quad n' = 3 ; \quad n = 4, 5, \ldots, \infty
\]
(4-24)

Dále známé ještě série Brackettova \((n' = 4, n = 5, 6, \ldots, \infty)\) a Plundrova \((n' = 5, n = 6, 7, \ldots, \infty)\), jejichž čáry leží ve vzdálené infračervené oblasti spektra.

Každá ze série má tzv. kránu. Je to čára o vlnové délce odpovídající přesoku z hloubky \(n = \infty\) (j. z. hloubky \(E = 0\)) na základní \(n\)-kvantovou hladinu dané série. Hranou série končí, neboť žádný foton emitovaný při přesoku na základní \(n\)-kvantovou hladinu nemůže již mít větší energii, a tedy menší vlnovou délkou, než je vlnová délkou hraný série. Souhlas mezi experimentálně zjištěnou a vypočtenou energetickou posloupností \(n\)-kvantových hladin v atomu vodíku potvrzuje oprávněnost vlnové mechanického teoretického přístupu.

Starší kvantový přístup Bohrů také vysvětloval uspořádání čárových spektur vodíku a byl dokonce velmi názorný. Ale nebojíme se k popisu - ani kvalitativnímu - změn, které pozorujeme ve uspořádání emisních spektér, jestliže od jednotektronových atomů přejeeme k atomům víceelektronovým.

- **Energie AO víceelektronových atomů**

Čarová spektra víceelektronových atomů jsou mimořádně složitá a svědčí o tom, že v těchto atomech se na rozdíl od vodíku změnila energetická řečiště skupin degenerovaných orbitalů tvořících \(n\)-kvantové sféry. Výsledky přibližného řešení kvantové mechanického modelu víceelektronového atomu jsou po určitých zjednodušeních a s využitím počítačové techniky i zde v dobrem souladu s experimentálně pozorovanou strukturou spektér. I pro tyto atomy lze sestrojit obecné schéma jejich orbitalů. Schéma platí v podstatě bez výjimek pro všechny atomy tělé větší než vodík. Elementárním vyjádřením energetické posloupností orbitalů těchto atomů je schéma na obr. 4-12 (uspořádáno analogicky jako na obr. 4-10).

Je vidět, že došlo k diferenciaci energii orbitalů těže \(n\)-kvantové sféry, zmizela totální energetická degenerace \(n\)-kvantových sfér a zůstala zachována pouze degenerace skupin orbitalů.
p, d, f, ... Každá n-kvantová sféra je nyní tvořena n energetickými hladinami. Některé sféry (např. \(n = 3 \) a 4, 4 a 5 atd.) se energeticky vzájemně pronikají (orbitál 4s je někde než 3d apod.). Tento energetický překryv se ještě zvětšuje s rostoucí hodnotou hlavního kvantového čísla (sféry \(n = 5, 6, ... \) jsou v našem schématu zobrazeny pouze z částí).

Schéma uvedené na obr. 4-12 byťší někdy nazýváno "čtyřčlánkový princip" orbitalů více-elektronových atomů a zobrazuje kvalitativně pořadí orbitalů v těchto atomech. Přesněji obraz a úplněji představu o energetické posloupnosti a energii orbitalů v atomech jednotlivých prvků podává graf na obr. 4-13. Změny energie určitého AO v závislosti na atomovém čísle jsou vyjádřeny přibližně přibližně křivky.

Prozkoumáme-li bliže graf, vidíme, že u vodíku \((Z = 1)\) mají všechny orbitaly každé sféry stejnou energii. To souhlasí s uspořádáním schématu na obr. 4-11. U všech ostatních víceelektronových atomů \((Z > 1)\) jsou hladiny s, p, d, f, ... od sebe diferencovány, jak jsme uvedli již dříve (obr. 4-12).

Z obr. 4-13 dle vyplývá, že se vzájemněm atomového čísla \(Z \) dochází ke zmenšování energie všech orbitalů a že pokles probíhá doleva nepravidelně. Je to vyvoláno tím, že na elektrony na orbitalech působí vznášející síly jízdy. Přitom část tohoto kladného náboje je odstředěna záporným nábojem elektronů, které se vyskytují mezi daným elektronem a jízdní. Mimo to dochází i ke vazebnému repulzi (odpuzování) mezi elektronmi, neboť se ovlivňují jak jejich náboje, tak i jejich spiny.

Jedná se velmi složitou podstatu a jeho početní řešení je mimořádně obtížné. Na základě exaktní
rovnice (4-18) je však možné v nejjednodušším příbližení formulovat polotempirický vztah pro energii AO ve větším výboji atomů:

$$E = \frac{M^2 c^4}{8 \pi^2 \hbar^2} (Z_a)^2 n^4$$

(4-25)

kde Z_a je tzv. efektivní atornové číslo a je dáno rovnicí

$$Z_eff = Z - S$$

(4-26)

Hodnota konstanty S se zjišťuje empiricky na základě tzv. Slaterových pravidel. Tento postup však ztratil v poslední době svůj původní význam a je nahrazován přesnějšími, ale složitějšími postupy.

4.6 PROSTOROVÉ USPOŘÁDÁNÍ ATOMOVÝCH ORBITÁLŮ

Nyní, když jsme pochopili, jak je uspořádán soubor orbitalů každého atoru z hlediska jejich počtu a typu i z hlediska energetických posouzení, můžeme si vysvětlit, jak jsou AO uspořádány v prostoru.

- Transformace souboru AO

Tento postup je v plné formě popsán v principi kvantové mechaniky a osvětlí se i v četných jiných abstraktních situacích, například při formulaci molekulových orbitalů.

Způsob provedení transformace pro systém orbitalů 2p a 3d je symbolicky vyjádřen na obr. 4-14.

Schéma má obecnou platnost i pro jiné hodnoty hlavního kvantového čísla.

Za povinností stoji, že původní reálné orbitály 2p, a 3d, přecházejí do nových souborů AO beze změny. Ostatně, nově vznikající reálné AO jsou v závislosti dvojice původních, tvořených komplexní funkcí.

Transformace souboru 2p orbitalů

<table>
<thead>
<tr>
<th>původní soubor AO</th>
<th>nový soubor AO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2p<sub>1</sub>, 2p<sub>2</sub>, 2p<sub>-1</sub></td>
<td>(2p<sub>0</sub>) reálný</td>
</tr>
<tr>
<td>(2p<sub>0</sub>) komplexní</td>
<td></td>
</tr>
</tbody>
</table>

Transformace souboru 3d orbitalů

<table>
<thead>
<tr>
<th>původní soubor AO</th>
<th>nový soubor AO</th>
</tr>
</thead>
<tbody>
<tr>
<td>3d<sub>2</sub>, 3d<sub>3</sub>, 3d<sub>-1</sub>, 3d<sub>-2</sub></td>
<td>(3d<sub>1</sub>) reálný</td>
</tr>
<tr>
<td>(3d<sub>0</sub>) komplexní</td>
<td></td>
</tr>
</tbody>
</table>

Obr. 4-14. Symbolické vyjádření transformace souboru AO 2p a 3d
Značení nového souboru reálných orbitalů symboly souřadnic x, y, z a jejich kombinaci (u orbitalů d) souvisí s matematickou stránkou provedení transformace a nebudeme je zde uvádět. Nově vzniklý soubor AO lze bez obíti znázornit v třírozměrném prostoru.

- Tvar orbitalů typu s

Vlnová funkce libovolného orbitálu m lze být vyjadřena v souladu se vztahem (4-10) jako součin radialní a polární složky. Ponevadž v každého orbitalu s je $l = 0$, $m_l = 0$, můžeme ji vyjádřit obecným vztahem

$$\Psi_{s,0,0} = R_{s}(r) \ Y_{0,0}(\theta, \phi)$$

kde $Y_{0,0}(\theta, \phi)$ je konstantní.

Konkrétní tvary této funkce, získané řešením Schrödingerovy rovnice pro orbitaly $1s$, $2s$ a $3s$ atomu vodíku, jsou uvedeny v tab. 4.2.

<table>
<thead>
<tr>
<th>Tabulka 4.2. Vlnové funkce atomu vodíku pro orbitaly 1s, 2s a 3s</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Psi(1s)$</td>
</tr>
<tr>
<td>$\Psi(2s)$</td>
</tr>
<tr>
<td>$\Psi(3s)$</td>
</tr>
</tbody>
</table>

*) Veličina a_0 je dána výrazem

$$a_0 = \frac{\hbar^2}{m e^2}.$$

Význam symbolů je týž jako ve vztahu (4-18). Veličina a_0 má po vyčlenění hodnotu $5.29, 10^{-11}$ m (tj. 529 pm). Ve stejném tvaru a hodnotě byla získána již ze starší Bohovy teorie stavů atomu. Měla význam poloměru prvé kvantované kruhové dráhy elektronu v atomu vodíku a používala se jako jednotka délky v atomistice.

Z tabulky je vidět, že vlnová funkce žádného ze tří orbitalů s nezávisí na souřadnicích θ a ϕ, nýbrž pouze na souřadnicích r. Podstanka $Y_{0,0}(\theta, \phi)$ = konst. je tedy splněna. Vlnová funkce těchto a dalších orbitalů s je v okolí jádra atomu dislokována kulově symetricky. Stejné vlastnosti musí mít i úzce vlnové funkce ($\Psi_{s,0,0}$), který přímo vyjadřuje hustotu pravděpodobnosti výskytu elektronu v prostoru atomu.

Vypočtené závislosti hodnoty vlnové funkce i jejich útvarů na souřadnicích r pro orbitaly $1s$, $2s$ a $3s$ jsou schematicky znázorněny v prvním a druhém horním řádku grafů na obr. 4-15. Pravděpodobnost nalezení elektronu na kulové ploše soustředěné s atomem a mající poloměr r je dána součinem $4\pi r^2 (\Psi_{s,0,0})^2$ a její závislost na r vyjadřuje grafy třetího řádku. V dolní části obr. 4-15 jsou grafyky vyjádřeny řezy oblastí atomu a způsob rozprostranění hustoty pravděpodobnosti výskytu elektronů orbitalů typu s. Tvar orbitalu $1s$ lze označit jako kulový. Orbital $2s$ je koule a kulová meziřvrsta, orbital $3s$ koule a dvě soustředně kulové meziřvrsty. Útvary mají
ovšem velmi difúzní, neohraňčený charakter. Kulové plochy, jejichž řez je čárkovaně znázorněn uvnitř orbitalů 2s a 3s, jsou místa s nulovou pravděpodobností výskytu elektronů daného orbitalu. Odpovídají jim minima na křivkách $4\pi r^2|\Psi_{n,0}|^2$ a body, v nichž závislost $\Psi_{n,0}$ na r přechází z hodnot $\Psi > 0$ do oblasti $\Psi < 0$, resp. naopak, tedy body změny znaménka vlnové funkce. Těmito plochám se říká "nodální (uzlové) plochy." Z obr. 4.15 je dobře patrné, že počet nodálních ploch u orbitalů n je $n - 1$. Orbital 1s tedy nodální plochu nemá, 2s má jednu a 3s má dvě nodální kulové plochy.

![Obr. 4.15. Závislost hodnot vlnové funkce Ψ, jejího čtverce Ψ^2 a součtu $4\pi r^2\psi^2$ na souřadnicí r pro orbitaly 1s, 2s a 3s. Vyjadření tvaru a vnitřní struktury těchto orbitalů](image)

Pro většinu část dalších úvah, zejména při výkladu chemické vazby, nemusíme k složitější vnitřní struktuře orbitalů s přihlédet. Libovolný orbital s můžeme proste považovat za kouli o poloměru voleném tak, aby pravděpodobnost, že se elektron tohoto orbitalu vyskytuje uvnitř jeho objemu, byla dana uzamčené voleným číslem 0,90. Bývá zvykem vyjádřit do tvaru orbitalu i znaménko vlnové funkce. Orbitaly 1s, 2s a 3s jsou tímto zjednodušeným způsobem zobrazeny na dolním řádku obr. 4.15.

- **Tvar orbitalů typu p**

Tyto orbitaly mají hodnotu vedlejšího kvantového čísla $l = 1$. Vlnová funkce popisující orbitaly typu p má proto obecný tvar

$$
\Psi_{n,1,m_l} = R_{n,1}(r) Y_{1,m_l}(\theta, \phi)
$$

(4.28)

a poněvadž m_l může nabývat hodnot -1, 0, $+1$, je třikrát degenerována. K názorné prostorové představě o tvaru orbitalů np lze dospět pouze pomocí reálných AO np, np, a np vzímkých lineární kombinací orbitalů np_{-1}, np_0 a np_{+1}. Orbitaly np, np, a np jsou přitom tvarově zcela
identické a liší se od sebe jen polohou v prostoru. Postačí, když si vyložíme tvar a geometrii jediného z nich, např. orbitálu \(np \). Konkrétní matematické tvary radiální a angulační části jeho funkce \(\Psi_{n,1} \) jsou již dosti komplikované, a nebudeme je proto uvádět. Postačí, řekneme-li si, že na rozdíl od situace u orbitalů typu s jsou polární část vlnové funkce již není konstantou. Rozprostranění hodnot funkcí \(\Psi_{n,1} \) a \(\{ \Psi_{n,1} \}^2 \), a tedy i hustoty pravděpodobnosti výskytu elektronů, závisí na úhlech \(\theta \) a \(\varphi \) a orbitaly \(np \) nejsou kulově symetrické. Grafy na horních dvou řádcích (obr. 4-16) nám ukazují, jaké hodnoty tyto dvě funkce nabývají v bodech na souřadné ose \(z \) pro orbitaly \(2p_x \) a \(3p_x \).

Obr. 4.17. Zjednodušený tvar a prostorová orientace trojice degenerovaných orbitalů typu \(p \).

Obr. 4.16. Průběh hodnot vlnové funkce \(\Psi \) a jejího čtverce \(\Psi^2 \) u orbitalů \(2p_x \) a \(3p_x \) v bodech na souřadné ose \(x \). Vyjadření tvaru a vnitřní struktury orbitalů \(2p_x \) a \(3p_x \).

Řezy v dolní části obrázku pak tyto orbitaly zobrazují jednak vyjadřením hustoty pravděpodobnosti výskytu elektronů, jednak zákreslením obrysové ploch jejich tvarů. Z těchto obrázků vidíme, že u orbitalů \(p \) se opět vyskytují nodální plochy. Nodálních ploch je opět \(n - 1 \), tedy u orbitalu \(2p \) jedna, u orbitalů \(3p \), dvě atd. Pro orbitaly \(p \) je charakteristické, že jedna z nodálních ploch je vždy rovina, ostatní (pokud jsou přítomně), jsou v podstatě kulové plochy.

Složitou vnitřní strukturu orbitalů \(np \), ještě se vytvoří v případě, kdy \(n > 2 \), při větších úvah zanedbáváme a přisuzujeme jim tvar jednoduchého dvouhvězda. Trojice takto zjednodušených degenerovaných orbitalů \(np \), \(np \), a \(np \), je spolu s nodálními plochami znázorněna na obr. 4-17.

Z obrázku vyplývá, jak vzájemná prostorová orientace orbitalů, tak i jejich orientace k souřadným osám \(^1\). Pro představy o vzniku chemické vazby je velmi důležité uvědomit se v těchto zjednodušených zobrazeních znaměka vlnové funkce, jichž tato funkce nabývá ve vnější povrchové části orbitalů.

Tvar orbitalů typu \(d \)

Uspořádání orbitalů \(d_{xy} \), \(d_{xz} \), \(d_{yz} \), \(d_{x^2-y^2} \), a \(d_{z^2} \) je ještě složitější než u orbitalů \(s \) a \(p \). Prostorový průběh funkcí \(\Psi \) a \(\Psi^2 \) je dán velmi složitými matematickými výrazami. Orbitaly sd \(n \geq 3 \) mají, stejně jako tomu bylo u vyšších orbitalů \(s \) a \(p \), značně komplikovanou vnitřní strukturu.

\(^1\) Orbitaly \(np \) se často pro názornost kreslí mnohem "štíhlejší", než skutečně jsou. Nezřídka se také místo znázornění tvaru jejich funkce \(\Psi^2 \) kreslí tvar jejich polární části \(\Psi^2 \), který je značně profilovější.

62
Pro další úvahy v oblasti výkladu chemické vazby nám zcela postačí, seznáme-li se pouze se zjednodušenou představou tvaru orbitalů d tak, jak je podává obr. 4-18.

Vidíme, že čtyři orbitaly d jsou tvarově shodné a lší se pouze orientací v prostoru. Pátý orbital má tvar ponekud oddílšný. Zjednodušené tvary orbitalů d mají vždy dvě nodální plochy.

![Diagram orbitalů d a jejich nodálních ploch](image)

Obr. 4-18. Zjednodušené znázornění tvaru orbitalů d a jejich nodálních ploch

Stejně jako u orbitalů s a p je závažně vyjadření znaménka vlnové funkce v jednotlivých „laločích“ znázorněného orbitalu. Značení orbitalů d a jejich zjednodušené tvary je nutné si dobře zapamatovat. Povinněme si, že orbital $d_{x^2-y^2}$ má „laločky“ orientované podél os x a y, orbital d_{xy} podél osy z. Naproti tomu orbitaly d_{xz}, d_{yz} a d_{xy} směřují mezi dvojice os, jež jsou uvedeny jako indexy u jejich symbolu.

- **Tvar orbitalů typu f**

 Tvar orbitalů typu f je ještě složitější než u orbitalů typu d. Orbitaly f mají celkem tři nodální plochy a větší počet „laločí“. Znalost jejich tvaru není pro výklad vazby naprosto většiny atomů požadována.

4.7 VÝSTAVBOVÝ PRINCIP

I když pomyslné AO jsou realizovány teprve přijetím elektronů, lze na jejich soubor uvedený na obr. 4-12 pohlížet i jako na zcela konkrétan, obecně platný rozpis orbitalů a využívat jej při konstrukci elektronového obalu libovolného atomu.

Představu o uspořádání elektronového obalu každého prvku získáváme tak, že umístíme na AO tolik elektronů, kolik jich v elektroneutrálním atomu skutečně je, tedy počet shodný s atomovým číslem Z. Elektrony přitom postupně zaujímají orbitaly, na nichž dosahují nejnižší energie. Respektujieme ovšem maximální kapacitu každého AO, která je pro jednotlivý orbital dva elektrony a vyplývá z platnosti Pauliova principu. Pro skupiny degenerovaných orbitalů je jejich kapacita při k-násobné degeneraci dána počtem 2k elektronů. Umístění elektronů na hladině o nejnižší možné energii vyplývá z našeho požadavku získat obraz o uspořádání elektronového obalu v základním stavu. Energetické pořady AO, jehož znalost je potřebná pro zápis elektronových konfigurací atomů, určujieme pomocí jednoduchých pravidel.
Pravidlo \(n + 1 \)

Podle tohoto empirického pravidla vzrůstá se stoupající energii orbitalu hodnota součtu kvantových čísel \(n \) a 1. Ze dvou orbitalů má menší energii ten, který má menší hodnotu součtu \(n + 1 \). Při stejném součtu \(n + 1 \), má však menší energii ten orbital, který má menší hodnotu čísla \(n \).

Pravidlo se používá ke zjišťování energetického pořadí libovolných skupin orbitalů. Ukážeme si to na příkladech.

Příklady určování energetického pořadí dvou AO:

1. Orbitály 4s a 3d. Má již součet \(n + l \) daný číslo 4, 0 = 4 a 4 + 2 = 6. Orbital 4s \((n + l = 4)\) je energeticky níže než orbitál 3d \((n + l = 5)\).

2. Orbitály 4p a 5s. Má již součet \(n + l \) daný číslo 4, 3 = 7 a 5 + 1 = 6. Orbital 5s \((n + l = 6)\) má menší energii než orbitál 4f \((n + l = 7)\).

3. Orbitály 4d a 3p. Součet \(n + l \) je určen orbitálů stejný \((4 + 0 = 4 a 3 + 1 = 4)\). Podle prostého součtu \(n + l \) tedy něže rozhodnout. Vstupuje v platnost druhá část pravidla a rozhoduje velikost hlavního kvantového čísla. Porovnává \(3 < 4 \), má menší energii orbitál 3p.

Pravidlo lze aplikovat na všechny dvojice orbitalů v atomu, vyšetříte všechny jejich energetické relace a vytvoříte tak energetický „pořadí“ orbitalů. Avšak opakovaný takový postup při určování výstavby elektronového obalu každého atomu by bylo zdolavé. Proto se pravidlo \(n + 1 \) obvykle využívá pouze při rozehodování o energetickém pořadí malé skupiny orbitalů.

K rychlému a pohotovému nalezení celkového pořadí AO slouží tzv. výstavbový trojúhelník.

Výstavbový trojúhelník

Výstavbový trojúhelník je znázorněn na obr. 4-19. Způsob jeho konstrukce je třeba si zapamatovat.

Obr. 4-19. Výstavbový trojúhelník

Pořadí AO získáváme tak, že postupujeme po řádcích trojúhelníku zprava doleva a zdola nahoru. K nalézaným číslům připomínejme písmenné symboly jejich sloupce. Dostaneme řadu AO

1p, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, ...

v níž energie vzrůstá zleva doprava.

Hundovo pravidlo

se vždy na degenerovaném souboru orbitálů rozmiší tak, aby co největší počet AO byl obsazen jen jedním elektronem. Pouze za toto situace dosáhne atom jako celek minimu energie.

Dohodneme-li se, že elektron v orbitálu symbolicky označíme šipkou směřující vzhůru pro případ, kdy \(m_s = +\frac{1}{2} \), a šipkou směřující dolů pro případ, že \(m_s = -\frac{1}{2} \), můžeme názorně ukázat jaké jsou např. možnosti uspořádání tří elektronů ve skupině orbitálů 2p.

Uspořádání, které respektuje platnost Hundova pravidla, bude

\[
\begin{array}{c}
\uparrow \\
\downarrow \\
\uparrow \\
\end{array}
\]

Vyšší energii je třeba přisoudit konfiguraci

\[
\begin{array}{c}
\uparrow \\
\uparrow \\
\end{array}
\]

Jsou-li na určeném AO dva elektrony s opačnými spiny

\[
\begin{array}{c}
\uparrow \\
\downarrow \\
\end{array}
\]

nazýváme je elektronový páre neboli dvojice elektronů s rykompenzovaným spinem. Jediný elektron v AO je tzv. nepárový elektron

\[
\begin{array}{c}
\uparrow \\
\end{array}
\]

neboli elektron s nerykompenzovaným spinem.

Podle této terminologie lze Hundovo pravidlo formulovat také tak, že skupina degenerovaných orbitálů je vždy obsazována tak, aby soubor elektronů na těchto orbitálech vykazoval největší možný počet nerykompenzovaných spinů (jí, nepárových elektronů).

Velmi často se vyjadřuje přítomnost či nepřítomnost nepárových elektronů v atomu (ale i v molekule) pomocí veličiny zvané multiplicita \(M \). Je dána vztahem

\[
M = 2 \sum m_s + 1
\]

(4-29)

<table>
<thead>
<tr>
<th>Tabulka 4.3. Multiplicita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obsazení AO (symbolicky)</td>
</tr>
<tr>
<td>((\uparrow))</td>
</tr>
</tbody>
</table>

atd.

65
kde $\sum m_i$ je celkové spinové číslo získané součtem spinových čísel m_i všech elektronů v atomu. Možné situace popisuje tab. 4-3.

Skledáváme, že např. atom bez nepárového elektronu, mající k elektronovým pářím s vykompensovaným spinem, má multiplicitu $M = 1$. Je v tzv. singletovém stavu. Jediný nepárový elektron v atomu znamená multiplicitu $M = 2$; tento stav se označuje jako dublet apod.

Z předchozího výkladu také vyplývá, že v základním stavu atomu nabývá multiplicita vždy nejmenší možnou hodnotu. Proto Hundovo pravidlo se často nazývá pravidlo maximální multiplicity.

Rozpis elektronové konfigurace prvních osmnácti prvků je uveden v tab. 4-4. Zaznamenané přesnosti vyjadřuje jak způsob zaplňování degenerovaných orbitálů, tak i spinové uspořádání elektronů na orbitálech. Tabulka obsahuje údaje o celkovém spinovém čísle $\sum m_i$ atomů a o jejich multiplicitě M a též název základního stavu atomu.

Tabulka 4-4. Výstavba elektronového obalu prvních osmnácti prvků

<table>
<thead>
<tr>
<th>Z</th>
<th>Prvek</th>
<th>1s</th>
<th>2s</th>
<th>2p</th>
<th>3s</th>
<th>3p</th>
<th>$\sum m_i$</th>
<th>M</th>
<th>Označení stavu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/2</td>
<td>dublet</td>
</tr>
<tr>
<td>2</td>
<td>He</td>
<td>↑↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>singlet</td>
</tr>
<tr>
<td>3</td>
<td>Li</td>
<td>↑↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/2</td>
<td>dublet</td>
</tr>
<tr>
<td>4</td>
<td>Be</td>
<td>↑↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>singlet</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>↑↑</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/2</td>
<td>dublet</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>↑↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td>1/2</td>
<td>triplet</td>
</tr>
<tr>
<td>7</td>
<td>N</td>
<td>↑↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td>1/2</td>
<td>quartet</td>
</tr>
<tr>
<td>8</td>
<td>O</td>
<td>↑↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td>1/2</td>
<td>triplet</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>↑↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td>1/2</td>
<td>dublet</td>
</tr>
<tr>
<td>10</td>
<td>Ne</td>
<td>↑↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td>0</td>
<td>singlet</td>
</tr>
<tr>
<td>11</td>
<td>Na</td>
<td>↑↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td>1/2</td>
<td>dublet</td>
</tr>
<tr>
<td>12</td>
<td>Mg</td>
<td>↑↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td>0</td>
<td>singlet</td>
</tr>
<tr>
<td>13</td>
<td>Al</td>
<td>↑↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td>1/2</td>
<td>dublet</td>
</tr>
<tr>
<td>14</td>
<td>Si</td>
<td>↑↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td>1</td>
<td>triplet</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>↑↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td>1</td>
<td>quartet</td>
</tr>
<tr>
<td>16</td>
<td>S</td>
<td>↑↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td>1/2</td>
<td>triplet</td>
</tr>
<tr>
<td>17</td>
<td>Cl</td>
<td>↑↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td>1/2</td>
<td>dublet</td>
</tr>
<tr>
<td>18</td>
<td>Ar</td>
<td>↑↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td>0</td>
<td>singlet</td>
</tr>
</tbody>
</table>
Určování elektronové konfigurace atomu nebo iontu

Uspořádání elektronového obalu atomů nebo iontů určitého prvku je nejžádávější skutečností, primárně rozhodující o chemickém chování prvku, o způsobu, jakým se bude vázat ve svých sloučeních, o chemických a fyzikálních vlastnostech jeho sloučení atd. Je proto nutné naučit se odvozovat elektronové konfigurace atomů libovolných prvků. Praktický postup zjišťování elektronové konfigurace atomu si vyžádejme na pokračování složitějším konkrétním příkladu. Budeme se zalívat elektronovou konfigurací atomu As.

Nejprve zjistíme atomové číslo prvku \(Z = 33 \) viz str. 160 a potom pomocí výstavbového trojúhelníku sestavíme dostatečně rozsáhlou řadu AO a jejich skupin podle vzrůstajících energií (1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, ...). Na jednotlivé orbitaly pak postupně formou „exponentů“ dosazujeme elektrony. Respektujeme přitom maximální počty elektronů, jež mohou být umístěny na skupiny orbitálů (žá elektronů u skupin s k-násobnou degenerací). Přitom se celkový počet rozepsaných elektronů musí shodovat se skutečným počtem \(Z \) elektronů přítomných v atomu. V našem případě, kdy atom má 33 elektronů, získáme zápis elektronové konfigurace atomu As:

\[
\text{As: } [\text{Ar}] 4s^2 3d^{10} 4p^3
\]

Ekvivalentní je zápis, v němž místo části rozpisu použijeme symbol nejbližší nižšího vzácného plynu a pouze připíšeme elektrony, které nad strukturou vzácného plynu u našeho atomu přebývají:

\[
\text{As: } [\text{Ar}] 4s^2 3d^{10} 4p^3
\]

Také lze symbol vzácného plynu úplně vynechat a zaznamenat jen vzniklé \(\text{energeticky nejbohatší} \) skupinu orbitalů, popř. vyjádřit tyto orbitaly obecně:

\[
m^2 (n-1)d^{10} np^3
\]

Takový zápis je však již víceznačný a je tedy vyjadřením konfigurace atomů \(\text{Sb} \) a \(\text{Bi} \).

Zcela obdobně jako elektronovou konfiguraci atomu můžeme určit i strukturu elektronového obalu kationtů a aniontů. Pro kation As\(^{3+}\), který má o 3 elektrony méně než atom As, nalezneme:

\[
\text{As}^{3+}: [\text{Ar}] 4s^2 3d^{10} 4p^0 \quad \text{(symbol neobsazeného orbitalu lze vynechat)}
\]

U aniontu As\(^{3-}\), který se vytvoří tak, že atom As přijme tři elektrony, vznikne tak konfigurace:

\[
\text{As}^{3-}: [\text{Ar}] 4s^2 3d^{10} 4p^6
\]

Při tvorbě kationtů z atomů přechodných prvků (tj. prvků, které nemají zaplněnou skupinu degenerovaných orbitalů d) dochází prakticky vždy k formálnímu porušení výstavbového principu. Například atom železa má tuto elektronovou konfiguraci:

\[
\text{Fe: } 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^6
\]

U iontu Fe\(^{2+}\), vzniklého održením dvou elektronů z atomu Fe, však nacházíme uspořádání:

\[
\text{Fe}^{2+}: 1s^2 2s^2 2p^6 3s^2 3p^6 4s^0 3d^6
\]

a několik

\[
1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^4
\]

jak bychom předpokládali při důsledném uplatnění výstavbového principu. Přičinou toho je, že při zaplňování orbitalů \(m = \sqrt{1} \) d elektrony se ponechávají měni jejich energie, a to tak, že dočáhá i ke zněně jejich energetického pořadí. Orbital \(n = 1 \) d je po obsazení jediným elektronem energeticky níže než orbital \(m \). Elektronovou strukturu iontu Fe\(^{2+}\) je pak nejlépe zapsat takto:

\[
\text{Fe}^{2+}: [\text{Ar}] 3d^6 4s^0
\]

76
<p>| Valenční sféra | Zaplňované AO | Prvek | 1s | 2s | 2p | 3s | 3p | 3d | 4s | 4p | 4d | 4f | 5s | 5p | 5d | 5f | 6s | 6p | 6d | 7s |
|---------------|--------------|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1s<sup>1</sup> | s | | 1 | H | 1 | | | | | | | | | | | | | | | |
| 1s<sup>2</sup> | | | 2 | He | 2 | | | | | | | | | | | | | | | |
| 2s<sup>1</sup> | s | | 3 | Li | 2 | 1 | | | | | | | | | | | | | | |
| 2s<sup>2</sup> | | | 4 | Be | 2 | 2 | | | | | | | | | | | | | | |
| 2s<sup>2</sup> 2p<sup>1</sup> | p | | 5 | B | 2 | 2 | 1 | | | | | | | | | | | | | |
| 2s<sup>2</sup> 2p<sup>2</sup> | | | 6 | C | 2 | 2 | 2 | | | | | | | | | | | | | |
| 2s<sup>2</sup> 2p<sup>3</sup> | | | 7 | N | 2 | 2 | 3 | | | | | | | | | | | | | |
| 2s<sup>2</sup> 2p<sup>4</sup> | | | 8 | O | 2 | 2 | 4 | | | | | | | | | | | | | |
| 2s<sup>2</sup> 2p<sup>5</sup> | | | 9 | F | 2 | 2 | 5 | | | | | | | | | | | | | |
| 2s<sup>2</sup> 2p<sup>6</sup> | | | 10| Ne | 2 | 2 | 6 | | | | | | | | | | | | | |
| 3s<sup>1</sup> | s | | 11| Na | 2 | 2 | 6 | 1 | | | | | | | | | | | | |
| 3s<sup>2</sup> | | | 12| Mg | 2 | 2 | 6 | 2 | | | | | | | | | | | | |
| 3s<sup>2</sup> 3p<sup>1</sup> | p | | 13| Al | 2 | 2 | 6 | 2 | 1 | | | | | | | | | | | |
| 3s<sup>2</sup> 3p<sup>2</sup> | | | 14| Si | 2 | 2 | 6 | 2 | 2 | | | | | | | | | | | |
| 3s<sup>2</sup> 3p<sup>3</sup> | | | 15| P | 2 | 2 | 6 | 2 | 3 | | | | | | | | | | | |
| 3s<sup>2</sup> 3p<sup>4</sup> | | | 16| S | 2 | 2 | 6 | 2 | 4 | | | | | | | | | | | |
| 3s<sup>2</sup> 3p<sup>5</sup> | | | 17| Cl | 2 | 2 | 6 | 2 | 5 | | | | | | | | | | | |
| 3s<sup>2</sup> 3p<sup>6</sup> | | | 18| Ar | 2 | 2 | 6 | 2 | 6 | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th>4s²</th>
<th>4p²</th>
<th>s</th>
<th>19 K</th>
<th>20 Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>3d¹ 4s²</td>
<td>21 Sc</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3d² 4s²</td>
<td>22 Ti</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3d³ 4s²</td>
<td>23 V</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3d⁴ 4s²</td>
<td>24 Cr</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3d⁵ 4s²</td>
<td>25 Mn</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3d⁶ 4s²</td>
<td>26 Fe</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3d⁷ 4s²</td>
<td>27 Co</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3d⁸ 4s²</td>
<td>28 Ni</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3d¹⁰ 4s²</td>
<td>29 Cu</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3d¹² 4s²</td>
<td>30 Zn</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3d¹⁵ 4s² 4p¹</td>
<td>31 Ga</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3d¹⁶ 4s² 4p²</td>
<td>32 Ge</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3d¹⁷ 4s² 4p³</td>
<td>33 As</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3d¹⁸ 4s² 4p⁴</td>
<td>34 Se</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3d¹⁹ 4s² 4p⁵</td>
<td>35 Br</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3d²⁰ 4s² 4p⁶</td>
<td>36 Kr</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

| P | 37 Rb | 2 | 2 | 6 | 2 | 6 | 10 | 2 | 6 |
| 38 Sr | 2 | 2 | 6 | 2 | 6 | 10 | 2 | 6 |

<p>| 4d¹ 5s² | 39 Y | 2 | 2 | 6 | 2 | 6 | 10 | 2 | 6 |
| 40 Zr | 2 | 2 | 6 | 2 | 6 | 10 | 2 | 6 |
| 41 Nb | 2 | 2 | 6 | 2 | 6 | 10 | 2 | 6 |
| 42 Mo | 2 | 2 | 6 | 2 | 6 | 10 | 2 | 6 |
| 43 Tc | 2 | 2 | 6 | 2 | 6 | 10 | 2 | 6 |
| 44 Ru | 2 | 2 | 6 | 2 | 6 | 10 | 2 | 6 |
| 45 Rh | 2 | 2 | 6 | 2 | 6 | 10 | 2 | 6 |
| 46 Pd | 2 | 2 | 6 | 2 | 6 | 10 | 2 | 6 |
| 47 Ag | 2 | 2 | 6 | 2 | 6 | 10 | 2 | 6 |
| 48 Cd | 2 | 2 | 6 | 2 | 6 | 10 | 2 | 6 |
| 49 In | 2 | 2 | 6 | 2 | 6 | 10 | 2 | 6 |
| 50 Sn | 2 | 2 | 6 | 2 | 6 | 10 | 2 | 6 |
| 51 Sb | 2 | 2 | 6 | 2 | 6 | 10 | 2 | 6 |
| 52 Te | 2 | 2 | 6 | 2 | 6 | 10 | 2 | 6 |
| 53 I | 2 | 2 | 6 | 2 | 6 | 10 | 2 | 6 |
| 54 Xe | 2 | 2 | 6 | 2 | 6 | 10 | 2 | 6 |</p>
<table>
<thead>
<tr>
<th>Valenční síra</th>
<th>Zaplňované AO</th>
<th>Prvek</th>
<th>1s</th>
<th>2s</th>
<th>2p</th>
<th>3s</th>
<th>3p</th>
<th>3d</th>
<th>4s</th>
<th>4p</th>
<th>4d</th>
<th>4f</th>
<th>5s</th>
<th>5p</th>
<th>5d</th>
<th>5f</th>
<th>6s</th>
<th>6p</th>
<th>6d</th>
<th>7s</th>
</tr>
</thead>
<tbody>
<tr>
<td>4d⁰ 5s⁰ 5p⁰</td>
<td>P</td>
<td>49 In</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>4d⁰ 5s² 5p²</td>
<td></td>
<td>50 Sn</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>4d⁰ 5s¹ 5p¹</td>
<td></td>
<td>51 Sb</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>4d⁰ 5s² 5p²</td>
<td></td>
<td>52 Te</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>4d⁰ 5s¹ 5p¹</td>
<td></td>
<td>53 I</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>4d⁰ 5s² 5p²</td>
<td></td>
<td>54 Xe</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>6s¹</td>
<td>a</td>
<td>55 Cs</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>6s²</td>
<td></td>
<td>56 Ba</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>5d² 6s²</td>
<td></td>
<td>57 La</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>4f² 6s²</td>
<td></td>
<td>58 Ce</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>4f² 6s²</td>
<td></td>
<td>59 Pr</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>4f² 6s²</td>
<td></td>
<td>60 Nd</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>4f² 6s²</td>
<td></td>
<td>61 Pm</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>4f² 6s²</td>
<td></td>
<td>62 Sm</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>4f² 6s²</td>
<td></td>
<td>63 Eu</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>4f² 5d¹ 6s²</td>
<td></td>
<td>64 Gd</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4f² 6s²</td>
<td></td>
<td>65 Tb</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>9</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4f² 6s²</td>
<td></td>
<td>66 Dy</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4f² 6s²</td>
<td></td>
<td>67 Ho</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4f² 6s²</td>
<td></td>
<td>68 Er</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>12</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4f² 6s²</td>
<td></td>
<td>69 Tm</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>13</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4f² 6s²</td>
<td></td>
<td>70 Yb</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>71 Lu</td>
<td>2 2 6 2 6 10 2 6 10 14 2 6 1 2 2</td>
<td></td>
</tr>
<tr>
<td>72 Hf</td>
<td>2 2 6 2 6 10 2 6 10 14 2 6 2 2 2</td>
<td></td>
</tr>
<tr>
<td>73 Ta</td>
<td>2 2 6 2 6 10 2 6 10 14 2 6 3 2 2</td>
<td></td>
</tr>
<tr>
<td>74 W</td>
<td>2 2 6 2 6 10 2 6 10 14 2 6 4 2 2</td>
<td></td>
</tr>
<tr>
<td>75 Re</td>
<td>2 2 6 2 6 10 2 6 10 14 2 6 5 2 2</td>
<td></td>
</tr>
<tr>
<td>76 Os</td>
<td>2 2 6 2 6 10 2 6 10 14 2 6 6 2 2</td>
<td></td>
</tr>
<tr>
<td>77 Ir</td>
<td>2 2 6 2 6 10 2 6 10 14 2 6 9 2 1</td>
<td></td>
</tr>
<tr>
<td>78 Pt</td>
<td>2 2 6 2 6 10 2 6 10 14 2 6 9 1 1</td>
<td></td>
</tr>
<tr>
<td>79 Au</td>
<td>2 2 6 2 6 10 2 6 10 14 2 6 10 1 1</td>
<td></td>
</tr>
<tr>
<td>80 Hg</td>
<td>2 2 6 2 6 10 2 6 10 14 2 6 10 2 2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>81 Tl</td>
<td>2 2 6 2 6 10 2 6 10 14 2 6 10 2 1 1</td>
</tr>
<tr>
<td>82 Pb</td>
<td>2 2 6 2 6 10 2 6 10 14 2 6 10 2 2 2</td>
</tr>
<tr>
<td>83 Bi</td>
<td>2 2 6 2 6 10 2 6 10 14 2 6 10 2 3 2</td>
</tr>
<tr>
<td>84 Po</td>
<td>2 2 6 2 6 10 2 6 10 14 2 6 10 2 4 2</td>
</tr>
<tr>
<td>85 At</td>
<td>2 2 6 2 6 10 2 6 10 14 2 6 10 2 5 2</td>
</tr>
<tr>
<td>86 Rn</td>
<td>2 2 6 2 6 10 2 6 10 14 2 6 10 2 6 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7s 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>87 Fr</td>
</tr>
<tr>
<td>88 Ra</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6d 1 7s 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>89 Ac</td>
</tr>
<tr>
<td>90 Th</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5f 2 6d 1 7s 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>91 Pa</td>
</tr>
<tr>
<td>92 U</td>
</tr>
</tbody>
</table>
Snaha o dosažení minima celkové energie se u některých atomů projevuje porušením výstavbového principu. Například atom chromu by měl mít konfiguraci \[\text{[Ar]} 4s^2 3d^6\] čili \[\text{[Ar]} \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow\]

Experimentálně nacházíme uspořádání \[\text{Cr: [Ar]} 4s^1 3d^5\] čili \[\text{[Ar]} \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow\]

Tuto anomálii lze považovat za projev platnosti Hundova pravidla, prosazujícího se zde v důsledku toho, že orbitály s a skupina pěti orbitalů d si jsou energeticky velmi blízko 1). Uspořádání \[n^2 (n-1)d\], vyznačující se maximálním spinem, má menší energii než konfigurace \[n^2 (n-1)d^4\]. Lze také říci, že zřetelného minima energie dosahují takové elektronové konfigurace atomů, jejichž energeticky nejvýšší degenerované orbitály jsou buď z poloviny, nebo zcela zaplněny elektrony. V případe atomu Cr jsou z poloviny zaplněny orbitály 3d (tj. 3d^7) a dokonce i nedegenerovaný orbitál 4s (tj. 3d^6).

48 ELEKTRONOVÁ KONFIGURACE ATOMŮ PRVKŮ. JEJI PERIODICITÁ

Elektronovou konfiguraci atomu libovolného prvku, jehož atomové číslo leží mezi atomovými čísly vodíku \((Z = 1)\) a uranu \((Z = 92)\), můžeme vyčíst z tab. 4-5. Rozpis AO v hlavice tabulky nerespektuje výstavbový princip, nýbrž je proveden po jednotlivých \(n\)-kvantových sčítacích. Tim dobře vyniklí anomálnost energetického pořadí AO (tj. výstavbového principu) ve srovnání s monotónním rozvojem kvantových čísel.

Valná část prvků výstavbový princip, jmenovitě pravidlo \(n + l\) a pravidlo Hundovo půvětří respektuje. U některých dvacítky prvků nacházíme odchylovky vzniklé přesunem nejčastěji jednoho, zřídka dvou elektronů, jež vedou k zvětšení počtu paralelných elektronových spinů přítomných v atomu nebo ke kompletaci určitého AO (viz atom Cr). Oba procesy snižují v těchto případech energii atomu jako celku. Všechny odchyly výstavby elektronového obalu atomu od výstavbového principu jsou v tabulce uvedeny a vyznačeny.

* Valenční sféra atomu

Pod hojně užívaným a důležitým pojmem „valenční sféra atomu“ se rozumí skupina AO, které obsahuje valenční elektrony. Valenční elektrony jsou elektrony přítomné na atomových orbitálech o nejvyšším hlavním nebo o nejvyšším vedlejším kvantovém čísle.

Lze také říci, že valenční sféra atomu tvoří orbitály, které jsou u daného atomu zčásti nebo úplně zaplněny a nepatří do elektronové konfigurace nejblíže nížšího vzácného plynů. Valenční sféra jako skupina AO prostorově nezávisle od jiných rozhoduje o kvalitě i kvantitě meziatomových sil, jež snaží jejich vzájemné interakci dvou atomů.

Valenční sféry všech prvků jsou v tab. 4-5 uvedeny včetně svého obsazení elektronů. Právě tak je v každém prvku vyznačeno, které skupina AO nebo který AO je u atomu ve fází výstavby (je dosud neúplně obsazen nebo jeho výstavba byla právě dokončena).

* Periodicitá výstavby elektronového obalu atomů

Již v uspořádání tab. 4-5, zejména v jejím sloupci vyjadřujícím strukturu valenční sféry atomů, můžeme pozorovat zřetelně periodicitu.

1) Orbital s a pět orbitalů d tvoří vlastně skupinu šesti pseudodegenerovaných atomových orbitalů.
Periodicitu výstavby atomů vynikne, když skupiny prvků vzniklé sestavení podle vzrůstajících atomových čísel umístíme pod sebe tak, aby ve sloupcích byly všechny prvky s obdobnou strukturou valenční sféry. Vzniklé uspořádání je uvedeno v tab. 4.6.

Tabulka 4.6. Periodicit elektronové konfigurace valenční sféry atomů

<table>
<thead>
<tr>
<th>S</th>
<th>d</th>
<th>p</th>
<th>s</th>
<th>d</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>H 1</td>
<td>He 2</td>
<td>Li 3</td>
<td>Be 4</td>
<td>B 5</td>
<td>C 6</td>
</tr>
<tr>
<td>Na 11</td>
<td>Mg 12</td>
<td>Al 13</td>
<td>Si 14</td>
<td>P 15</td>
<td>S 16</td>
</tr>
<tr>
<td>K 19</td>
<td>Ca 20</td>
<td>Sc 21</td>
<td>Ti 22</td>
<td>V 23</td>
<td>Cr 24</td>
</tr>
<tr>
<td>Mn 25</td>
<td>Fe 26</td>
<td>Co 27</td>
<td>Ni 28</td>
<td>Cu 29</td>
<td>Zn 30</td>
</tr>
<tr>
<td>Ru 44</td>
<td>Rh 45</td>
<td>Pd 46</td>
<td>Ag 47</td>
<td>Cd 48</td>
<td>In 49</td>
</tr>
<tr>
<td>Sn 50</td>
<td>Sb 51</td>
<td>Te 52</td>
<td>I 53</td>
<td>Xe 54</td>
<td>Cs 55</td>
</tr>
<tr>
<td>Ba 56</td>
<td>La 57</td>
<td>Ce 58</td>
<td>Pr 59</td>
<td>Nd 60</td>
<td></td>
</tr>
<tr>
<td>Ce 58</td>
<td>Pr 59</td>
<td>Nd 60</td>
<td>Pm 61</td>
<td>Sm 62</td>
<td></td>
</tr>
<tr>
<td>Eu 63</td>
<td>Gd 64</td>
<td>Tb 65</td>
<td>Dy 66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ho 67</td>
<td>Er 68</td>
<td>Tm 69</td>
<td>Yb 70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lu 71</td>
<td>Hf 72</td>
<td>Ta 73</td>
<td>W 74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Re 75</td>
<td>Os 76</td>
<td>Ir 77</td>
<td>Pt 78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au 79</td>
<td>Ag 80</td>
<td>Cd 81</td>
<td>In 82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sn 83</td>
<td>Sb 84</td>
<td>Te 85</td>
<td>I 86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xe 86</td>
<td>Ba 87</td>
<td>La 88</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Poznámky se přesvědčimo, že jsme tímto postupem získali ve všech sloupcích skupiny prvků, které si jeví podobnou svými chemickými vlastnostmi, fyzikálními i chemickými vlastnostmi svých analogických sloupcích, uspořádáno spolu. Bez přehlédnutí k chemickému chování prvků, jen na základě struktury valenční sféry, je možné sestavit periodickou tabulku prvků. Názně je tak demonstrována skutečnost, že struktura valenční sféry atomů rozhoduje o vlastnostech a chování příslušných prvků a je primární příčinou těchto vlastností.

Uvedoume jižem axiomy Mendelejeva (1869), který v době, kdy do chemie teprve zvolna pronikala představa o atomárním uspořádání hmot, pochopil souvislost mezi tehy ze zvětšování strukturní atomu a vlastnostmi chemických prvků.

Výkladem struktury periodické tabulky a jejího formálního uspořádání se jde už jen již formálního uspořádání se jde nyní bezpečně číslit většině z dalších kapitol, věnované klasifikaci prvků podle jejich vlastností.

- Ionizační energie atomu

O chemických a fyzikálních vlastnostech atomů tedy rozhoduje jejich valenční elektrony. Dovedeme si již představit, že tyto elektrony jsou v potenciálově jámě jádra atomu uloženy ze všech elektronů menších hluboko. Čím menší je hloubka jejich uložení v potenciálově jámě, tím snazší a ochotněji, s vynalézáním menší energie, se mění jejich uspořádání (např. při střetnutí dvou atomů).

Energetický rozdíl mezi energií jádrem atomu nejslabšího poutaného elektronu a hladinou energie $E = 0$ je velmi významnou konstantou atomu. Označuji se jako tzv. ionizační energii atomu.

Ionizační energie atomu je definována jako práce, kterou musíme vynaložit, abychom z atomu v základním státu odstranili nejmenšího poutaný elektron a úplně jej vzdali z prostoru atomu.

Velikost ionizační energie dvou různých atomů a její fyzikální význam ukazuje obr. 4.20.

Ionizační energie se obvykle vyjadřuje v elektronvoltech (eV) nebo v joulech (J) a vztahuje se buď na jediný atom, nebo na 1 mol těchto atomů.
Je třeba si uvědomit, že ionizační energie je určována energií orbitalu, na kterém se vyskytuje nejslabší poutaný elektron daného atomu. Energie tohoto orbitalu, stejně jako všech ostatních atomových orbitalů, je však výrazně ovlivňována hodnotou atomového čísla daného atomu i tím, jakou elektronovou konfiguraci má jeho valenční sféra. Zjišťujeme, že v řadě atomů

Obr. 4.20. Značení ionizační energie atomů. Atom A má větší hodnotu ionizační energie než atom B

![Diagram ionizační energie atomů](image)

Obr. 4.21. Schematické vyjádření ionizační energie Eₖ prvních čtyř prvků periodické tabulky

![Diagram ionizační energie prvků](image)

sestavené podle jejich vzrůstajícího atomového čísla, sice stále zůstávají zachovány energetické relace jednotlivých orbitalů, dané výstavbovým principem, ale současné hodnoty energie všech AO postupně klesají. Přítom energie nejslabší poutaného elektronu „pulsují“ tak, jak se mění obsazení valenční sféry atomu.

Názorně ukazuje tuto skutečnost obr. 4.21, kde jsou schematicky zachyceny situace u prvních čtyř nejnedušších atomů,

Vidíme, že po zaplnění první kvantové sféry u atomu He prudce vzrůstá jeho ionizační energie. Odobrně je tomu při zaplňení orbitalu 2s u beryllia. K uvolnění jednoho z jeho elektronů 2s¹ z atomu je zapotřebí větší energie, než tomu bylo u atomu Li při jeho ionizaci uvolněním elektronu 2s¹.

Je tedy zcela pochopitelné, že značnění-li graficky závislost ionizační energie atomů na jejich atomovém čísle, obdržíme lomenou křivku vykazující typicky periodický průběh (obr. 4.22). Periodicitu hodnot ionizační energie je přímým důsledkem periodicity struktury elektronového

![Obr. 4.22. Závislost první ionizační energie $E_1 (M \rightarrow M^+)$ prvku na jejich atomovém čísle Z](image)

Je vidět, že i tehdy, když je např. druhý elektron uvolňován z téhož orbitalu, jak tomu je v případě atomu Be a iontu Be^+, je těch vynaložit větší energii neboť po uvolnění prvního elektrona se energie orbitalu 2s zmenšila.

![Obr. 4.23. Názorné vyjádření hodnot první, druhé a třetí ionizační energie pro atom Be](image)
Tabulka 4-7 přehledně ukazuje periodicitu ionizačních energií i jejich vzrůst při pokračující ionizaci do vyšších stupňů. Uvádí se v ní prvky od Z = 1 do Z = 10 a dále Ca, Sr, Ba a Zn, Cd, Hg. Z hodnot první ionizační energie uvedených u těchto těžších prvků lze usoudit, že struktury (n − 1)d^{10} ms^2 (prvky skupiny 2B periodického systému) se hůře ionizují než prosté struktury ns^2 (prvky skupiny 2A periodické tabulky). Toto pravidlo má širší platnost a jeho důsledkem je méně kovový charakter prvků skupin B ve srovnání s prvky skupin A.

<table>
<thead>
<tr>
<th>Z</th>
<th>Prvek</th>
<th>Valenční sféra</th>
<th>Ionizační energie (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>s^1</td>
<td>13,6</td>
</tr>
<tr>
<td>2</td>
<td>He</td>
<td>s^2</td>
<td>24,6 54,4</td>
</tr>
<tr>
<td>3</td>
<td>Li</td>
<td>s^1</td>
<td>5,4 75,6 122,4</td>
</tr>
<tr>
<td>4</td>
<td>Be</td>
<td>s^2</td>
<td>9,3 18,2 153,9 217,7</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>ns^2 np^1</td>
<td>8,2 25,1 37,9 259,3 340,1</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>ns^2 np^2</td>
<td>11,3 24,4 47,9 64,5 392,0 489,8</td>
</tr>
<tr>
<td>7</td>
<td>N</td>
<td>ns^2 np^3</td>
<td>14,5 29,6 47,4 77,5 97,9 551,9 666,8</td>
</tr>
<tr>
<td>8</td>
<td>O</td>
<td>ns^2 np^4</td>
<td>13,6 35,2 54,9 77,4 113,9 138,1 739,1 817,1</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>ns^2 np^5</td>
<td>17,4 35,0 62,7 87,2 114,2 157,1 185,1 953,6</td>
</tr>
<tr>
<td>10</td>
<td>Ne</td>
<td>ns^2 np^6</td>
<td>21,6 41,1 (64) 97,2 157,9</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Ca</td>
<td>s^2</td>
<td>6,11</td>
</tr>
<tr>
<td>38</td>
<td>Sr</td>
<td>s^2</td>
<td>5,69</td>
</tr>
<tr>
<td>56</td>
<td>Ba</td>
<td>s^2</td>
<td>5,21</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Zn</td>
<td>(n − 1)d^{10} ms^2</td>
<td>9,39</td>
</tr>
<tr>
<td>48</td>
<td>Cd</td>
<td>(n − 1)d^{10} ms^2</td>
<td>8,49</td>
</tr>
<tr>
<td>80</td>
<td>Hg</td>
<td>(n − 1)d^{10} ms^2</td>
<td>10,43</td>
</tr>
</tbody>
</table>

Hodnoty ionizační energie se stanovují experimentálně určením vlnové délky hrany té série čár v emisním spektrodu prvku, která odpovídá skupině přeskoků na AO obsazený nejslabší poutaným elektronem. Uvedené si nejednadvadlaný možný případ:

Vnější čárky Lymunovy série v čárovém spektrodu vodíku je tvorená fotony o vlnové délce λ_{on} = 91,2 mm, snadné určení ionizační energie E_i v atomu vodíku podle vztahu

$$ E_i = h \frac{c}{\lambda_{on}} = 6,63 \times 10^{-34} \times \frac{3 \times 10^8}{9,12 \times 10^{-12}} = 2,18 \times 10^{-18} J = 13,59 eV $$

- **Elektronová afinita**

Zatímco k odtření elektronu z atomu je třeba dodávat energii zvenčí, při zachycení elektronu atomem se obvykle naopak energie uvoziuje. Obrázek 4-24 ukazuje, že neutrální atom skutečně může zachytit elektron, protože je potenciálovou jámovou s prázdnými orbitály, které se mohou stát místem pobytu elektronu. Energetická hladina orbitalu, na který se dostane elektron

76
(přicházející z prostoru mimo atom po hladině \(E = 0 \)) rozhoduje o velikosti energie uvolněné při zachycení elektronu. Tato energie se nazývá elektronová afinity. Je to energie, která se uvolní při přepnutí elektronu k atomu za vzniku aniontu.

![Diagram elektronové afinity atomu](image)

Obr. 4-24. Elektronová afinity atomu

Tato energie se až na znaměnko rovná energii potřebné k odstranění tohoto elektronu z aniontu.

Hodnoty elektronové afinity jsou obtížně měřitelné a soubor jejich hodnot pro jednotlivé prvky je dosud neúplný. Poměrně velkou elektronovou afinity se vyznačují nekovové prvky.

Obecně lze říci, že elektrony jsou snadno poutány (za uvolnění velkého množství energie) těmi atomy, jejichž elektronová valenční síť se svým zapolněním blíží struktúře vzácného plynu.

Hodnoty elektronové afinity několika prvků jsou uvedeny v tab. 4-8.

<table>
<thead>
<tr>
<th>H</th>
<th>C</th>
<th>N</th>
<th>O</th>
<th>F</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Cl</th>
<th>Se</th>
<th>Br</th>
<th>Te</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,75</td>
<td>1,25</td>
<td>−0,1</td>
<td>1,47</td>
<td>3,45</td>
<td>1,63</td>
<td>0,7</td>
<td>2,07</td>
<td>3,61</td>
<td>1,7</td>
<td>3,36</td>
<td>2,2</td>
<td>3,06</td>
</tr>
</tbody>
</table>
5 Chemická vazba

V našem reálném světě se tvorí atomy jen výjimečně v izolovaném stavu, tj. jen ve výjimečných případech na sebe navzájem nepůsobí (neinteragují spolu). Velkou schopnost sechat v izolovaném stavu mají pouze atomy vzácných plynů. Atomy ostatních prvků se spolu nesdružují jen tehdy, když tepelný pohyb dosáhne takové intenzity, že všechna vznikající meziatomová spojení jsou soustavně rušena. Často také zůstávají izolované napl. atomy pohybující se v kosmickém prostoru, kde jejich počet v jednotce objemu je velmi malý a pravděpodobnost vzájemné srážky mízivá.

V naprosté většině situací i podmínek však dochází ke sdružování atomů. Jejich vzájemnou interakci se vytvářejí větší či menší shluky. Vznikají skupiny atomů téhož druhu (molekuly a kryсталové mřížky prvků) i skupiny atomů různého druhu (molekuly a krystaly sloučenin).

Podstatu pojítka, které se přitom mezi atomy vytváří a brání jejich opětovnému oddělení od sebe, se pokusíme objasnit tak, že si podrobněji rozebereme větší znaky jeho vzniku v nejednodušší možné situaci — při vzájemném přiblížení dvou izolovaných atomů. Pokud jsou atomy schopny vytvořit mezi sebou pojítko, dochází nejprve k tomu, že při zmenšování vzdálenosti mezi atomy začíná zvolna působit nezanedbatelné půtažlivé síly, které donutí atomy k dalšímu přiblížování. V druhé fázi děje vzájemné přiblížování atomů ustane 1). Atomy spolu se tvorí v kontaktu na určitou vzdálenost 2). Říkáme, že mezi atomy vznikla chemická vazba. Kdybychom chetli nyní atomy od sebe opět oddělit tak, aby se znovu nesetkaly, museli bychom vynaložit určité konečné množství práce. Kdybychom naporak chetli, aby se atomy dále k sobě přiblížovaly a hlučce se pronikaly svými elektronovými obaly, museli bychom na stlačování dvojice atomů vynaložit opět práci. Její množství by bylo v tomto případě značné.

Místo slovního popisu situace při vzniku chemické vazby lze použít jednoduché grafické zobrazení (obr. 5-1). Souřadnicí x je vyjádřena vzdálenost mezi oběma atomy (tj. vzdálenost mezi

\[E_p > 0 \]
\[E_p = 0 \]
\[E_p < 0 \]

Obr. 5-1. Závislost potenciální energie soustavy dvou atomů A a B na jejich vzájemné vzdálenosti. Atomy vytvářejí při přiblížení chemickou vazbu.

1) Předpokládejme, že atomy se k sobě přiblížují rychlostí \(v \to 0 \) a nemají v důsledku toho žádnou kinetickou energii.
2) Přesně řečeno, reálné atomy budou oscilovat (kmitat) kolem určité hodnoty této vzdálenosti. Kmitání bude projevem přítomnosti tepelné energie v daném systému.
jejich jádry). Na nsle souřadné ose se vynáší potenciálov energie soustavy, tvořené dvojicí atomů A a B. Energie, kterou má dvojice atomů ve vzdálenosti \(x \rightarrow \infty \), je definitivicky považována za rovnou nule.

Je možné si představit, že atom A je umístěn v počátku souřadného systému (pozice A) a atom B se k němu blíží po souřadné ose x. Vidíme, že při přiblížení atomu B (např. do pozice B') klesá potenciální energie systému na hodnotu \(E_x < 0 \), atomy se přitahují a systém samovolně „sijíží“ do energetického minima (potenciálové jámy).

Minima dosažne energie systému při vzájemné vzdálenosti atomů \(x = l \) (pozice B'). Mezi-jaderární vzdálenost \(l \) se označuje jako délka chemické vazby. Energie systému v tomto okamžiku je \(E_x = -D \). Energie D se nazývá disociační energie vazby nebo prostě jen energie vazby. Rovná se práci, kterou je třeba vynaložit, můžou se rozštěpit vazba mezi dvěma atomy a mají-li atomy překonat přitažlivé síly a vzdáleně se od sebe do nekonečna.

Z grafu je vidět, že další přiblížování atomů je spojeno s prudkým vzrůstem potenciální energie (např. v pozici B'' má již soustava potenciální energii \(E_x > 0 \)).

Vazebné interakce atomů se připad od případu různí hodnotou délky vazby \(l \) a energie vazby \(D \). Vyjadřuje to obr. 5-2.

\[Obr. 5-2. \] Závislost potenciální energie atomů na jejich vzájemné vzdálenosti pro tři různé systémy. Systém 1 vytváří vazbu dlouhou a nepevnou. Systém 3 se naopak vysažuje vznikem krátké a pevné vazby.

Někdy je hloubka potenciálové jámy, tj. energie vazby \(D \), tak malá, že k oddělení atomů od sebe dochází již v důsledku jejich tepelného pohybu. Takováho vazby zůstávají zachovány jen při nizších teplotách.

Naopak hlubokými energetickými minimy, a tedy velkými energemí, se vyznačují vazby mezi atomy v látkách, které jsou tepelně velmi odolné.

Naše dosavadní úvahy lze poněkud zobecnit a hledač, že o vzniku jedné či více chemických vazeb (s elektrony v základním stavu) se hovoří tedy tehdé, když určitá soustava původně izolovaných atomů po jejich vzájemném přiblížení sníží svou potenciální energii a ocitne se v energetickém minimu. Atomy přitom zaujmou určitý geometricky specifikované pozn. 1).

Je třeba zmínit se ještě o druhém typu interakce, která může nastat při kontaktu dvou (nebo více) atomů. Pro dvojici atomů je znázorněna na obr. 5-3. Tato tzv. nevazebná interakce se

1) Vyjadřování vzniku chemické vazby křivkou potenciální energie se může použít i pro složitší, víceatomové celky. Je pak ovšem nutné opustit názornou grafickou představu a přejít k vyjádření v trojrozměrném pak i vícerozměrném prostoru pomocí matematických vztahů. V moderní teoretické chemii je v některých speciálních oblastech tento způsob velmi běžný.
vyznačuje tím, že při ní potenciální energie soustavy se zmenšující se vzdálenosti mezi atomy monotoně vzrůstá. Atomy se odpuzují, snaží se co nejvíce od sebe vzdálet. Interakce samozřejmě nevede ke vzniku vazby.

Až dosáhne směs se zde zaváděly jeho vývoj (fenomenologickým) popisem interakce atomů. Samotné podstate jevu porozumíme v další části této kapitoly.

Obr. 5.3. Závislost potenciální energie dvojice atomů na jejich vzájemné vzdálenosti při nevazebné interakci.

5.1 VAZBA V MOLEKULE VODÍKU

Je známo, že atomy vodíku se velmi rychle spojují za vytvoření molekuly H₂. Průběh závislosti potenciální energie E_p dvojice atomů vodíku na jejich vzájemné vzdálenosti tedy musí být vyjádřen křivkou téhož typu, jako je křivka na obr. 5.1.

Pokusme se objasnit, co je příčinou zmenšení energie atomů vodíku při jejich vzájemném přiblížení.

Možnost interakce jader obou atomů můžeme vyloučit. Jaderní síly mají krátký dosah a jejich vliv by se projevil až asi při 10^4krát menší vzdálenosti mezi jádry, než jakou pozorujeme při vzniku molekuly H₂ (délka vazby [H₂] = 74 pm). To ovšem znamená, že příčinou zmenšení energie jsou změny v elektronovém obalu obou atomů po jejich přiblížení na vazebnou vzdálenost.

Obr. 5.4. Schematické vyjádření energetických změn při tvorbě molekuly H₂.
Takovýto jednoduchý výklad uspořádání elektronů v molekule vodíku nás přímo dovodi k myšlenkám a základním představám dnes nejrozšířenější teorie chemické vazby - teorie molekulových orbitalů.

- Teorie molekulových orbitalů

Základy této teorie vybudovali v letech 1928 až 1932 Hund, Heigbeig, Lennard-Jones a Mulliken. K jejímu intenzivněmu a soustavnému rozvíjení a propracovávání došlo tepře o dvě desetiletí později a trval dosud.

Základem uvedené teorie je představa, že každá molekula je vlastně polycentrický útvar tvorený souborem atomových jáder, v němž jsou na určitých orbitalech umístěny elektrony patřící molekule. Těmito orbitalům se řiká molekulové orbitaly (dále jen MO). Svými vlastnostmi, podstatou a pravidly svého obsazování elektrony jsou MO analógii AO.

Teorie se proto - až na výjimky - tuto cestou nebourá. Místo toho se snaží odvodit tvar i energii MO z tvarů a energii AO těch atomů, které molekulu vytvářejí.

Využívá přitom jednak představy průniku a překryvu některých původních AO při přiblížení atomů, jednak představy o vytváření vlnových funkcí MO lineárními kombinacemi vlnových funkcí AO. Tato pracovní metoda teorie MO se nazývá metoda lineárních kombinací AO. Vhodno se pro ni označení MO-LCAO (z angl. Molecular Orbital - Linear Combination of Atomic Orbitals).

Postup MO-LCAO má velmi dobré teoretické zdůvodnění. Navíc jeho praktické použití k výkladu vazby v molekulách se plně osvětluje. Seznámíme se proto s jeho principy.

Prostorový průnik dvou AO patřících dvěma atomům, které se k sobě přiblížily na vazebnou vzdálenost, se nazývá překryv. Se zmenšující se vzdálenosti mezi atomy se překryv zvětšuje (obr. 5-5). Velikost překryvu vyjadrujeme tzv. integrálem překryvu S. Hodnoty S jsou mirovou relativního průniku AO a pohybuji se v intervalu od $S = 0$ (pro vzdálené atomy) do $S = 1$ (pro pomyslnou situaci, kdy se dva atomy pronikali tak, že jejich meziúzká vzdálenost je nulová).

Dva pronikající se orbitaly AO a AO* popsané vlnovými funkcemi $\Psi(\text{AO})$ a $\Psi(\text{AO}^*)$ se při růstu hodnoty S mění na dvojici orbitalů MO a MO*.*1 Jelikož vlnové funkce $\Psi(\text{MO})$ a $\Psi(\text{MO}^*)$ jsou určeny podmínkami

$$\Psi(\text{MO}) = f_{\text{c}} [\Psi(\text{AO}) + \Psi(\text{AO}^*)]$$
$$\Psi(\text{MO}^*) = f_{\text{c}} [\Psi(\text{AO}) - \Psi(\text{AO}^*)]$$

1) Význam a původ indexů b a * uvádíme později.
Získaná vlnová funkce ψ představuje další nezávislé řešení Schrödingerovy rovnice těžě soustavy.
1. Překryv dvojice AO je účinný, tj. skutečně vede k vytvoření energeticky diferencovaných orbitálů MO* a MO, jen tehdy, když původní AO* a AO nemají příliš rozdílnou energii.

2. Počet MO, které se překryvem vytvářejí, je vždy (bez výjimky) roven počtu AO, které se překryvají účastí.

3. K účinnému překryvu dojde pouze tehdy, když AO* a AO mají stejnou symetrii k ose vznikající chemické vazby.

4. Energetická diference mezi dvojicí vzniklých orbitálů MO* a MO je tím větší, čím větší je integrál překryvu S původních AO* a AO.

Obsah a význam těchto pravidel podchopíme postupně při použití teorie MO a její pracovní metody LCAO k řešení vazebních poměrů v molekulách.

Popis molekuly H₂ metodou MO-LCAO

Vrátme se nyní k problemu chemické vazby v molekule H₂. Podle teorie MO-LCAO si lze vzhledem molekuly H₂ představit jako průnik a lineární kombinaci orbitálů 1s původních izolovaných atomů. Znázorníme si energetickou situaci při tvorbě vazby v molekule vodíku způsobem, který jsme již jednou použili u obr. 5-4. Nyní však již můžeme identifikovat dva z orbitálů vzniklé molekuly H₂, a to orbitály MO* a MO. Toto schematické vyjadření je uvedeno v horní části obr. 5-7. Z obrázku je patrný fyzikální význam coulombického integrálu α i výměnného integrálu β v procesu vzniku molekuly H₂. Je to vidět, že jak α, tak β mají zápornou hodnotu.

\[\varepsilon = 0 \]
\[\varepsilon < 0 \]

Obr. 5-7: Uspořádání diagramu MO molekuly H₂ (horní část obrázku)

Zjednodušeně vyjadřuje energetickou situaci tohoto dvouatomového systému (horní část obrázku) (Znázornění MO symbolu α* a α je objasněno v odd. 5.2.)

Orbital MO* má proti původním AO atomů vodíku menší energii, jak bylo požadováno při primárním popisu energetické situace znázorněné na obr. 5-4. Elektron 1s obou atomů vodíku je v procesu tvorby molekuly přenesen na orbital MO*, čímž je podstatně snížena energie celého systému. Orbital MO* je tedy „zadpovědný“ za pokles energie, a tím i za vznik vazby. Nazýváme jej rezonanční orbital. Odtud pochází i jeho značení exponentem b (z angl. bonding - vazba).

Druhý z dvojice vzniklých orbitálů molekuly H₂ = orbital MO* – je energeticky velmi vysoko a v případěch, kdy dojde k jeho obsazení elektrony (u molekuly vodíku tomu tak není), působi proti vytvoření vazby. Označujeme jej názvem protivazebný orbital. Vžilo se jeho značení hvězdičkou, popř. též exponentem a (z angl. antibonding – protivazebný).

Diagram v dolní části obr. 5-7 je zjednodušeným obrazem situace z horní části téhož obrázku.

Tento způsob znázornování vzniku MO z AO se při tvorbě chemických vazeb v teorii MO velmi často používá pod názvem diagram molekulárních orbitálů (diagram MO). Nyní si ještě povšimneme toho, jak jsou orbitály molekuly H₂ vyvinuty prostorově.

83
Rozprostranění hustoty pravděpodobnosti výskytu elektronu obou orbitálů MO⁺ a MO⁻ vyjadřuje obr. 5-8. Orbitály jsou znázorněny v řezu. Místa největších hodnot \(\Psi^2(\text{MO}^+) \) a \(\Psi^2(\text{MO}^-) \) jsou na obrázku nejčastěji. Oba útvary mají osu symetrie, kterou je spojnice jader atomů, a střed symetrie, ležící uprostřed spojnice. Na obrázku jsou znázorněna i znaménka znovu funkce \(\Psi \) obou orbitálů. Není jisté třeba znovu zdůrazňovat, že v molekule \(\text{H}_2 \) není orbital MO⁺ obsazen.

\[\text{MO}^+ = \sigma^a_1 \]
\[\text{MO}^- = \sigma^b_2 \]

a že dislokace hustoty pravděpodobnosti výskytu elektronu orbitalu MO⁺ je proto třeba chápát podmíněně. Pokud by byl elektron nebo celý elektronový pár vynesen z jakýchkoli přičin na orbital MO⁺, zaujal by prostorově pozici znázorněnou obrázkem. Takovýto útvar by byl zcela nestabilní a rychle by se rozpadl na dva izolované atomy.

5.2 MOLEKULOVÉ ORBITÁLY

Na jednoduchém případu vazby v molekule \(\text{H}_2 \) jsme si objasnili část základních pojmů, se kterými operuje metoda MO-LCAO při výkladu vazeb mezi atomy. Nyní se obecně seznámíme s tím, které kombinace AO (tj. které překryvy) jsou z hlediska teorie přípustné a vedou ke vzniku vazebně významných MO. Současně poznamene další symboliku MO a zákonnosti v jejich obsazování elektrony.

Tabulka 5-1. Účinné překryvy v systému orbitálů s, p a některých orbitalů d

<table>
<thead>
<tr>
<th>Kombinace AO</th>
<th>Energie</th>
<th>Tvar MO</th>
<th>Typ MO</th>
</tr>
</thead>
<tbody>
<tr>
<td>s + s</td>
<td>(\frac{\psi(s) - \psi(s)}{\sqrt{2}})</td>
<td>(\sigma^a_1)</td>
<td>6</td>
</tr>
<tr>
<td>s + pₓ</td>
<td>(\frac{\psi(s) - \psi(p_x)}{\sqrt{2}})</td>
<td>(\sigma^b_2)</td>
<td>6</td>
</tr>
<tr>
<td>s + dₓ</td>
<td>(\frac{\psi(s) - \psi(d_x)}{\sqrt{2}})</td>
<td>(\pi_2)</td>
<td>5</td>
</tr>
</tbody>
</table>

84
MO typu σ, π, δ

MO nemohou vznikat libovolnou kombinací AO. Překryv je efektivní, tj. vede ke vzniku dvojice MOa a MOb, jenom v případě, že se jim v místech geometrického průniku AO nanechají vlnové funkce.

Účinné překryvy dvojic AO v systému orbitalů s, p a některých orbitalů d, tvary vzniklých vazebných i protivazebných MO a jejich symboliku uvádí tab. 5.1. Tvary všech orbitalů jsou schematicky vyjadřeny obrysovou plochou, která vymezuje místa s velkou hustotou pravděpodobnosti výskytu elektronu. Aby zůstala zachována jednoznačnost, srozumitelnost a věcná správnost značení orbitalů, bylo proto pro dvoautomové molekuly smluveno používat souřadný systém podle obr. 5-9. Na spojnici jader atomů leží obě osy z svými kladnými směry. V tab. 5-1 lze najít tři typy MO lišících se principiálně svým prostorovým uspořádáním a symetrií. Tyto tři typy orbitalů označujeme písmeny σ, π a δ. Zjednodušeně nám je ukazuje obr. 5-10. Za všechny orbitaly σ je uveden orbital σ^a, za orbitaly π orbital π^a a za orbitaly δ orbital δ^a (viz str. 84).

Obr. 5-9. Smluvený souřadný systém dvoautomové molekuly

Obr. 5-10. Vazebné i protivazebné MO typu σ, π a δ. Šarfovaním jsou vyznačeny nodální plochy, černé kroužky jsou jádra atomů

Orbitaly σ^b se od orbitalů π^b a δ^b liší ve způsobu, jakým je u nich umístěna oblast maximální pravděpodobnosti výskytu elektronu ve vztahu ke spojnici obou jader. U orbitalů σ^b spojnica touto oblastí prochází. U orbitalů π^b a δ^b naopak leží tyto oblasti mimo spojnici jader a pravděpodobnost výskytu elektronu na spojnici je nulová. Tuto skutečnost je nezbytně si zapamatovat pro další výklad.

Protivazebné orbitaly σ^*, π^* a δ^* mají vždy o jednu nodální plochu více než příslušné vazebné orbitaly. To se projevuje tím, že počet jejich „lákou“ je proti vazebným orbitalům dvou-robéný. Protivazebné orbitaly jsou tedy znázorněny na obr. 5-10.

86
V tab. 5-1 si lze při jejím bezlivém rozboru povšimnout, že MO vzniká jen kombinací takových AO, které mají (bez účtu na znaménko) totéž magnetické kvantové číslo \(m_l \) (resp. jsou odvozeny transformací z dvojice AO tohoto kvantového čísla).

Tak např. MO typu \(\sigma \) tedy vznikají pouze kombinací orbitalů \(s, p_x \) a \(d_z^\perp \), které mají hodnotu \(m_l = 0 \). Vznikají tak možnosti překryvu \(s-s, s-p_x, s-d_z^\perp, p_x-p_x, p_x-d_z^\perp \) a \(d_z^\perp-d_z^\perp \). Tyto i další možné kombinace orbitalů s kvantovým číslem \(m_l = \pm 1 \) a \(m_l = \pm 2 \) ukazuje tab. 5-2. Účinné kombinace jsou vyjádřeny dvoustrannými šipkami.

Tabulka 5-2. Přehled účinných překryvů v systému AO s, p a d

<table>
<thead>
<tr>
<th>AO</th>
<th>(s)</th>
<th>(s)</th>
<th>(p_x)</th>
<th>(p_x)</th>
<th>(d_z^\perp)</th>
<th>(d_z^\perp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_l)</td>
<td>0</td>
<td>±1</td>
<td>±2</td>
<td>±1</td>
<td>±2</td>
<td>±2</td>
</tr>
<tr>
<td>(\lambda)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mu)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mu)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abychom dokresliši výklad představ o způsobu překryvů AO, uvedeme ještě příklady jejích neúčinných překryvů, které nevedou k vytváření dvojic vazebných a protivazebných orbitalů, a které proto vykládáme z našich úvah. Tři nejčastější případy ukazuje obr. 5-11. Při těchto překryvch jsou vhodné funkce AO v oblasti jejich průniku anulovány a integrál překryvu je \(S = 0 \).

Obr. 5-11. Neúčinný překryv AO (\(S = 0 \))

- Označování MO

Značení MO jsme z větší části poznavali průběžně ve výkladu minulého odstavce. Můžeme si zopakovat:

1. MO se vyjadřuji základním symbolem (\(\sigma, \pi \) nebo \(\delta \) značící jejich tvar [viz tab. 5-1]).
2. Exponenty \(b \) a \(a \) (resp. \(a \) a \(b \)) vpravo nahoře u hlavního symbolu vyjadřují vazebnost a protivazebnost MO. Pokud MO má větší energii než původní nepřekrytě AO, nažývá se protivazebný. V opačném případě je hovoří o orbitalu vazebném.

V systému orbitalů molekuly se mohou vyskytnout i takové, které jsou energeticky (a většinou i geométricky) těsně shodné s původními AO. Mnohé to byvají skutečné AO valenční sféry některého z atomů, které vlivem své prostorové orientace nepodlehl překryvu. Říkáme jim nevazebné orbitaly.

3. Nevazebné orbitaly se označují tak, že se u symbolu orbitalu vynechává exponent vpravo nahoře.

1) Je třeba znovu zdůraznit, že všechna tato tvrzení a určování tabulek 5-1 a 5-2 jsou formálně správná pouze pro souřadný systém podle obr. 5-9. Změna souřadného systému by si neodklízila objektivní skutečnost způsobu překryvu AO a charakter vzniklých MO, ale výrazně by pozměnila jejich symboliku.

2) Někdy se těž nevazebnému orbitalu dává exponent \(n \).
Při aplikaci představ MO-LCAO na konkrétní systém je mnohem důležitější vědět, ze kterých AO jednotlivé MO vznikají, než znát jejich přesnou prostorovou konfiguraci. Při značení MO se proto používá ještě další indexování.

4. Index vpravo dole vedle hlavního symbolu vyjadřuje geneze MO. Význam indexů je uveden v tab. 5-3.

| Tabulka 5-3. Indexy genece MO a jejich význam |
|----------------|----------------|----------------|----------------|----------------|----------------|
| Index | s | p_x | d_{x^2} | $s + p_x$ | d_{x^2} |
| σ | $s + s$ | $p_x + p_y$ | $d_{x^2} - d_{y^2}$ | $s + p_z$ | $p_y + p_z$ |
| π | x | y | xz | y | x |
| δ | $d_{x^2} + d_{y^2}$ | $d_{x^2} - d_{y^2}$ | $x^2 - y^2$ | $x^2 - y^2$ |

Příklady značení MO:

- σ_x je vazebný MO typu σ vzniklý kombinací AO typu s a AO p_x.
- π_{xy} je protivazebný MO typu π vzniklý kombinací AO p_x a AO p_y.
- δ, je vazebný MO typu δ vzniklý kombinací dvou AO $d_{x^2} - d_{y^2}$.
- π_c je nevazebný MO představovaný v podstatě neznámým AO p_z.

Výstavbový princip v systému MO

Elektrony jsou ve vzniklé molekule umístěny tak, aby systém jako celek měl co nejmenší energii. Proto ty AO, které nepodílely se na vzniku MO, budou s menšími hodnotami hlavního kvantového čísla, mají v praxi ztrácené elektrony, jež se po vzniku MO ztratí pro účely vzniku MO.

1. Nejdříve se zaplňují MO o nejmenší energii.
2. Při zaplňování MO je respektován Pauliho princip. Stejně jako u AO mohou se i u MO vyskytnout příbuzné orbitály o shodné energii. Také pro ně používáme název energeticky degenerované orbitály.

3. Obsazení degenerovaných MO se řídí Hundovým pravidlem. Energetické pořadí MO lze zjistit buď obličejně načrtnutými načrtnutými nebo teoretickými kvantově mechanickými výpočty, nebo se mohou získávat experimentálně, hlubší studie těchto úloh poskytnou právně úlohy vědeckých ústavů.

Počtení i experimentálně nalezené posloupnosti MO se obvykle vyjadřuje graficky pomocí diagramu MO. Na levém krajním diagramu jsou znázorněny původní AO atomů.

1) Z tab. 5-1 je proto výhodnější si pamatovat kombinace AO v levém sloupci tabulky než tvary vzniklých MO uvedené vpravo.
jsou znázorněny vznikající vazebné, protivazebné a nevazebné MO. Vertikální souřadnice diagramu má význam energie. Energetické hladiny orbitalů se vyzařují krátkou horizontální úsekou, na níž mohou být čtverečkem (nebo kroužkem) znázorněna místa, která obsazují elektrony. Počet bližšo sebe umístěných horizontálních úseků nebo počet čtverečků na jedné úsečce se vyjadřuje energetická degenerace orbitalů. Diagram MO má obvykle konfiguraci odpovídající obecnému blokovému uspořádání na obr. 5-12.

Obr. 5-12. Obecně blokové znázornění (plnou čarou) hypotetického diagramu MO (čárovým) bliž neurechného systému

S řadou diagramů MO se seznammé v odd. 5.3 při výkladu vazebných poměrů v některých molekulách. Tepře na konkrétních případech přesněji porozuměte způsobu a významu uspořádání diagramů MO.

- Řád vazby

Ze všeho, co jsme dosud uvedli, vyplývá, že přítomnost MO neobsazených elektronů se v celkové energii útvaru neprojevuje. Neobsazené orbitaly jsou fyzikální nereálné. Stejně, jako tomu bylo v případě AO, každý z nich pouze představuje poměrně vyjádření možnosti, jak by se mohl v prostoru molekuly začít pohybovat elektron nebo dvojice elektronů s opačnými spínami (elektronový pár).

Zda vznikne v daném útvaru vazba a jak bude pevná, o tom rozhoduje výsledná energetická bilance. Převáží-li děj snížení energie, vazba se tvoří, v opačném případě nikoliv.

Velmi dobrou charakteristiku vzniklé vazby je veličina, které se řídí řád vazby. Je to číslo určující rozdíl mezi počtem elektronů ve vazebných a počtem elektronů v protivazebných orbitalech molekuly, dělený dvěma:

\[X = \frac{n(MO) - n(MO^*)}{2} \]

kde \(X \) je řád vazby, \(n(MO) \) – počet elektronů ve vazebných MO a \(n(MO^*) \) – počet elektronů v protivazebných MO. Později poznamě, že řád vazby nemusí vždy nabývat celistvých hodnot.
5.3 VAZBA VE STEJOJADERNÝCH DVOUATOMOVÝCH MOLEKULÁCH A MOLEKULOVÝCH IONTECH

Elementárních poznatků z teorie MO-LCAO získali jsme již v předchozích kapitolách. Stejnojaderné molekuly vznikají při výpadku vazeb v molekulárních i atomových vazbách v molekulách a molekulových ionenTech.

Stejnojaderné molekuly s překryvem orbitalů 1s a 1s

Překryv dvou orbitálů 1s jsou-li stejné, vznikne v molekule vodíku.

Na obr. 5-13 je uveden diagram MO tohoto překryvu a možného obsazení vznikláho MO elektronu. Podle počtu elektronů, které do diagramu unismíme, vznikne obraz vazby v několika nejednoduchších dvouatomových molekulách a molekulových iontech.

Povšimněme si postupně jednotlivých částí.

<table>
<thead>
<tr>
<th>energetické vzdálenosti (eV)</th>
<th>2.63</th>
<th>4.48</th>
<th>2.47</th>
</tr>
</thead>
<tbody>
<tr>
<td>deltal na vzdálenost</td>
<td>0.06</td>
<td>7.4</td>
<td>11.3</td>
</tr>
<tr>
<td>počet vazeb</td>
<td>0</td>
<td>1/2</td>
<td>1</td>
</tr>
<tr>
<td>počet elektronů</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>molekulový, reakt. molekulový ión</td>
<td>H₂⁺</td>
<td></td>
<td></td>
</tr>
<tr>
<td>obsazené hodnoty</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Obr. 5-13: Diagram MO překryvu AO 1s a 1s. Objasňuje vazbu v částicích H₂⁺, H₂, He⁺.

Molekulový ion H₂⁺ s elektronovou konfigurací (σ₁)²³ (σ₂)⁰

Nemá žádný elektron a bývá při představování dvojici protonů. Řád vazby určený výpočtem podle vzorce (5-5) je 0. Je zřetelné, že v systému nedojde po vzájemném příbližení dvou protonů ke zmenšení energie a naopak oba kladné náboje se budou elektrostaticky odpuzovat. Molekulový ion H₂⁺ není schopen existence.

Molekulový ion H₂⁺ (σ₁)² (σ₂)⁰

Obsahuje jediný elektron, který je umístěn na orbitalu σ₁; a jeho energeticky sestup z orbitalu 1s atomu vodíku působí vazební. Řád vazby je 0. Částice je reálná, byla experimentálně prokázána, má však malé pevné vazbu mezi atomy. Délka vazby je poměrně známa.

Molekula vodíku H₂ (σ₁)² (σ₂)⁰

Stabilní útvar, v němž vazba mezi atomy zprostředkovává elektronový pár na orbitalu σ₁, Řád vazby je 1. Délka vazby je nejmenší a energie vazby největší ze všech uvedených částic.

Molekulový ion He⁺ nebo H₂⁺ (σ₁)² (σ₂)⁰

Mají v orbitalu σ₂² stejně jako molekula H₂ dva vazebné elektrony, ale navíc v orbitalu σ₁² jeden elektron působící protivazebně. Řád vazby je proto opět pouze ½. Útvary se strukturálními parametry podobají iontu H₂⁺.
Molekula He₂ \(|\sigma_2^+| (\pi_2^+)^2\)

V diagramu MO je plné obsazen jak orbital \(\sigma_2^+\), tak i orbital \(\pi_2^+\). Řád vazby je tedy 0. Při přiblížení obou atomů He nedochází k poklesu energie v tomto systému a vazba se nevznětí. Molekuly helia zůstávají jednaatomové.

- Stejnosegmentné molekuly s překryvem skupin orbitalů 2s 2p a 2s 2p

Pro popis vazby v dvouatomových molekulách prvků od \(Z = 3\) až do \(Z = 10\) je třeba vytvořit schéma MO tím, že se ponechávají dva soubory orbitalů patřičných do druhé kvantové sféry obou atomů. Incidují spolu tedy dva dosti složité systémy AO způsobem znázorněným na obr. 5.14.

![Obr. 5.14. Dva interagující soubory orbitalů 2s 2p (orbitály 1s jsou uloženy hluboko uvnitř elektronového obalu atomů a interakci nepodílejí)](image)

Za pomoci tab. 5-1 není nesnadné vyhledat kombinace AO, které jsou schopny účinného překryvu. Jsou to především tyto dvojice:

\[
\begin{align*}
2s + 2s & \rightarrow \sigma_1^+ + \sigma_1^- \\
2p_x + 2p_y & \rightarrow \sigma_2^+ + \sigma_2^- \\
2p_x + 2p_z & \rightarrow \pi_1^+ + \pi_1^- \\
2p_y + 2p_z & \rightarrow \pi_2^+ + \pi_2^- \\
\end{align*}
\]

Energetická posloupnost všech vzniklých MO je dána řadou

\[
\sigma_1^- < \sigma_1^+ < \sigma_2^- < \pi_1^+ = \pi_1^- < \pi_2^+ = \pi_2^- < \sigma_2^+ \quad \text{bez interakce s-p)}
\]

Jednoduchá geometrická představa umožňuje pochopit, že velikost překryvu obou orbitálů 2p_x a obou orbitálů 2p_y při vzájemném přiblížování atomů po osi z (viz obr. 5-14) je stejná. Ponecháme tedy AO stejného typu (kvantová čísla \(n = 2, l = 1\)), jsou výsledkem překryvu dvě dvojice energeticky rovnocenných, tedy degenerovaných orbitalů \(\pi_1^+, \pi_2^+\) a \(\pi_1^-, \pi_2^-\).

V seznamu připustných kombinací AO jsme ještě vynechali dvojice 2s + 2p_x a 2p_y + 2s (pořadí vyjadřujeme orbitaly levého a pravého atomu – obr. 5-14). Tato interakce orbitalů se u atomů s malou energetickou diferencí mezi orbitály 2s a 2p často projevuje změnu energetického pořadí vzniklých MO. Energetická posloupnost MO je v tomto případě dána řadou

\[
\sigma_1^- < \sigma_1^+ < \pi_1^+ = \pi_1^- < \pi_2^+ = \pi_2^- < \sigma_2^+ \quad \text{t interakci s-p)}
\]

Vyjádřením obou možných situací je dvojice diagramů MO na obr. 5-15. Je platná pro dvouatomové orbitály molekuly prvků od \(Z = 3\) až do \(Z = 10\). Použijeme ji k vykladu vazby v mole-

1) Hlavní kvantové číslo \(n\) se u MO obvykle nevyjadřuje.
kulách těchto prvků. Umístěním potřebných počtu elektronů do diagramu MO dostáváme obrazy vazebních poměrů v jednotlivých molekulách. Způsob rozložení elektronů do systému vnitřních AO i na MO molekule znázorňuje obr. 5-16.

![Diagram MO molekul různých homonukleárních molekul: a) bez interakce s-p, b) s interakcí s-p](image)

<table>
<thead>
<tr>
<th>energie vazby/eV</th>
<th>1.99</th>
<th>6.33</th>
<th>9.81</th>
<th>5.12</th>
<th>1.61</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>řád vazby</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>počet elektronů</td>
<td>6</td>
<td>8</td>
<td>18</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

![Diagram MO překryvu AO 2s 2p a 2s 2p. Objevuje vazbu v molekulách Li₂, B₂, C₂, N₂, O₂, F₂](image)

Z obr. 5-16 vyplývá, že molekuly Be₂ a Ne₂ neexistují, neboť by v nich byly vazebné a protivazebné příspěvky elektronových páří na jednotlivých MO vykompenzovány.

Naproti tomu molekula dusíku má řád vazby 3, neboť čtveřice vazebných orbitálů, plně obsazená osmi elektronů, je kompenzována jediným elektronovým párem na orbitalu protivazebném.

U molekuly B₂ a O₂ vidíme, že obsahují po dvou nepárových elektronech. Elektrony s nevykompenzovaným spinem jsou schopny silově interagovat s vnějším nehomogenním magnetickým
polem. Látky, které na všech svých atomech nebo jen na některých (na tzv. paramagnetických centech) mají nepárové elektrony, jsou vzhledem do nehomogenních magnetických polí měřitelnou silou. Říkáme o těchto látkách, že jsou paramagnetické.

Silný paramagnetismus svědčí prakticky vždy o přítomnosti nepárových elektronů. Dokladem oprávněnosti teorie MO-LCAO je zjištění, že právě párty boru a plyně kyslík vykazují na rozdíl od zbylých šesti zde uvedených prvků zřetelný paramagnetismus. Vysvětlení paramagnetismu kyslíku bylo také jedním z prvních úspěchů teorie MO (1929).

Z obr. 5-16 můžeme těž postřehnout, že systém MO u molekul prvků od Li až k N se vyznačuje interakcí s-p, která způsobuje záměnu energetického pořadí orbitalů π² a π1². U O₂ a F₂ již tomu tak není.

Každou z molekul na obr. 5-16 charakterizujeme ještě počtem vazeb σ, resp. π. Za vazbu σ, resp. π považujeme každé obsazené vazebného orbitalu σ⁰, resp. π⁰, které není kompenzováno.

<table>
<thead>
<tr>
<th>Vazba</th>
<th>Obr. 5-17. Vazby σ a π v jednoduchých molekulách prvků</th>
</tr>
</thead>
<tbody>
<tr>
<td>π₁</td>
<td>π₂</td>
</tr>
<tr>
<td>σ₁</td>
<td>σ₂</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Délka vazby/pm</th>
<th>112</th>
<th>121</th>
<th>126</th>
<th>149</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rozdíl vazby</td>
<td>2,5</td>
<td>2</td>
<td>1,5</td>
<td>1</td>
</tr>
<tr>
<td>Počet elektronů</td>
<td>15</td>
<td>15</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>Částice</td>
<td>0₂</td>
<td>0₂</td>
<td>0₂</td>
<td>0₂</td>
</tr>
</tbody>
</table>

Obr. 5-18. Diagram MO částice O₂⁺, O₂, O₂⁻ a O²⁻. Dolní část diagramu (orbitály 1s, 2s, σ² a σ²⁺) se obvykle neznázorňuje.

1) Látky, jejichž všechny atomy obsahují pouze elektronové dvojice s vykompensovaným spinem, jsou tzv. diamagnetické a jsou slabě využívány z nehomogenního magnetického pole.

93
umístění elektronového páru na korespondujícím protivázebném orbitalu σ^*, resp. π^*. Například u molekuly N_2 s řádem vazby 3 je možno hovořit o přítomnosti jedné vazby σ a dvou vazeb π.

\[
\begin{align*}
N_2: & \quad 1s^2 (1s)^2 (2s^2) (2p^2) (2p^2) (2p^2) (2p^2) \\
\text{AO AO kompen-} & \quad \pi_1 \quad \pi_2 \quad \sigma \\
\text{zují se} & \quad \text{vazba}
\end{align*}
\]

K popisu vazebních poměrů v molekulách lze použít zobrazení obsazených vazebních orbitalů. U molekuly dusiku a fluoru tak získáváme představy uvedené na obr. 5-17.

Bez rozsáhlejšího rozboru si uvedeme jako příklad k provádění řešení diagramů MO systém molekulových částic, které mohou vytvářet dva atomy kyslíku. Do diagramů zakreslíme 15 (O_2^+), 16 (O_3), 17 (O_2^*) a 18 (O_2^{2+}) elektronů. Získáme tak uspořádání uvedené na obr. 5-18.

Snadno z obrázku výčtuje, že čím více valenčních elektronů daný kyslíkový molekulový systém obsahuje (čím větší má negativní náboj), tím nižší je jeho řád vazby a větší délka vazby.

5.4 VAZBA V RŮZNODERIVÝCH DVOUATOMOVÝCH MOLEKULÁCH

Ponecháme obtížnější je určit vazebné poměry u dvouatomových různodivých (heteronukleárních) molekul. Ne vždy je na první pohled zřejmé, které AO se na tvorbě souboru MO podílejí. Zvláště obtížné se to stalo tehdy, když dané dva prvky nemají valenční elektrony v téže n-kvantové hladině. Pro sestavení diagramu MO je třeba znát (alespoň přibližně) energetické umístění původních AO. Nebudeme se proto učit konstruovat diagramy MO takovýchto molekul, ale pokusíme se porozumět jejich smyslu a uspořádání v jednoduchých případech.

- Vazba v hydridu litném LiH

Atomové Li a H mají v izolovaném stavu tuto elektronovou konfiguraci (valenční sféry obou atomů jsou vytištěny tučně):

\[
\begin{align*}
\text{Li:} & \quad 1s^2 2s^1 \\
\text{H:} & \quad 1s^1
\end{align*}
\]

Obr. 5.10. Diagram MO molekuly LiH. Poloha hladin 2s (Li) a 1s (H) je vyjádřena hodnotami ionizačních energií.
Při setkání obou atomů se tedy orbital 1s vodíku proniká s orbitálem 2s lithia. Energie orbitalu 1s vodíku je při tom menší než energie orbitálu 2s lithia. Jejich vzájemné postavení je dán o hodnotou ionizační energie atomu H (13,6 eV) a první ionizační energie atomu Li (5,4 eV). V prostoru představé je o jednoduchý překryv s=1, vyjádřený diagramem MO na obr. 5-19. Víděme, že elektrony s vykompenzovaným spinem na AO 2s(Li) a 1s(H) se přesunuly do MO o^6, vytvořily konfiguraci (e^2 o^6) a zprostředkovały tak vazbu mezi oběma atomy. Diagram MO je na rozdíl od diagramu MO molekuly H₂ resp. Li₂ apod. výrazně asymetricky v důsledku nestojně energetické úrovni orbitálů 2s(Li) a 1s(H). Energetická asimetrické systému překrývajících se AO se projevuje značnou polaritou až i iontovostí vzniklé vazby. Jej podrobně vysvětluje v odd. 5.5.

- Vazba ve fluorovodíku HF

Molekula HF je tvořena atomy H a F s těsným východiskovým elektronovým konfiguracemi:

H: 1s^1
F: 1s^2 2s^2 2p^5

Při interakci je nutno uvažit možnost překryvu (vůči vytížených) AO valenčních sfer obou atomů. Situaci při vzájemném přibližení atomů a možnosti překryvu ukazuje obr. 5-20.

![Diagram MO molekuly HF](image)

Obr. 5-21. Diagram MO molekuly HF

Při setkání atomů H a F dojde k práníku orbitalů 1s(H) a 2p_x(F). Tyto orbitály si jsou blízké i energeticky (viz ionizační energie). U molekuly HF je tedy realizován překryv orbitalů 1s a 2p_a, zvětšen MO o^6 a o^6.. Orbitály 2p_x, 2p_y, při tom formálně přecházejí na orbitály π_x a π_y, jsou nevazebné a k energetické bilanci při tvorbě molekuly nepřispívají. Jsou však obsazeny elektron, a proto jsou fyzikálně reálné. Říkáme, že zůstávají lokalizovanými (umístěny) na atomu F jako nevazebné elektronové páry. Není třeba zvlášť zdůrazňovat, že mimo to jsou na atomu F přítomny elektrony 2s jako nevazebný elektronový pár a vnitřní elektrony na orbitalu 1s^2.

Diagram MO molekuly HF je uveden na obr. 5-21. 1 pro něj je charakteristický rozdíl mezi energetickými hladinami překrývající se AO, projekované se velkou polaritu vazby. Z diagramu vyplývá, že řad vazby v molekule HF je 1. Vazba má charakter π a je realizována elektronovým párem na orbitalu o^6.

- Vazba v molekule CO a v izoelektronových částicích

Diagram MO této molekuly byl sestrojen na základě představy překryvu dvou systému orbitalů 2s a 2p, jak jsme jej poznali na obr. 5-14, a je analogický diagramům na obr. 5-15 a 5-16. Posvětluje jde o heteronukleární molekulu, je zřejmé, že energie atomových orbitalů obou atomů
tvůrcích molekul nebudou shodné, což se projeví asymetrii vzniklého diagramu MO. Diagram (s interakcí s-p) je znázorněn na obr. 5-22.

V molekule CO má atom C elektronovou konfiguraci 1s²2s²2p³, atom O konfiguraci 1s²2s²2p⁴. V jejich valenčních řádcích jsou čtyři (uhlík) a šest elektronů (kyslík). Do diagramu MO je tedy umístěno 10 valenčních elektronů. Zjistíme, že řád vazby v molekule CO je 3. Molekula má jednu vazbu σ a dvě vazby π. Asymetrie systému AO vyvolává polaritu vazby mezi oběma atomy. Tyto vazebné poměry jsou už na přítomnost polarity velmi podobné uspořádání molekuly N₂ (viz diagram na obr. 5-15). Molekula N₂ má totiž stejný počet elektronů jako molekula CO. Říkáme, že tyto dvě molekuly jsou *izoelektronové*. Podle tzv. *izoelektronového principu* musí tato větší molekuly podobný systém MO a stejný řád vazby, tedy i obdobný diagram MO. Proto se principiální uspořádání diagramu MO molekuly N₂ a CO nedrží a je navíc shodné s diagramy dalších izoelektronových útvarů, jako jsou ionty NO⁺ a CN⁻. Všechny tyto částice se všemi od sebe liší přesnými hodnotami energie výchozího stavu AO a tím i energiemi všech MO. Heteronukleární částice (CO, NO⁺ a CN⁻) vykazují při tom měřitelnou polaritu své vazby, molekula N₂ je nepolarizována.

5.5 POLARITA A IONTOVÝ CHARAKTER VAZBY

Na příkladu LiH a HF, CO i iontů NO⁺ a CN⁻ jsme ukázali, jak vypadají nejednoduší diagramy heteronukleárních dvouatomových molekul. U všech sloučenin jsme konstatovali, že orbitály obou atomů jsou energeticky neekvivalentní. Fyzikálními důsledky této skutečnosti se budeme zabývat níže.

- Obecné rysy vazby v heteronukleárních molekulách

Rozdíl mezi energiemi pokračujících se AO se závažným způsobem projevuje ve tvaru vznikajících MO. Oblasti maximální hustoty pravděpodobnosti výskytu elektronů všech MO jsou při svém vzniku z energeticky neekvivalentních AO umístěny mezi dva atomy nesymetricky (obr. 5-22). Je důležité si zapamatovat, že všechny vazebné orbitály (na obr. 5-22 jsou uvedeny jako příklad σ₁sigma, σ₂sigma, σ²sigma a π₂p) se prostoru postupují (zvětšují) směrem k atomu s nižší energetickou hladinou původního AO (tzv. elektronegativnímu atomu). Naproti tomu protivazebné orbitály

Izoelektronové částice lze vyhledat v souboru řetězenců homonukleárních molekul z minulého odstavce. Izoelektronové jsou např. H₂, He₂, F₂ a O₂⁺, N₂ a O₂⁺ atd.

96
(σ₁, σ₂, π₁ a π₂) jsou umístěny (lokalizovány) blíže směrem k atomu s vyšší energií svého AO (atomu menší elektronegativitu). Takovéto posun ovšem znamená, že elektrony ve vazebných orbitalech, zprostředkovávající vznik chemické vazby, setrvávají spíše v oblasti atomu, který měl své původní AO na nižší energetické hladině. Tento atom se jeví zaporně nabitý. Druhý atom je „zbaven“ jistého procenta svého elektronového obalu a převládá na něm kladný náboj jeho jádra.

- **Kovalentnost a iontovost vazby**

Buďme se nyní zabývat hypotetickou dvouatomovou molekulou, jejíž atomy mají možnost vytvořit a postupně zvětšovat energetický odstup mezi AO, překrývajícími se za vzniku vazby. Tento příklad nám popisuje obr. 5-24. Vidíme na něm čtyři diagramy MO platné pro postupně se zvětšující energetickou diferenci ΔE AO interagujících AO.

![Diagram MO a AO](image-url)

Obr. 5-24. Schematické znázornění rostoucí polarity vazby dvouatomové molekuly s vazbou σ
Maximálnímu překryvu a čistě kvantově mechanické podstatě vazebných sil (tj. kovalentnosti vazby) odpovídá situace, kdy \(\Delta E_{	ext{MO}} \) je rovno nule (případ a). S rostoucí hodnotou \(\Delta E_{	ext{MO}} \) (případ b a c) se zmenšuje energeticky rozdíl (označený \(\Delta E_{	ext{MO}} \)) mezi vazebným orbitalem MO a energeticky nižším AO. Obdobně klesá i rozdíl energii \(\Delta E_{	ext{MO}} \) mezi orbitálem MO* a energeticky vysším AO. Zatímco vzrůst hodnoty \(\Delta E_{	ext{MO}} \) vyjadřuje narůstající iontovost vazby, pokles hodnoty součtu \(\Delta E_{	ext{MO}} + \Delta E_{	ext{AO}} \) odpovídá poklesu jejího kovalentního charakteru. V méněm případě (případ d) jsou \(\Delta E_{	ext{MO}} \) i \(\Delta E_{	ext{AO}} \) rovny nule. \(\Delta E_{	ext{MO}} \) dosahuje maximální hodnoty, orbitál MO* slouží k plněmu převodu elektronu na electronegativnější (pravý) atom a je na něm plně lokalizován. Protivazebný orbitál MO* zůstává umístěn na menším electronegativním atomu. Překryv je nulový, vazba má nulovou kovalentnost, je čistě iontová. Prostorová představa lokalizace MO a MO* při vzrůstající iontovosti je pro případ vazby v znázorněná v dolní části obr. S-24.

Zajímavé je zjišťení, že reálné molekuly se zcela běžně vyjadřují vazbou, kterou jsme pozorovali u naší pomyslné molekuly v případech a, b a c. Nikdy však není realizován případ d, tj. plně iontová vazba. Lokalizace orbitálu MO* na jednom ze dvou atomů není nikdy úplná, a proto i u nejiontovějších vazeb nacházíme určitý podíl kvantově mechanických interakčních sil, tj. jistý podíl kovalentnosti.

- **Elektronegativita**

Velmičnou, jejíž bilancování může být využito ke stanovení podílu iontovosti a kovalentnosti v konkrétní chemické vazbě, je elektronegativita prvků. Pojem elektronegativity zavedl do teoretické chemie Pauling.

Elektronegativita prvku je empiricky nalezené číslo vyjadřující schopnost atomu prvku přitažovat vazebné elektrony kovalentní vazby.

Paulingova metoda určování elektronegativit prvků vychází z experimentálně změněných disociálních energií vazeb.1) Označme energii vazeb v dvouatomových molekulech AA, BB a AB (např. H₂, Cl₂ a HCl) symbyly \(D_{AA} \), \(D_{BB} \) a \(D_{AB} \). Srovnáme-li experimentálně nalezené hodnoty energie vazeb \(D_{ab} \) s geometrickým průměrem experimentálních hodnot energie čistě kovalentních homonukleárních vazeb \(\sqrt{D_{AA}D_{BB}} \), zjistíme, že energie \(D_{AB} \) je vždy poměrně větší než tento geometrický průměr. Rozdíl \(\Delta D \) daný vztahem

\[
\Delta D = D_{AB} - \sqrt{D_{AA}D_{BB}}
\]

vyjadřuje rozdíl mezi experimentálně hodnotou energie vazby v molekule AB a energii, kterou by tato vazba měla, kdyby v ní přestaly působit elektrostatické iontové interakční síly (tj. kdyby ve vazbě zůstaly zachovány pouze síly kovalentní). Hodnota \(\Delta D \) je současně i mírou rozdílu ve schopnosti atomů A a B přitažovat vazebné elektrony.

Veličina \(\Delta D \) nemá aditivní vlastnosti, avšak \(\sqrt{\Delta D} \) je již má. Proto platí empiricky vztah

\[
X_A - X_B = 0.21 \sqrt{\Delta D}
\]

kde \(X_A \) a \(X_B \) jsou tzv. elektronegativity atomů A a B a \(\Delta D \) je experimentálně zjištěná hodnota rozdílu energií, vyjadřená v elektronvoltech.1)

Je třeba upozornit, že tato korelace není přesná a má vyslovenou jen orientační charakter. Stěžejnou výhradou ovšem lze mít k celé koncepci pojmu elektronegativity. Snaha vyjádřit složitou strukturu chemické vazby, její kvalitativní mechanický i elektrostatický charakter, čišťíhradnou hodnotu je zaplacená neúplnosti a jen přibližnou platností výsledků, ještě se tak získávají. Přesto je

1) Jinou metodou měření elektronegativity prvků navrhl Mulliken. Vychází z hodnot experimentálně zjištěných ionizačních energií a elektronových afinit atomů.
2) Elektronegativita má tedy rozměr eV^{1/2}.
Tabulka 5-4. Hodnoty elektronegativity atomů prvků v jejich nejvyšších oxidačních stavech

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>C</th>
<th>N</th>
<th>O</th>
<th>F</th>
<th>Ne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>2.0</td>
<td>2.6</td>
<td>3.0</td>
<td>3.5</td>
<td>3.9</td>
<td>4.0</td>
</tr>
<tr>
<td>Na</td>
<td>1.5</td>
<td>1.9</td>
<td>2.1</td>
<td>2.6</td>
<td>3.1</td>
<td>2.9</td>
</tr>
<tr>
<td>K</td>
<td>1.0</td>
<td>1.3</td>
<td>1.6</td>
<td>1.9</td>
<td>1.8</td>
<td>1.6</td>
</tr>
<tr>
<td>Rb</td>
<td>0.8</td>
<td>1.0</td>
<td>1.5</td>
<td>1.7</td>
<td>2.1</td>
<td>2.3</td>
</tr>
<tr>
<td>Cs</td>
<td>0.75</td>
<td>0.9</td>
<td>1.2</td>
<td>1.4</td>
<td>2.0</td>
<td>2.2</td>
</tr>
<tr>
<td>Fr</td>
<td>0.7</td>
<td>0.9</td>
<td>1.1</td>
<td>1.4</td>
<td>1.7</td>
<td>1.9</td>
</tr>
</tbody>
</table>

He 4.5
pojem elektronegativity užitečný, neboť dobře slouží k nejkrupšímu odhadu kvality chemické vazby i k hledání nejednodušších korelací mezi vlastnostmi a složením sloučeniny. Kombinaci s dalšími představami (jako je představa o vlivu oxidačních čísel, o vlivu směšování AO aj.) bře tuho koncept dokonce rozšiřovat a poněkud i zpřesňovat. V tab. 5-4 je formou periodického systému (str. 157) podán přehled elektronegativit všech prvků v jejich nejvyšších oxidačních stavech (str. 161).

Je vidět, že stupnice elektronegativity začíná francièem (0,7) a nepřílišně-li k vzácným plynům, končí fluorem (3,9). Velmi elektronegativní jsou kyslík (3,5), chlor (3,1) a dusík (3,0). Vodík a kovy uprostřed tabulky mají hodnotu elektronegativity kolem 2,0. Místo ušlechtilé kovy z levé části tabulky mají hodnotu elektronegativity přibližně 1,5 nebo menší.

Ze vztahu (5-7) po experimentálním určení ΔD nelze stanovit přesné hodnoty X_A a X_B, nýbrž pouze jejich rozdíl, X_A - X_B. Učiníme-li tak pro soubor binárních sloučenin iz

většího počtu prvků, získáme údaje o elektronegativitě všech těchto prvků. Aby se mohly prvky přisoudit konkrétní hodnoty elektronegativity, stačí potom už jen smluvně definovat určitý základ, tj. zvolit hodnotu elektronegativity některého prvku. Pauling volil za základ hodnotu nejelektron

egativnějšího prvku fluoru X_F = 4. Později vedly zpětų se prapočty celého souboru elektronén
egativit prvků k volbě hodnot X_F = 3,9.

Sousednictvím iontového charakteru kovalentní vazby např. A—B s rozdílem elektronegativit atomů prvků A a B vyjádřil Pauling empirickým vztahem

\[i = 1 - \exp \left[-0,21 \left(X_A - X_B \right) \right] \]

(5-8)

kde i je zlomek iontovosti nabývající hodnotu od 0 až do 1. Číslo i po vynásobení stere udává iontovost vazby vyjádřenou v procentech:

\[I = 100i \]

(5-9)

Na základě obdobných vztahů lze zjišťovat iontovost vazeb i v polyatomických molekulách.

Závislost zlomku iontovosti vazby na rozdílu elektronegativit ukazuje obr. 5-25.

![Obr. 5-25. Závislost zlomku iontovosti vazby na rozdílu elektronegativit](image)

Uvedeme si dva jednoduché příklady pro odhad iontovosti sloučenin.

1. Úkolem je určit iontovost vazby v NaCl.

V tab. 5-4 najdeme X_M = 0,9, X_O = 3,1. Rozdíl obou hodnot X_O - X_M = 2,2. Odečtením z grafu na obr. 5-25 nacházíme i = 0,64 \% (iontovost vazby NaCl je 64 \%).

2. Úkolem je určit iontovost chlorovodíku.

V tab. 5-4 najdeme X_H = 2,15, X_Cl = 3,1, takže platí X_O - X_M = 0,95, tj. i = 0,18 \% (iontovost 18 \%).

HCl je kovalentní, avšak dosti polární sloučenina.

1) Binární sloučenina je sloučenina tvoréná dvěma prvky.

2) Uspořádání iontů do mřížky a jejich vzájemná koordinace podstatně ovlivňuje iontovost vazby. Nalezený údaj iontovosti NaCl vyjadřuje iontovost vazby v izolované dvojici iontů Na⁺ a Cl⁻.
5.6 HYBRIDIZACE ATOMOVÝCH ORBITÁLŮ

Teorie MO se svou představou překryvání lineární kombinace AO je až dosud nejúspěšnějším teoretickým přístupem použitým k výkladu chemické vazby. Její teoretický aparát byl natolik propracován, že slouží např. k výkladu reaktivity molekul, k objasnění mechanismů katalyzovaných i nekatalyzovaných reakcí atd.

Aplikace teorie MO na popis vazby ve složitějších sloučeninách má ovšem formálně matematickou stránku často znázorňovat a je dobře přístupná pouze pracovníkům specializovaným v této oblasti. Ani forma, jakou teorie MO popisuje některá nalezená řešení, nepatří mezi nejméně znázorněná. Se znázorněním obtížími se teorie MO propracovává k jednoduchému výkladu geometrické konfigurace molekul.

Proto se dnes do teorie MO velmi často vkládá představa hybridizace (mišení, křížení) AO.

Teorie hybridizace se původně vyvíjela paralelně s koncepty dnes již opuštěné teorie valenční růžby a do jisté míry byla její součástí. Nyní se teorie hybridizace využívá jednak formálně pro zvýšení názornosti výkladu v rámci teorie MO, jednak jako pracovní metody, které nachází v oblasti teorie MO závažné použití.

Teorie hybridizace umožňuje jednoduše vysvětlovat prostorové uspořádání atomů ve víceatomových molekulách. Názorně objasňuje i případy, kdy se v molekule vyskytuje několik vazeb, které jsou prokazatelně energeticky i geometricky rovnocenné, avšak geometrie AO atomů, jež vytvářejí molekulu, nedovoluje vysvětlit vznik těchto vazeb jednoduchým překryvem AO.

- **Směšování AO**

Představa hybridizace AO vychází z ověřené platnosti principu superpozice stavů (viz odd. 5.1), podle něhož lineární kombinace AO nalezených řešením Schrödingerovy rovnice jsou pro umístění elektronů právě tak vhodnými orbitály, jako byly původní AO.

Tak např. dvouještěříctý atomu, dejme tomu orbital 2s a orbital 2p, se může směšovat tak, že vlnové funkce \(\Psi_s \) a \(\Psi_p \) nových hybridizovaných AO (budeme je označovat HAO) jsou dány rovniciemi

\[
\Psi_s = \lambda \Psi(2s) - \Psi(2p), \\
\Psi_p = \Psi(2s) + \lambda \Psi(2p),
\]

kde \(\lambda \) je koeficient vyjadřující relativní zastoupení původních AO v nově vytvořených HAO. Hodnoty \(\lambda \) se pohybují v intervalu \((0, 1)\). Při \(\lambda = 0 \) hybridizace nenastává, při \(\lambda = 1 \) je naprostá úplná a vede ke vzniku dvou energeticky ekvivalentních, a tedy degenerovaných HAO. Oba degenerované HAO mají stejný tvar a lze se od sebe jen orientovat v prostoru. Proces postupného směšování AO 2s a 2pₚ, vedoucí k následnému vzniku tří nových HAO, je znázorněn na obr. 5.26. Úplné směšení \(\lambda = 1 \) původních orbitálů 2s a 2pₚ, vede ke vzniku dvou tvarově i energeticky shodných HAO, sp a spₚ, orientovaných v kladném a záporném směru osy z. Pozoruhodné také je, jak se v oblasti hybridizování \(\lambda \) splývajících podmínek \(0 < \lambda < 1 \) (např. \(\lambda = \frac{1}{2} \)) sblíží nejen energie, ale i tvary směšovaných orbitálů.

Zcela obtížné platí, že proces úplného směšení tří hybridizace znázornujeme symbolem tvořeným velkými původními stavami SP a jednotlivé vzniklé HAO označujeme tím symbolem tvořeným malými původními symboly sp a spₚ; částečná i závorky obvykle vynecháváme.

Proces směšování AO je všeobecný jev, který se může týkat i větších skupin AO. Při tom vždy

1) Teorie valenční vazby a výkladem jejího myšlenkového aparátu se zde nebudeme zabývat.
2) Tato dohoda je však v literatuře velmi často porušována.
a zcela bez výjimek platí, že vzniká tělo HAO, kolik AO se hybridizace zúčastnilo. Hybridizující AO musí splňovat pouze dvě podmínky:
1. jejich energie nesmí být příliš rozdílná,
2. musí mít vhodnou symetrii.

První podmínka obvykle bývá splněna, pokud hybridizující AO pochází z téže n-kvantové sféry (např. skupina 3s, 3p) nebo se sice v hlavním kvantovém čísle o jedinici liší, ale leží v oblasti energetického pronikání dvou kvantových sfér atomu (např. skupina 4s, 3d)\(^1\).

\[
\begin{array}{c}
\text{AO} \\
\text{sp} \\
\text{sp} \\
\text{AO} \\
\text{HAO} \\
\text{e} \\
\text{2s} \\
\text{2p} \\
\text{2s} \\
\text{2p} \\
\text{2p} \\
\end{array}
\]

\[\lambda = 0, \quad \lambda = \frac{1}{2}, \quad \lambda = 1\]

Obr. 5-26. Změna energie a prostorového uspoudání orbitalů s a p, při jejich směšování

Druhá z podmínek má složitější podstatu, a tedy i výklad, který leží mimo myšlenkový aparát, který jsem až dosud rozvinul. Někdy je proto rozeznat se a seznámit se s některými příklady hybridizací, která z uplatnění této podmínky vyplývá.

Formálním matematickým popisem těchto hybridizací – analogiemi vztahů (5-10) – se zabývá někdo.

Na obr. 5-27 je znovu znázorněna již uváděná "hybridizace SP". Tvar obou HAO je vyznačen vpravo nahoře (jeden z dvojice HAO je zakreslen plně, druhý čárováně). V dolní části obrázku je vedle energetického schématu dvojici šipek vyznačení orientace nejobjemnějších částí obou vzniklých HAO. Tím jsou vyjádřeny směry, ve kterých budou oba HAO nejméně vytvářet vazby σ.

\[
\begin{array}{c}
\text{sp} \\
\text{sp} \\
\end{array}
\]

\[
\begin{array}{c}
\text{SP} \\
\text{SP} \\
\end{array}
\]

Obr. 5-27. Hybridizace orbitalů s a p (SP)

\(^1\) Viz odd. 4.5 a obr. 4-12.
překryvem s jinými vhodnými AO nebo HAO ostatních atomů. Je zřejmé, že hybridizace SP vytváří podmínky ke vzniku lineárního uspořádání dvojice vazeb σ.

Obrázek 5-28 zcela analogickým způsobem znázorňuje hybridizaci SP². Tímto symbolem se vyjadřuje smíšení jednoho orbitalu s a dvou orbitalů p (jinovitě pₓ a pᵧ). Vidíme, že vznikají tři degenerované HAO (jeden je zakreslen plně, ostatní dva čárkovány) a jsou vytvářeny podmínky pro vznik tři vazeb σ ležících v jedné rovině a svršajících spolu úhel 120°.

Obr. 5-28. Hybridizace orbitalů s, pₓ a pᵧ (SP²)

Obr. 5-29. Hybridizace orbitalů s, pₓ, pᵧ a pₓ (SP³)

Hybridizace SP³ je znázorněna na obr. 5-29. Čtyři AO (s, pₓ, pᵧ, pₓ) jsou transformovány na čtyři degenerované HAO (jeden je zakreslen plnou čárkou, ostatní čárkovány), které od jádra atomu směřují svými „lásky“ do vrcholků geometrického útvaru zvaného čtyřúhelník tetraeder (lze jej velmi jednoduše odvodit z tvaru krychle).

Pro úplnost ještě uvedeme, že v jistých situacích předpokládáme i možnost smíšení dvou orbitalů s (o různém n), které vede ke vzniku dvojice HAO podobných svou symetrii orbitalu typu s
<table>
<thead>
<tr>
<th>Hybridizace</th>
<th>Účast AO</th>
<th>Energetické schéma</th>
<th>Směry vývinu HAO</th>
<th>Název geometrie</th>
<th>Počet HAO</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD²</td>
<td>n (d_{xy}, d_{xz}, d_{yz})</td>
<td>(d^n)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>n s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D³S</td>
<td>n s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>((n-1)d_{xy}, d_{xz}, d_{yz})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP³D</td>
<td>n (d_{x^2-y^2})</td>
<td>(sp^6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n (p_x, p_y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSP²</td>
<td>n (p_x, p_y)</td>
<td>(d_{xy}, d_{xz}, d_{yz})</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>n s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>((n-1)d_{xy}, d_{xz}, d_{yz})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sp³D²</td>
<td>n (d_{x^2})</td>
<td>(sp^{6}(a))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n (p_x, p_y, p_z)</td>
<td>(sp^{6}(e))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D²Sp³</td>
<td>n (p_x, p_y, p_z)</td>
<td>(d_{xy}, d_{xz}, d_{yz})</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>n s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>((n-1)d_{xy}, d_{xz}, d_{yz})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP³D²-y²</td>
<td>n (d_{x^2-y^2})</td>
<td>(sp^{6}(a))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n (p_x, p_y, p_z)</td>
<td>(sp^{6}(e))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D²y²-y²Sp³</td>
<td>n (p_x, p_y, p_z)</td>
<td>(d_{xy}, d_{xz}, d_{yz})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>((n-1)d_{xy}, d_{xz}, d_{yz})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sp³p²</td>
<td>n (d_{xy}, d_{xz}, d_{yz})</td>
<td>(sp^{6})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n (p_x, p_y, p_z)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D²Sp³</td>
<td>n (p_x, p_y, p_z)</td>
<td>(d_{xy}, d_{xz}, d_{yz})</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>n s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>((n-1)d_{xy}, d_{xz}, d_{yz})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabuľka 5.5. Hybridizace s účastí orbitalů d
(hybridizace S), i možnost vzájemného mišení dvou orbitálů p (o stejném n) za vzniku dvou HAO, jejichž symetrie spolu svirají užel 90° (hybridizace P). Apod.

V původu vazby ve sloučeninách velké skupiny prvků má výraznou úlohu překryv orbitálů d. Nejčastěji si lze představít, že dochází k překryvu HAO, na jejichž vzniku se podílely orbitály typu d. Za účasti orbitálov d se vážou atomy prvků, které mají orbitály d částečně zaplněné elektrony (přechodné kovy) nebo mají částečně zaplněné orbitály p ležící energeticky dostatečně blízko neobsazených orbitálov d (prvky skupin B). Pět nejdloužitějších typů hybridizace s účasti orbitálů d ukazuje tab. 5-5. Vznikl HAO v ní nejsem zobrazen. Je pouze šipkami znázorněn směr jejich maximálních prostorových vývinutí a jsou zakresleny a pojmoveny geometrické tvary, které lze systému HAO přidržovat. V tabulce jsou pro označení každého typu hybridizace užity dva symbole, lišící se od sebe pořadím písmen (D2S a D3, DSP2 a SP3D atd.). Tímto způsobem lze vědět, která AO se směšovává účastnici. Zachovává-li pořadí symbolů S, P, D, ... (podle rostoucího vedeč- šeho kvantového čísla $l = 0, 1, 2, ...$), ukazuje nám, že všechny hybridizující AO mají totiž hlavní kvantové číslo (např. 4s $+ 4p_x + 4p_y + 4p_z = SP^2D$). Zněníme-li tuto pořadí, pak orbitál, který se v symbolu hybridizace objevuje dříve, než odpovídá jeho vedečejšímu kvantovému číslu, je AO s hlavním kvantovým číslem o jednotkou menším (např. 3d$_{x^2-y^2} + 4s + 4p_x + 4p_y = DSP^2$). Energeticky schémata procesu hybridizace uvedené ve středním sloupci tabulky znázorňují vždy obě možné cesty vzniku hybridizovaných orbitálů.

V tab. 5-5 si povšimněme především toho, že na rozdíl od hybridizací SD^2, SP^3D, jež vedou ke vzniku čtyř a hybridizací SP^3 ke vzniku šesti zcela energeticky ekvivalentních HAO, jsou HAO vzniklé hybridizací v systému bei AO, tj. SP^2D ($SP^2D_{x^2}$ a $SP^2D_{x^2-y^2}$), částečně neekvivalenční. Prostorové vývinutí HAO (znázorněné v pravém sloupci tab. 5-5) formálně objasňuje příčinu tohoto jevu. Vznikl tři eukatorialní (equator — rovník) a dva axiální (axis — osa) HAO při hybridizaci $SP^2D_{x^2}$, právě tak jako čtyř základové HAO a jeden vrcholový HAO u hybridizace $SP^2D_{x^2-y^2}$, nejsou rovnohmocenné z hlediska geometrického. V důsledku toho není v životních výchozech AO na tvar, a tedy ani na energi vznikajících HAO stejný. HAO vzniklé hybridizací SP^2D nejsou proto degenerovány 3krát; část jejich degenerace je, jak říkáme, sejmuta za vzniku 3krát a 4krát ($SP^2D_{x^2}$, resp. 4krát a 5krát ($SP^2D_{x^2-y^2}$) degenerovaných souborů HAO.

Představy hybridizace AO nyní vyújeme k názornému výkladu vazby v některých víceatomových molekulách.

- Závaž v molekule hydridu beryllnatého BeH_2

Atom Be v základním stavu vytváří svou elektronovou konfiguraci $1s^2 2s^2$ zdánlivě podmínky k překryvu dvojice orbitálů $2p^4$ s orbitály $1s^4$ vodíku, jak je uvedeno na obr. 5-30. Vazby $Be—H$ by spolu měly svrát pravý úhel, měly by být jednoelektronové a molekula BeH_2 by měla být magnetická (v důsledku přítomnosti dvou nepárových elektronů).

Nic takového však nepozorujeme. Molekula BeH_2 v přeměněném stavu má lícnění uspořádání $H—Be—H$ a je diamagnetická, neboť všechny její elektrony jsou spárovány. Představujeme si proto, že na atomu berylia dochází k hybridizaci SP (mísí se orbitály $2s$ a $2p$). Tím je vytvořen předpoklad k lineárním uspořádáním vazeb i k tomu, aby tyto vazby byly obsazeny vždy jedním elektronovým párem. Vznikající překryv i příslušný diagram MO jsou znázorněny na obr. 5-31.

Můžeme formálně předpokládat, že atom Be přechází při tvorbě molekuly BeH_2 po dodání tzv. promoci energie (energie potřebné k rozpárování obou elektronů na orbitálu 2s a k jejich
vynesení na dvakrát degenerovanou hladinu orbitalů sp) do tzv. vazebného stavu, v němž již může vytvořit dvě rovnovážné vazby s oběma atomy vodíku. Dva elektronové páry na orbitálech σ^w

vytvářejí dvojici vazeb typu σ s řadou 1. Orbitaly 2p_x a 2p_y lokalizované na atome Be, zůstávají příznácné. Zaplněný vnitřní orbital 1s^2 atomu Be není v diagramu MO znázorněn.

Obr. 5.30. Zdánlivá možnosti překryvu AO Be a H při vzniku molekuly BeH_2

\[E = 0 \]

Obr. 5.31. Překryv orbitalů sp(Be) a 1s(H) v molekule BeH_2 a její diagram MO

- Vazba v molekule fluoridu boritěho BF₃

Také v této molekule při názorném vykládání její vazby předpokládáme, že dochází k hybridizaci původních AO boru. Hybridizují orbitaly 2s + 2p_x + 2p_y (hybridizace SP²). Tři vzniklé orbitály sp² se překrývají s orbitaly 2p_z tří atomů fluoru. Na obr. 5.32 je tento překryv znázorněn spolu s příslušným zjednodušeným diagramem MO. Současně je na obrázku ukázána zvolená orientace souřadných os.

Molekula je rovinní, orbitál 2p_z atomu boru, kolný k rovině molekuly, se na tvorbě vazby σ nepodílí. Vnitřní orbitaly atomů B a F nejsou v diagramu znázorněny.

- Vazba v molekule methanu CH₄

Molekula CH₄ je typickým příkladem uskupení atomů s hybridizací SP³ na středovém atomu. Hybridizované orbitály sp³ sněží z atomu uhličitu do vrcholků pravidelného tetraédru a svírají

1) Zapouje se však do tvorby delokalizované vazby σ, obdobné vazeb v butadienu [str. 109]. Úplný popis vazebních interakcí v molekule BF₃ uváděme v systematické části při výkladu chemie boru (str. 401).

106
spolu úžaly 109,5°. „Lałoky“ hybridizovaných orbitalů atomů C se překrývají s orbitaly 1s atomů H. Molekula má tvar tetraedru. Její čtyři vazby σ jsou geometricky i energeticky naprosto rovnocenné, mají řad 1, a čtyři orbitály ωp1, jsou obsazeny osmi elektrony. Překryv v molekule a jemu odpovídající jednoduchý diagram MO je ukázán na obr. 5-33. Vnitřní AO 1s2 atomu C není v diagramu MO značen.

Obr. 5-32. Schematické znázornění jednoduché představy překryvu v molekule BF3, volba souřadného systému a diagram MO molekuly BF3

Obr. 5-33. Překryv v molekule CH4 a její diagram MO

- Vazba v molekule etanu CH3CH3

Hybridizace na obou atomech uhličí je SP2 a vede k tetraedrickému uspořádání všech čtyř vazeb σ vycházejících z každého z atomů uhličí. Každý uhlik je zcela obdobně jako u methanu obklopen čtyřmi atomy, avšak nyní to jsou vždy tři atomy H a jeden atom C. V molekule tak vzniká šest vazeb C—H typu σ a jedna vazba C—C typu σ. Geometricky si lze molekulu etanu
představit jako dvojici tetraédru spojených vrcholkem (obr. 5-34). Ve vazebných orbitalech těchto sedmi vazeb (šestkrát \(\sigma_{sp^3} \), jednou \(\sigma_{pp} \)) je umístěno celkem čtrnáct elektronů, které pocházejí z valenčních sфер obou atomů C (dvakrát 4 elektrony) a z šesti atomů H (šestkrát 1 elektron). Žádný protivazebný orbital není obsazen. Všechny vazby mají řad 1.

Obr. 5-34. Vazba v molekule etanu

\[E = 0 \]

Obr. 5-35. Molekulu ethylenu. a) vazebný systém \(\sigma \); b) vazebný systém \(\pi \); c) diagram MO znázorňující interakci \(\pi \) v molekule

- **Vazba v molekule etanu (ethylenu) \(C_2H_4 \)**

Oba v molekule přítomné atomy uhličit mají hybridizaci \(SP^2 \), přičemž jejich orbitaly \(2p \), zůstávají nesnížené. Molekula jako celek je planární. Na každém atomu uhlíku je dvojice vazeb C—H, zprostředkováných obsazenými vazebnými orbitály \(\sigma_{sp^3} \). Jediná vazba \(\sigma \), podmíněná existencí obsazeného orbitalu \(\sigma_{sp^3} \), spojující atomy uhlíku. Uvedená skupina pěti vazeb \(\sigma \) vytváří tzv. vazebný systém \(\sigma \) molekuly ethylenu (obr. 5-35a).

Zbylé dva orbitály \(2p \), atomů uhlíku se překrývají za vazby \(\pi \) (obr. 5-35b), jejichž diagram MO je rovněž uveden na obr. 5-35.

Z dvanácti elektronů pocházejících z valenčních sфер atomů tvořících molekulu (dvakrát čtyři elektrony ze dvou atomů C a čtyři elektron ze čtyř atomů H) je deset unifikovano

\[\text{Obr. 5-35a.} \]

\[\text{Obr. 5-35b.} \]

\[\text{Obr. 5-35c.} \]

1) Oba \(z \) je volena na obou atomech C v poloze kolmé na rovinu cele molekuly (viz obr. 5-35).
v pěti vazebných orbitalech vazeb σ a dva v orbitalu πₜ vazby π. Řád vazeb C—H je 1. Řád vazby C=C je 2 (vazba σ + π) a délka vazby je proto podstatně menší (135 pm) než délka vazby C—C v etanu (154 pm).

- **Vazba v molekule etinu (acetylenu) C₂H₂**

Všechny čtyři atomy molekuly leží na přímoči. Obě atomy uhliku mají hybridizaci SP. Systém vazeb σ je vyznačen na obr. 5-36a, a je tedy lineární. Obhajuje jednu vazbu C—C typu σ, jež je podmíněna existencí obsazeného orbitalu σ₂ₚₓₓ, a dvojice vazeb C—H typu σ tvorících orbitály σ₁ₚₓ. Nehybridizované orbitály 2pₓ a 2pᵧ na obou atomech uhliku se překrývají za tvorby dvojice vazeb typu π (obr. 5-36b). Řád vazby atomů uhliku je tedy 3 a délka vazby je velmi malá (121 pm). Diagram MO vazebného systému π molekuly je třetí částí obr. 5-36.

- **Vazba v molekule 1,3-butadienu CH₂=CH—CH=CH₂**

Molekula je planární, všechny její atomy leží v jedné rovině. Topologii (místopis) její struktury vyjadřuje dva vzorce na obr. 5-37. Obě formy molekul 1,3-butadienu skutečně existují. Takzvaná forma trans je stálá při vyšších, forma cis při nižších teplotách. Vazbu v těchto molekulách lze popsat shodným způsobem. Budeme
proto dále věnoval pozornost pouze formě *trans*. Skutečnost, že všechny úhly vazeb v molekulě se blíží 120°, svědčí o hybridizaci *sp*² na atomech uhlič. Překryvem HAO *sp*² atomů C s orbitály *s* atomů H vznikají vazby C—H typu σ, překryv *sp*²—*sp*² tvoří vazby mezi uhlič. Systém vazeb σ molekul *trans*-1,3-butadienu ukazuje obr. 5-38a. Je tvořen šesti vazbami C—H a třemi vazbami C—C a je obsazen 18 elektronů. Zbylé čtyři vazebné elektrony jsou umístěny do systému vazeb π (molekula obsahuje celkem 22 vazebných elektronů). Vazbu π v molekule 1,3-butadienu je tvořena překryvem čtyř orbitálů 2π, které zůstaly nehybridizovány na všech čtyřech atomech uhlič (obr. 5-38b). Čtyři AO se spolu překrývají za vzniku čtyř MO, z nichž dva mají vazebný a dva protivazebný charakter. Poprvé se tak setkáváme s typem vazby odlišným od všech předcházejících.

Vazba π v molekule 1,3-butadienu není lokalizována mezi dva zcela určité atomy, nýbrž rozprostřena po řetězci čtyř atomů. Říkáme, že je delokalizovaná. Delokalizace vazby se projevuje tím, že všechny tři vazby C—C v molekulě jsou prakticky stejně důležité (obr. 5-38b). Energie MO 1,3-butadienu lze získat lineární kombinací vlnových funkcí původních AO 2π. Poněvadž jsou nezávaznými pravidly symetrie, která ovlivňuje vytváření lineárních kombinací ve většině počtu AO, představíme si zjednodušeně, že molekula butadienu vzniká splýváním dvou molekul ethylenu (za eliminaci molekuly H₂). Lineární kombinace MO π⁺ a π⁻ obou molekul ethylenu vytvoří diagram MO vazebné interakce π 1,3-butadienu, jak je uvádí obr. 5-38.

Přítomnost delokalizované vazby typu π předpokládáme u řady látek, např. takových, které mají systém tzv. konjugovaných dvojných vazeb.

Obr. 5-38. Molekula *trans*-1,3-butadienu. a) Vazebný systém σ; b) vazebný systém π; c) diagram MO vazebné interakce π

110
Vazba v molekule fluoridu sírového SF₆

Molekula má tvar oktaedru, v jehož stínu je atom síry. Izolovaný atom síry má elektronovou konfiguraci 1s² 2s² 2p⁶ 3s² 3p⁶. Jeho valenční sféra je tvořena závěry zapažené třetí kvantovou sférou, ve které jsou (elektrony neobsazené) orbitály 3d. Lze tedy předpokládat hybridizaci SP³D, vytvářející šestici HAO směřujících do vrcholů pravidelného oktaedru. Překryvem s orbitály 2p, fluoru vzniká molekula SF₆ s šesti vazbami σ, jež znázorňuje obr. 5-39 spolu s diagramem MO molekuly.

Obr. 5-39. Překryv v molekule SF₆, s její diagram MO

5.7 TVAR MOLEKULE SLOUČENIN NEPŘECHODNÝCH PRVKŮ

Vyšetřit teoretickým výpočtem geometrické rozložení jader atomů určité víceatomové molekuly na základě přístupu MO-LCAO je velmi náročný úkol, ve složitých případech dosud většinou neefektivní ani s použitím počítačové techniky.

Při názorném zjednodušeném objasňování tvaru molekuly nepomáhá ani představa hybridizace. U neznámé molekuly, nemáme-li rozsáhlé chemické zkušenosti, jen s obdivem odhadujeme typ hybridizace středového atomu, a tím i celkovou konfiguraci molekuly. Běžný je naopak obrácený postup, kdy se na základě experimentálně prokázané konfigurace molekuly navrhuje „vhodný“ typ hybridizace a překrývky, které vytvářejí její vazbu.

Existuje však zjednodušený teoretický přístup k problému geometrie molekuly, který nám dovoluje bez obtíží předpovídat konfiguraci molekul. Kvalitativní odhad přítom pozoruhodně souhlásí s geometrickými parametry molekul přenosně experimentálně.

Tento přístup se nazývá model geometrie molekule sloučení nepřechodných prvků a podle

Poznámka: V praxi je daleko snazší jižovávat tvar molekuly experimentálně, vhodně zvolenou metodikou. Dnes již byla určena geometrie prakticky všech známých molekul. Řeší se pouze geometrické uspořádání některých velmi složitých molekul, zpracovávají se některé podrobnosti geometrie molekul a je objasňována konfigurace složitých uskupení atomů v krystalech a roztocích.
Tabulka 5.6. Tvary molekul odvozené z modelu VSEPR

<table>
<thead>
<tr>
<th>Prostorová orientace elektronových párů</th>
<th>Název tvaru</th>
<th>Znázornění tvaru molekuly</th>
<th>Počet elektronových párů 6 + n</th>
<th>Počet elektronových párů 5 + n</th>
</tr>
</thead>
<tbody>
<tr>
<td>lineární</td>
<td>lineární</td>
<td>AB</td>
<td>1</td>
<td>AB_2</td>
</tr>
<tr>
<td>reťažně trojúhelníkový</td>
<td>lineární</td>
<td>AB_2</td>
<td>1</td>
<td>AB_3</td>
</tr>
<tr>
<td>tetraedr</td>
<td>lineární</td>
<td>AB_3</td>
<td>1</td>
<td>AB_E</td>
</tr>
<tr>
<td>trigonalní bipyramida</td>
<td>lineární</td>
<td>AB_E</td>
<td>1</td>
<td>AB_5</td>
</tr>
<tr>
<td>oktaedr</td>
<td>lineární</td>
<td>AB_5</td>
<td>1</td>
<td>AB_6</td>
</tr>
</tbody>
</table>

Symbol molekuly: Tvaru B... B

112
základní představy, s niž se pracuje, je označován zkratkou VSEPR\(^1\). Vznik modelu je spojen se jmény Sidgwick, Powell, Melab, Linnet, Fowles, Gillespie a Nyholm. Jeho užití je oprávněné u neionových molekul slučení nepravděpodobných prvků. Neumožňuje vysvětlit jiné vlastnosti molekul než jejich geometrii, a nelze jej proto považovat za samostatnou teorii chemické vazby.

Model VSEPR vychází z předpokladu, že tvr molekuly je určován situací na středovém atomu (resp. několika středových atomech) molekuly.

O tvaru molekuly rozhoduje především číslo udávající součet počtu vazebních elektronových párů typu \(\sigma\) a počtu elektronových párů nenazebných (označíme je \(n\), umístěných na středovém atome molekuly. Přítom se přihlíží jen k párům na orbitalech \(\sigma^*\), jejichž vazebné působení není kompenzováno plným obsazením příslušného orbitalu \(\sigma^*\).

Platí toto základní pravidlo:

1. Elektronové páry \(\sigma\) a \(n\) středového atomu molekuly se vždy rozmístí do prostoru tak, aby byly co nejdelší od sebe a měly minimální energii. Jejich poleho je určován základní tvar molekuly. Přítomnost elektronových párů typu \(\pi\) je pro určení základního tvaru bezvýznamná.

2. Nelze-li elektronový pár \(\pi\) odpuzovat, umístěte vnitřní elektronové páry více než vazební pár \(\sigma\).

3. U dvounebo trojné vazby jsou elektronové páry \(\sigma\) provázeny elektronovými páry typu \(\pi\). Vzniklý dvojice \((\sigma + \pi)\) nebo trojice \((\sigma + \pi_1 + \pi_2)\) vždy odpuzují ostatní elektronové páry než samotný pár \(\sigma\).

4. Odpuzení zdánlivých elektronových párů zůstává na rozdílech v elektronegativitě obou atomů.

Základní prostorové rozložení elektronových párů \(\sigma\) a \(n\)

Z prvého pravidla vyplývá, že elektronové páry se chovají tak, jako by se vzájemně odpuzovaly. To je v souladu s Pauliho principem i záporým nábojem elektronů. Každý z elektronových párů \(\sigma\) a \(n\) středového atomu zaujme určitou oblast v okolí atomu. Elektronové páry typu \(\pi\) přitom situaci primárně neovlivňují. Jednoduchými elektrostatickými vypočty lze zjistit, že dvojice elektronových párů má minimum energie, jsou-li párů uspořádány do **protilíhelného směru** na jediné ose. Pro tři elektronové páry je nejstabilnější takové uspořádání, při kterém směřují do vrcholů **rozměrného trojúhelníka**; pro čtyři elektronové páry je optimální směřovat do vrcholů **tetraedru**.

\(^1\) Z angl. Valence Shell Electron Pair Repulsion – odpuzování elektronových párů valenční sféry.
pro pět párů je vhodným geometrickým tvarem trigonální bipyramida. Konečně šest elektronových párů vytváří oktaedr. Všech těchto pět uspořádání a tvarů i s jejich názvy a počtem elektronových párů \(\sigma + n \), které je vytvářejí, uvádí levý sloupec tab. 5-6. Celá pravá strana tabulky pak ukazuje reálné tvary molekul, jež vznikají při postupném nahrazování jednotlivých elektronových párů středového atomu \(A \) na něj koordinovanými atomy \(B \). Postupně tak přecházíme od molekuly s velkým počtem nevazebných elektronových párů \(n \) k molekulám bez nevazebného páru \(n \). U každého tvaru molekuly je uveden její obecný symbol, v němž velkým písmenem \(E \) a jeho indexem je vyjádřen počet přítomných nevazebných elektronových párů \(n \). Dale tabulka obsahuje názvy geometrických tvarů vytvořených jádry atomů bez přihlédnutí k nevazebným elektronovým páram a počet elektronových párů \(\sigma \) a \(n \). Tabulku je vhodné dobře prostudovat a povinností si, že v případech, kdy počet párů \(\sigma + n \) je 5 nebo 6 (tj. u tvarů odvozených od trigonální biipyramidy nebo oktaedru), bylo možno vytvořit i jiná uspořádání. Na obr. 5-40 jsou některé tyto možnosti uvedeny. Taková uspořádání se vyznačují zvýšenou energií, a proto se molekuly v těchto konfiguracích nevykryjí.

- **Deformace základních tvarů molekuly**

Druhé až třetí pravidlo modelu VSEPR vyjádřuje deformace východních geometrických tvarů molekul, které nastávají v důsledku toho, že elektronové páry lokalizované na středovém atomu se odpozují rozdílně váživostí na tom, zda jde o páry \(\sigma \) nebo \(n \), zda jsou přítomny elektronové páry \(\pi \) a \(\sigma \) váživostí na rozdílech v elektrostaticitě molekuly, které se většinou váživostí obecných příkladech.

![Obr. 5-41. Deformace základního tvaru molekuly \(\text{AB}_3\text{E} \) přítomnosti elektronového páru \(n \)](image1)

![Obr. 5-42. Deformace základního tvaru molekuly \(\text{AB}_3\text{C} \) s vazbou \(\pi \) mezi atomy \(A \) a \(C \)](image2)

Tvar molekuly typu \(\text{AB}_3\text{E} \), znázorněné na obr. 5-41, je odvozen od tvaru rovnoramenného trojúhelníka (počet elektronových párů \(\sigma + n \) je 3) s úhly mezi elektronovými páry 120°. Ponechávání odpozování elektronového páru \(n \) je podle pravidla 2 velmi silné (již i s něčím nejlepším odpozováním elektronových párů \(\sigma \), zmenší se úhel určený atomy \(B \), a \(A \) a \(B \) na hodnotu \(\angle \text{BAB} < 120° \). Takto jsou deformované všechny základní tvary, v nichž se vyskytuje nevazebná elektronová pár. Páry \(\pi \) se vždy odkládají tak, aby se vzájemně od elektronových párů \(n \).

Obr. 5-41: Deformace základního tvaru molekuly \(\text{AB}_3\text{E} \) přítomnosti elektronového páru \(n \)

Obdobný jev pozorujeme u molekuly, ve kterých jsou přítomné vazby \(\pi \). Zvolme jako příklad molekulu typu \(\text{AB}_3 \), jež jeden z atomů \(B \) je odlučný. Označme-li jej \(C \), je přesnější vzhled této molekuly \(\text{AB}_3\text{C} \). Jelikož vazba \(A-C \) typu \(\pi \) je provázena vazbou \(\pi \), jak ukazuje obr. 5-42, je podle pravidla 3 úhel tvořený atomy \(B \), a \(A \) a \(B \) opět zmíněn \(\angle \text{BAB} < 120° \). Tento jev má zcela obecnou platnost.

Vliv elektrostaticity atomů na tvar molekul, kterou tvoří, si dozijneme na dvojici molekul \(\text{AB}_3 \) a \(\text{AB}_3\text{D} \) (obr. 5-43). Molekula \(\text{AB}_3 \) zaujme samozřejmě ideální tvar rovnoramenného

![Diagram molekuly AB_3D]

Obr. 5-43. Deformace pravidelného tvaru molekuly AB_3 při záměně jednoho atomu B atomem D

Postup při určování tvaru molekuly

Vychází se ze znalosti počtu elektronových párů σ a π na centrálním atomu. Tato informace nám dává nejčastěji elektronový strukturní vzorec molekuly 1). Soubět párů σ a π určuje rámčovní tvar, zastoupení párů σ a tvar odvozený. Přítomnost párů π, párů σ a diferencí elektronegativit v případě, že koordinující atomy jsou různého druhu, jsou dány tendence k deformaci úhlu. Uvedené několik nejčastějších případů totiž postupu. Po jejich prostudování lze bez obtíží určovat strukturu molekul dalších typů.

Molekula H_2O

Elektronový strukturní vzorec

$$H \quad \sigma \quad \sigma \quad H$$

| počet párů σ středového atolu = 2 |
| počet párů π středového atolu = 2 |
| Celkem π a σ = 4 |

Molekula je typu AB_2E_2, a její tvar je proto odvozen od tvaru tetraedru (středový úhel $109,5^\circ$), ale poněvadž je dva elektronové pár středového kváliku jsou sidleny s atomy vodíku, má lomený tvar (tvar V). Zvýšeným odpuzováním nevazebných elektronových párů se úhel mezi atomy H a O zmenšuje, $\angle HOH < 109,5^\circ$ (experimentálně nalezeno 104.5°).

![Diagram molekuly H_2O]

Molekula $COCl_2$ (trichlorid oxidu uhličitého, fosgen)

Elektronový strukturní vzorec

$$\sigma \quad \sigma \quad \pi$$

| počet párů σ středového atolu = 3 |
| počet párů π středového atolu = 0 |
| Celkem π a σ = 3 |

Tvar molekuly typu AB_2C je odvozen od rovenstranného trojúhelníku (středový úhel 120°), avšak tento tvar je deformován přítomností dvou druhů koordinujících atomů (pro elektronegativitu platí $X_C < X_O$).

1) Postupem vedoucím k určení elektronového strukturního vzorce se budeme zabývat v kap. 6.
a přítomnosti elektronového páru π ve vazbě C—O. Tyto dva faktory původně souhlasí a svárají úhel <CICOI < 120° (experimentálně nalezeno 111,3°).

\[
\begin{align*}
\text{Cl} & \quad \sim \quad \text{C} \quad \sim \quad \text{O} \\
\text{Cl} & \quad \sim \\
\end{align*}
\]

Molekula NH₃

Elektronový strukturní vzorec

\[
\begin{align*}
\text{H} & \quad \sim \quad \text{N} \quad \sim \quad \text{H} \\
\text{H} & \\
\end{align*}
\]

počet párů σ středového atomu = 3
počet párů n středového atomu = 1
Celkem párů σ + n = 4

Tvar molekuly typu AB₃E je trigonální pyramida odvozená od tetraedru. Úhly HNH jsou menší (proti úhlu tetraedru 109,5°) v důsledku silného odpuzování páru n. <HNH < 109,5° (experimentálně nalezeno 102,1°).

![Diagram NH₃]

Molekula NO₂

Elektronový strukturní vzorec

\[
\begin{align*}
\text{O} & \quad \sim \quad \text{N} \quad \sim \\
\end{align*}
\]

počet párů σ středového atomu = 2
počet párů n středového atomu = \(\frac{1}{2}(1)\)
Celkem párů σ + n = 2\(\frac{1}{2}\)

Přítomnost nepárového nevazebného elektronu je ekvivalentní přítomnosti páru n. Tvar molekuly typu AB₂E₂ je odvozen od rovnovážného rovnoúhelníka. Molekula je lomená a její základní úhel <ONO = 120° je deformován rozvětvením v důsledku zvýšené repulze obou dvojic vazeb σ + n a snížené repulze jediného elektronu na místě páru n. <ONO > 120° (experimentálně nalezeno 132°).

![Diagram NO₂]

Model VSEPR je použitelný i pro odvozování tvaru molekulových iontů, což si ukážeme na dalších příkladech.

Molekulový ion NO₃⁻ (kation nitrylu)

Elektronový strukturní vzorec

\[
\begin{align*}
\text{O} & \quad \sim \quad \text{N} \quad \sim \quad \text{O} \\
\end{align*}
\]

počet párů σ středového atomu = 2
počet párů n středového atomu = 0
Celkem párů σ + n = 2

Molekulový ion typu AB₂ má lineární tvar, který nemůže být ovšem vztahován přítomnosti elektronových páru π lokализovaných na dvou vazbách N—O. <ONO > 180° (experimentálně nalezeno 180°).

\[
\text{O} \quad \sim \quad \text{N} \quad \sim \quad \text{O}
\]
Molekulový ion NO₃⁻ (doustný anion)

Elektronový strukturální vzorec
\[
\begin{array}{c}
\text{O} \\
\text{N} \\
\text{O} \\
\end{array}
\]

počet páre v středovém atomu = 2
Celkem páre \(\sigma + \pi = 3 \)

Tvar aniontu AB₂E je odvozen od tvrnu rovnoramenného trojúhelníku, je tedy lomený (tvar V). Úhel \(\leq \) ONO je rozevřen již při tomto provedení lokalizováno vazby \(\pi \) a svrátá zvýšenou repulzi páru \(\pi \). Tyto dva faktory přesně proti sobě. \(\leq \) ONO \(\approx \) 120° (experimentálně nalezeno 115°).

- Tvarové molekuly

Uvedené nyní přehled všech běžných tvarů molekul, ukažeme si, kterými typy molekul jsou vytvořeny, a připojme výčet příkladů.

1. Lineární molekuly
Lineární tvar mají samozřejmě všechny molekuly dvouatomové (tedy AB), dále molekuly typu AB₂ bez nevazebného elektronového páru na středovém atomu A a posléze molekuly typu AB₂E, odvozené od trigonalní bipyramidy.

AB₂: CO₂, BO₂, HCN, HgCl₂, HgBr₂, HgI₂, CdCl₂, CdI₂, ZnCl₂, Zn(CH₃)₂, ...
AB₂E₂: I₂, BrCl, XeF₅, ...

2. Lomené molekuly
Molekuly tvaru V jsou typu AB₂E a AB₂E₃.

AB₂E: O₃, SO₃, NOCl, SnCl₄, SnBr₄, SnI₄, PbCl₄, PbBr₄, PbI₄, ...

AB₂E₂: H₂O, H₂S, H₂Se, H₂Te, CO₂, Cl₂O, SCl₂, SeCl₂, ...

3. Trojúhelníkové molekuly
Rovinné trojúhelníkové uspořádání mají molekuly typu AB₂.

AB₂: BC₃, BL₃, BF₃(CH₃)₂, GaI₃, In(CH₃)₃, ...

4. Tetaedrické molekuly
Pravidelným tetaedrickým tvarom mají molekuly AB₄, bez elektronových páru A na středovém atomu.

AB₄: [ReF₆]⁴⁻, [BF₄]⁻, CCl₄, NH₄⁺, SiH₄, SiCl₄, GeCl₄, SnCl₄, PbCl₄, [Zn(CN)₄]²⁻, [HgI₄]²⁻, ClO₄⁻, SO₄²⁻, PO₄³⁻, SO₃Cl₂, AsOCl₃, POCl₃, ...

Tvar nepravidelného tetaedru mají molekuly typu AB₅E. Jsou odvozeny od trigonalní bipyramidy. Repulze nevazebného elektronového páru molekulu deformuje. Molekula SF₆ o elektronovém strukturálním vzore

5. Trigonálně pyramidalní molekuly
Jou typu AB₅E, jejich východním tvarem je tetraedr.

AB₅E: NC₅H₅, PCl₅, AsH₃, PH₃, SbH₃, ClO₃, IO₃, XeO₄, H₂O₆, SO₃Cl₂, SeOBr₂, ...

6. Trigonálně bipyramidalní molekuly
Molekuly typu AB₅ mají krátky vazby ekvatóriální a dlouhá vazby axiální. Jsou-li všechna koordinovaná místa obrazem rovnoramenného, svírají vektorové vazby úhel 120°, axiální vazby svírají s rovinou vazeb ekvatóriálních úhel 90°.

AB₅: PF₅, PCl₅, PF₅CN₂, SbCl₅, P(CH₃)₂F₅, SO₅, ...

117
7. Molekuly tvaru T

Jeho tvar je odvozen z tvaru trigonální hipyramidy při zachování dvou nevazebných párů ve kvadraticní polohu. Patří tedy k typu AB_2E_2. Pravé úhly tvaru T jsou vždy posmrk zmenšovány silnou repulzi elektronových párů n.

AB_2E_2: ClF$_5$, BrF$_5$, CH$_3$ICl$_2$, ...

8. Oktaedrické molekuly

Jsou velmi časté a patří k typu AB_8, je pozoruhodné, že molekuly typu AB_8, které jsou pro jeho neobvyklost v úvěrém rozboru neuváděny a model VSEPR na ně nevzťahuje, mívají (ne však vždy) také tvar oktaedru.

AB_8: [TeCl$_6$]$^{2-}$, [TeBr$_6$]$^{2-}$, [SbBr$_6$]$^{2-}$, ...

9. Čtvercové molekuly

Jsou vyhradně typu AB_2E_2 odvozeného z oktaedru.

AB_2E_2: ICl$_2$, BrF$_5$, XeF$_6$,

10. Čtvercové pyramidalní molekuly

Jeho tvar se odvozuje z oktaedru, jehož jeden vrchol zaujímá elektronový pár n. Molekuly jsou tedy typu AB_2E.

AB_2E: HF$_2$, SeCl$_2$(py)$_2$, ...

Je velmi účelné seznámit se s geometrickými konfiguracemi nejběžnějších molekul a naučit se aplikovat model VSEPR na všech příkladech deseti uvedených tvarů.

5.8 IONTOVÉ SLOUČENINY

Sešiknutí atomů o velmi rozdílné elektronegativitě a jejich vazebná interakce vede vždy k zřetelné asymetrické prostorovému umístění vazebných elektronů. Na vůbecích se atomech se vytvářejí elektrické náboje. Vazba získává výrazný elektrostatický charakter.

Příčiněním k tomu je elektrostatický silná, a nikoli k podli kvantitativní, a představujeme-li si jdejnozdaše, že při vzniku vazeb mezi atomy dochází k úplnému přenesu elektronů a ke tvorbě iónů, dospíváme ke koncepci tzv. iontového modelu sloučenin.

- Iontová vazba

Iontový model vazby ve sloučeninách je jedním z nejstarších teoretických přístupů k výkladu chemické vazby a byl původně používán k výkladu vazby veškerých sloučenin. O jeho vytvoření a propracování se zasloužili Kossel, van Arkel, Born, Haber, Landé, Madelung, Ewald, Fajans, Bethe a další.

Je velmi jednoduchý a názorný a umožňuje výklad řady vlastností určité třídy sloučenin v moderní chemii. Můžeme si vsak být vědomi dvojí skutečnosti:

1. Iontový model popisuje sloučeninu tím nejčasněji, čím méně v ní převládá elektrostatický příspěvek vazby nad příspěvem kvantitativním.

2. Některé vlastnosti iontových sloučenin jsou výrazně ovlivněny částce kovalentní vazby a nelze je plně objasnit pomocí iontového modelu.

O atomoch, jež mají sklon ponechat elektrony, říkáme, že jsou elektropozitivní. Mají malou hodnotu elektronegativity a také hodnota jejich ionizační energie je malá. Jsou to především atomy kovů.
Naopak atomy přijímající elektrony označujeme jako elektronegativní. Mají velkou hodnotu elektronegativity i elektronové afinitu a mají charakter nekovů.

Děli, při kterém atomu ztrácí elektrony, se říká oxidace. Opačný děj, tj. přijetí elektronů, se nazývá redukce. Tvorba iontové vazby mezi původně nenabitými atomy dvou různých prvků je tedy oxidace-nebo redukci děj.

Vždy platí, že pokud poskytovaných elektronů se musí rovnat počtu přijímaných elektronů, a že tedy vzniklá sloučenina musí být elektroneutralní. Tuto skutečnost vyjadřují formálně rovnice, které popisují několik příkladů tvorby iontových sloučenin z prvků. Elektrony valenčních sfer zúčastněných atomů jsou znázorněny jako tečky. U každé rovnice je uvedena elektronová konfigurace zanikajících atomů i vznikajících iontů.

\[
\begin{align*}
2 \text{Na}^+ & + 2e^- & = 2 \text{Na}^+ & + 2e^- \\
[\text{Ne}] 3s^1 & & [\text{He}] 2s^2 2p^6 & [\text{Ne}] & + [\text{Ne}] \\
\text{Ca}^+ & + 2 \text{H}^- & = \text{Ca}^{2+} & + 2 \text{H}^+ \\
[\text{Ar}] 4s^2 & 1s^1 & & [\text{Ar}] & [\text{He}] \\
\text{Al}^{3+} & + 3 \text{F}^- & = \text{Al}^{3+} & + 3 \text{F}^- \\
[\text{Ne}] 3s^2 3p^1 & & [\text{He}] 2s^2 2p^6 & [\text{Ne}] & [\text{Ne}] \\
3 \text{Mg}^{2+} & + 2 \text{N}^3^- & = 3 \text{Mg}^{2+} & + 2 \text{N}^3^- \\
[\text{Ne}] 3s^2 & & [\text{He}] 1s^2 2p^3 & [\text{Ne}] & [\text{Ne}] \\
\text{Ca}^2+ & + 2 \text{Br}^- & = \text{Ca}^2+ & + 2 \text{Br}^- \\
[\text{Xe}] 6s^1 & & [\text{Ar}] 3d^{10} 4s^2 4p^5 & [\text{Xe}] & [\text{Kr}] \\
\end{align*}
\]

Je vidět, že tvorící se ionty mají v uvedených příkladech elektronovou konfiguraci vzácných plynů. Primární přičinou znázorněných dějů je tedy vznik ysoce stabilních elektronových konfigurací. Právě tak přispívá k jejich uskutečnění i další výrazné snížení energie celého původního systému atomů, ke kterému dochází, protože vzniklé ionty se sdružují do pravidelných prostorových mříží — iontových krystalů.

Obr. 5-44. Asociace iontů

dipón, tripón, kvadrupón, iontový krystal

Elektrostatický charakter vazby mezi ionty je přičinou její směrové nespecifickosti. Elektrostatická síla působící mezi ionty nezávisí na jejich vzájemné orientaci, nýbrž pouze na vzdálenosti mezi nimi. Proto každá vzniklá iontová „molekula“ (např. dvojice iontů Na⁺ a F⁻) představuje elektrický dipól, který silové působí na další ionty, a tak se posouvá „molekula“ rozrostá. Vznikají útvary znázorněné na obr. 5-44, které přecházejí v neohraněně rostoucí iontový krystal.

* Elektronová konfigurace iontů

Stabilní elektronové konfigurace iontů jsou nejčastěji izoelektronové s konfigurací elektronového obalu některého vzácného plynu. Ukázali jsme to na příkladech v rovnici (5-11). Vedle
toho jsou u kationtů stálé ještě některá jiná uspořádání. Přehled všech stabilních elektronových konfigurací si nyní uvedeme:

1. Iony s konfigurací vlněného plynu 1s²(He)
 - Be²⁺, Li⁺, H⁻

2. Iony s konfigurací dalších vlněných plynů ns²npⁿ; konfigurace oktetu (2 + 6 = 8)
 - n = 2 (Ne): Al³⁺, Mg²⁺, Na⁺, F⁻, O²⁻, N³⁻
 - n = 3 (Ar): Sc³⁺, Ca²⁺, K⁺, Cl⁻, S²⁻
 - n = 4 (Kr): Y³⁺, Sr²⁺, Rb⁺, Br⁻, Se²⁻
 - n = 5 (Xe): Ce⁴⁺, La³⁺, Ba²⁺, Cs⁺, I⁻, Te³⁻
 - n = 6 (Rn): Th⁴⁺, Ac³⁺, Ra²⁺, Fr⁺, A⁻, Po²⁻

3. Kationty s konfigurací ns²np⁶nd¹⁰; konfigurace tzv. pseudovláčného plynu, elektronová osmnáctka (2 + 6 + 10 = 18)
 - n = 3 (Ni): Cu⁺, Zn²⁺, Ga³⁺
 - n = 4 (Pd): Ag⁺, Cd²⁺, In³⁺
 - n = 5 (Pt): Au⁺, Hg²⁺, Tl³⁺

4. Kationty s konfigurací ns²np⁶nd¹⁰(n + 1)s¹; konfigurace inertního elektronového páru, elektronová dvacátka (2 + 6 + 10 + 2 = 20)
 - n = 3 (Zn): Ga⁺
 - n = 4 (Cd): In⁺, Sn²⁺, Sb³⁺
 - n = 5 (Hg): Tl⁺, Pb²⁺, Bi³⁺

Do této skupiny lze zařadit i dvouatomový ion Hg₂⁺.

5. Kationty s nepravidelnou elektronovou konfigurací
 a) Iony přechodných prvků s neúplně obsazenými orbitály nd
 např. pro n = 3:
 - Ti³⁺, V³⁺, Cr³⁺, Mn²⁺, Fe³⁺, Fe⁴⁺, Co²⁺, Ni²⁺, Cu²⁺ aj.

 b) Iony lanthanoidů a aktinoidů, jež obsahují orbitály 4f a 5f,
 např.: Ce³⁺, Gd³⁺, Eu²⁺, Am³⁺

Mimo konfigurace izoelektronové se vlněnými plyny jsou tedy u kationtů stálé konfigurace elektronové osmnáctky ns²np⁶nd¹⁰, izoelektronové s tzv. "pseudovláčnými plyny", tj. Ni, Pd, Pt. Samotné atomy Ni, Pd a Pt mají ovšem elektronovou konfiguraci

- Ni: [Ne] 3s² 3p⁶ 3d⁴ 4s²
- Pd: [Ar] 4s² 4p⁶ 4d¹⁰
- Pt: [Kr] 5s² 5p⁶ 5d⁸ 6s¹

Jež se od konfigurace ns²np⁶nd¹⁰ u Ni a Pt odlučují. U atomu Ni je dvojice elektronů v orbitálu 4s a v orbitálu 3d je jen 8 elektronů, u atomu Pt je jeden elektron v orbitálu 6s a v orbitálu 5d je 9 elektronů. U tady iontů je stabilní též uspořádání ns²np⁶nd¹⁰(n + 1)s¹, izoelektronové
s obalem atomů Zn, Cd a Hg. Této konfiguraci, nazývané elektronová divacíka, se těž podle elektronového páru \((n+1)s^2\), který se mnohdy jen neochotně odstěpuje, říká konfigurace inertního elektronového páru.

Relativní stálost kationtů s nepravidelnou strukturou elektronového obalu je výsledkem složitých efektů. Objasnime si ji až při výkladu chemie přechodných kovů.

Stabilitu všech uvedených elektronových struktur iontů je těžko chápat v tom smyslu, že jejich vznik představuje z energetického hlediska optimální rozložení valenčních elektronů, které má systém vázájící se atomů k dispozici. Uvedené konfigurace již není někdy k dažďan re-distribuň elektronů mezi atomy. Nepřijímají ani neuvolňují elektrony, neboť samy představují uspořádání s minimálním obsahem energie.

Poloměry iontů

Elektronový obal iontu, právě tak jako elektronový obal atomu, je zcela differenc. Proto pojem poloměr iontu, stejně jako poloměr atomu, nemá přesný fyzikální smysl.

Přesto mezi jaderné vzdálenosti iontů v iontových kryštalech jsou snadno experimentálně zjišťovány. Bylo proto dohodnuto, že vzdálenost mezi stěry dvou opačně nabitéch iontů bude pokládána za součet poloměru kationtu a poloměru aniontu (obr. 5-45).

![Diagram poloměrů kationtu a aniontu](image)

Obr. 5-45. Poloměr kationtu a aniontu

Obr. 5-46. Srovnání účinku náboje a hmotnosti iontů a atomů na jejich poloměry (atomi plně, ionty čárukovány)

Experimentálně pronikněný½ velkého počtu mřížek různých iontových kryštálů a volbou určitého základu byl vytvoren systém iontových poloměrů prakticky všech prvků. Hodnoty poloměrů iontu jsou pozoruhodně konstantní, obvykle srovnáváme-li složený s analógickou strukturou kryštalové mřížky. Nicméně experimentálně nalezené iontové poloměry jsou poněkud zvážné na povaze a zejména na počtu opačně nabitéch iontů, jež daný ion obklopuje. Soubory tavelových iontových poloměrů se pak obvykle uvádějí v řádných řádu případ, kdy ion je v mřížce obklopen šesti opačně nabitémi parterami (nejv. kádrové číslo 6). Pro jiné způsoby koordinace je nutné hodnoty poloměrů iontů přesně koregovat. V tab. 5-7a, b, c jsou takovéto poloměry některých největších iontů uvedeny formou periodické tabulky s vybranými stabilními elektronovými konfigurací.

Z tabulky a zejména z obr. 5-46, kde jsou některé poloměry iontů znázorněny graficky a doplněny vyjadřením poloměrů neutrálních atomů, vyplývají tyto závěry:

1. Vliv náboje na poloměr iontu je velmi výrazný, mnohem výraznější než např. vliv jeho atomo-

2. Kationty jsou vždy menší než příslušné atomy, neboť jejich přes plněne pozitivního náboje jádra jsou jejich orbitály snahaženy bližší k jádru.

3. Anionty jsou naopak vždy větší než příslušné atomy, poněvadž zvýšená elektronová repulze oddaluje orbitály od jádru.

1) Zajímá metody rentgenostrukturaální analýzy.
Tabulka 5-7a. Polomery ionů s elektronovou konfigurací vzácného a pseudovzácného plynu (hodnoty jsou udány v pm)

<table>
<thead>
<tr>
<th>Element</th>
<th>Ion</th>
<th>Charge</th>
<th>PM (pm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H^-</td>
<td>1</td>
<td>154</td>
</tr>
<tr>
<td>Li</td>
<td>Li^+</td>
<td>1</td>
<td>54</td>
</tr>
<tr>
<td>Be</td>
<td>Be^2+</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Ne</td>
<td>Ne</td>
<td>0</td>
<td>153</td>
</tr>
<tr>
<td>Ar</td>
<td>Ar</td>
<td>0</td>
<td>153</td>
</tr>
<tr>
<td>Kr</td>
<td>Kr</td>
<td>0</td>
<td>133</td>
</tr>
<tr>
<td>Xe</td>
<td>Xe</td>
<td>0</td>
<td>117</td>
</tr>
</tbody>
</table>

Tabulka 5-7b. Polomery ionů s elektronovou konfigurací inertního elektronového páru a s nepravidelnými konfiguracemi (hodnoty jsou udány v pm)

<table>
<thead>
<tr>
<th>Element</th>
<th>Ion</th>
<th>Charge</th>
<th>PM (pm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>Cr^3+</td>
<td>3</td>
<td>52</td>
</tr>
<tr>
<td>Mn</td>
<td>Mn^2+</td>
<td>2</td>
<td>62</td>
</tr>
<tr>
<td>Fe</td>
<td>Fe^3+</td>
<td>3</td>
<td>54</td>
</tr>
<tr>
<td>Co</td>
<td>Co^2+</td>
<td>2</td>
<td>61</td>
</tr>
<tr>
<td>Ni</td>
<td>Ni^2+</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cu</td>
<td>Cu^2+</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Zn</td>
<td>Zn</td>
<td>0</td>
<td>73</td>
</tr>
<tr>
<td>Cd</td>
<td>Cd</td>
<td>0</td>
<td>79</td>
</tr>
<tr>
<td>Hg</td>
<td>Hg</td>
<td>0</td>
<td>131</td>
</tr>
</tbody>
</table>

Tabulka 5-7c. Polomery ionů lanthanoidů a aktinoidů (hodnoty jsou udány v pm)

<table>
<thead>
<tr>
<th>Element</th>
<th>Ion</th>
<th>Charge</th>
<th>PM (pm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>La^3+</td>
<td>3</td>
<td>104</td>
</tr>
<tr>
<td>Ce</td>
<td>Ce^3+</td>
<td>3</td>
<td>103</td>
</tr>
<tr>
<td>Pr</td>
<td>Pr^3+</td>
<td>3</td>
<td>102</td>
</tr>
<tr>
<td>Nd</td>
<td>Nd^3+</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>Sm</td>
<td>Sm^3+</td>
<td>3</td>
<td>97</td>
</tr>
<tr>
<td>Eu</td>
<td>Eu^3+</td>
<td>3</td>
<td>96</td>
</tr>
<tr>
<td>Gd</td>
<td>Gd^3+</td>
<td>3</td>
<td>93</td>
</tr>
<tr>
<td>Tb</td>
<td>Tb^3+</td>
<td>3</td>
<td>92</td>
</tr>
<tr>
<td>Dy</td>
<td>Dy^3+</td>
<td>3</td>
<td>91</td>
</tr>
<tr>
<td>Ho</td>
<td>Ho^3+</td>
<td>3</td>
<td>89</td>
</tr>
<tr>
<td>Er</td>
<td>Er^3+</td>
<td>3</td>
<td>86</td>
</tr>
<tr>
<td>Tm</td>
<td>Tm^3+</td>
<td>3</td>
<td>85</td>
</tr>
</tbody>
</table>

122
Důsledkem platnosti těchto pravidel je zjištění, že ve skupině izoelektronových kationtů je vždy nejmenší ten ion, který má největší kladný náboj (např. Ti^{4+} < Sc^{3+} < Ca^{2+} < K^+). Naproti tomu anion o největším náboji ve skupině izoelektronových aniontů je nejhejmemělší (např. P^{3-} > S^{2-} > Cl^-).

Dále platí tato pravidla:

4. U prvků obdobné elektronové konfigurace vzrůstá poloměr jejich iontů s rostoucí hodnotou hlavního kvantového čísla v jejich valenční sféře (např. Li^+ < Na^+ < K^+ < Rb^+ < Cs^+ nebo F^- < Cl^- < Br^- < I^-).

5. Tvoří-li atom víc kationtů, je ion s největším nábojem nejmenší (např. Fe^{2+} > Fe^{3+}).

6. U stejně nabitých kationtů přechodných prvků obsahujících orbitály d se iontové poloměry s rostoucím atomovým číslem jen nevýrazně zvětšují. Zvětšení blízko jsou u poloměry iontů prvků skupiny 8.

7. Poloměry iontů lanthanoidů (aktinoidů) se s rostoucím atomovým číslem mírně zmenšují.

Jev popsaný pravidlem 7. se nazývá lanthanoidová (resp. aktinoidová) kontrakce. Je způsoben tím, že uskupení vnějších elektronů všech těchto iontů je neměněné a ionty se od sebe liší pouze obsazením vnějších orbitálů 4f, resp. 5f. Případ se vzrůstajícím atomovým číslem roste klidný náboj jader jejich atomů a větší elektrony, které rozhodují o velikosti atomu, jsou stahovány blíže k jádru.

- Stabilita iontů

Schopnost iontu zachovat si svou elektronovou konfiguraci, tj. nepodléhnout další oxidace-redukční změně, ani kovalentní vazebné interakce při setkání s jinými soubory částic (molekul a iontů), se často označuje jako jeho stabilita.

Pohotovost iontů k oxidace-redukčním změnám vyplývá zejména z jejich elektronové konfigurace. Ionty, které mají konfiguraci vázaného plynu nebo elektronové osmínítky obvykle jeví již malý sklon k oxidace-redukčním změnám. Výrazná naproti tomu bývá tato tendence u iontů, které mají nepravidelnou elektronovou strukturu.

Dispozice ke kovalentním interakcím a koordinaci se v hrubých rysach řídí těmito pravidly:

1. Ion je tím indiferentnější, čím stabilnější je jeho elektronová konfigurace:

<table>
<thead>
<tr>
<th>Vzněcí plyn</th>
<th>Pseudovzněcí plyn</th>
<th>Nepravidelná konfigurace</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pokles stability</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. čím menší má náboj:

<table>
<thead>
<tr>
<th>Na^+</th>
<th>Mg^{2+}</th>
<th>Al^{3+}</th>
<th>Si^{4+}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pokles stability</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Si^{4+}</th>
<th>P^{3+}</th>
<th>S^{2+}</th>
<th>Cl^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pokles stability</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. čím větší (u kationtů), resp. čím menší (u aniontů) je atomové číslo (a tím i objem) atomu, z něhož ion vzniká:

<table>
<thead>
<tr>
<th>H^+</th>
<th>Li^+</th>
<th>Na^+</th>
<th>K^+</th>
<th>Rb^-</th>
<th>Cs^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pokles stability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F^-</th>
<th>Cl^-</th>
<th>Br^-</th>
<th>I^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pokles stability</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tato pravidla (i když v poručku jiné úpravě) formuloval Fajans (1924), a bývají proto označována jako pravidla Fajansa.

Dneš víme, že byla (pravidlo 2 a 3) stanovena na základě velmi zjednodušujících představ o velikosti elektrostatického potenciálu na povrchu kationtu a jeho deformací se zníku na oblast vnějších elektronů u aniontu a molekul, takže je lépe užívat jen k nejhrubšímu odhadu chemického chování iontů.

123
Vime-li například, že kation má nepravidelnou elektronovou konfiguraci, velký náboj a malý poloměr, můžeme očekávat jeho zvýšenou schopnost interagovat s mnohmí molekulárními systémy. Velký kation s nábojem +l, majíc konfiguraci xenonu, se naproti tomu při většině setkání s jinými molekulami bude chovat indiferentně.

- **Náboj iontů**

Uvedli jsme již, že u reálných iontových sloučenin má vazba mezi ionty do určité míry kovalentní charakter. Přenos elektrónů mezi atomy a tvorba iontů nejde úplně dokončený. Skutečné elektrické náboje vznikají přesně iontů se proto poněkud odlišují od nábojů, které by se vytvořily v případě (nedozvěřitého) stoprocentní iontovosti vazby.

Pro skutečný elektrický náboj iontu se velmi často uvádí název *efektivní náboj iontu*. Efektivní náboje iontů v iontových molekulách se obtížně měří, a jsou proto známy jen u nevcelkého počtu sloučenin. Představu o poměrně velkých rozdílech mezi formálně předpokládanými a skutečnými náboji iontů na lotechn poskytuje tab. 5-8.

Přes uvedený velký rozdíl je těchto připisovat iontům ve sloučeniních jejich formální náboje a jím odpovídající elektronové konfigurace a poloměry. Dostí drahatý zjednodušení a nepřesností, kterých se tak dopouštěme, nenajdou v jednodušších úvahách na správnost naší závěrů závažnější vliv.

Tabulka 5-8: Srovnání skutečných a formálních nábojů iontů v některých sloučeninách

<table>
<thead>
<tr>
<th>Sloučenina</th>
<th>Ion</th>
<th>Formální náboj iontu</th>
<th>Skutečný náboj iontu</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>Na⁺</td>
<td>1⁺</td>
<td>+0,9</td>
</tr>
<tr>
<td></td>
<td>Cl⁻</td>
<td>1⁻</td>
<td>−0,9</td>
</tr>
<tr>
<td>MgO</td>
<td>Mg²⁺</td>
<td>2⁺</td>
<td>+1,0</td>
</tr>
<tr>
<td></td>
<td>O²⁻</td>
<td>2⁻</td>
<td>−1,0</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>Al³⁺</td>
<td>3⁺</td>
<td>+1,3</td>
</tr>
<tr>
<td></td>
<td>O³⁻</td>
<td>3⁻</td>
<td>−1,3</td>
</tr>
</tbody>
</table>

5.9 **PARAMETRY CHEMICKÉ VAZBY**

Při výkladu chemické vazby, při objasňování její podstaty a popisu jejích projevů jsme předpokládali, že molekuly ve sloučeninách jsou předběžně poznány několik fyzikálních vlastností a parametrů, které mohou sloužit ke jejich charakteristice. Tento měřitelným veličinám se říká *vlastnosti chemické vazby*. Nyní si na základě zjištění a zavedeme si s jejich technickými rychlostmi a na příkladu jejich aplikaci, jakých hodnot nabývají u nejzřejmější vazeb.

- **Energie vazby**

U dvouatomové molekuly je energie vazby definována jako *prací, kterou je třeba zvýšit*, aby se zvětšila vazba mezi atomy a aby se atom od sebe oddalilo mnoho dohod jejich vzájemného silového působení.

Energie vazby se vyjadřuje v jednotkách energie, nejčastěji v elektronvoltech. Z praktických důvodů bývá též zvykem uvádět měří energie jedné vazby energii jednoho molu (str. 142) chemických vazeb, a to v jednotkách kJ mol⁻¹ ¹).

¹) Ve starší literatuře a tabulkách jsou hodnoty energie vazeb nejčastěji uváděny v kcal mol⁻¹. Tato jednotka není přípustná v nově zavedené soustavě SI a nesmí se již používat (1 kcal = 4,1868 kJ, 1 eV = 1,602 19.10⁻¹⁹ J).
Tabulka 5-9: Energie některých běžných kovalentních vazeb (hodnoty jsou udány v eV)

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>B</th>
<th>C</th>
<th>N</th>
<th>O</th>
<th>F</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Cl</th>
<th>Br</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>4.3</td>
<td></td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>3.7</td>
<td>4.0</td>
<td>3.1</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>4.4</td>
<td>8.0</td>
<td>3.6</td>
<td>2.1</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>5.9</td>
<td>8.5</td>
<td>4.6</td>
<td>2.8</td>
<td>1.9</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>3.0</td>
<td></td>
<td>3.0</td>
<td>3.8</td>
<td>5.6</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>3.3</td>
<td></td>
<td>2.7</td>
<td>2.2</td>
<td>3.6</td>
<td>5.1</td>
<td>2.2</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>3.5</td>
<td></td>
<td>2.7</td>
<td></td>
<td></td>
<td>2.9</td>
<td>2.3</td>
<td>2.4</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>4.5</td>
<td>5.1</td>
<td>3.4</td>
<td>2.1</td>
<td>2.1</td>
<td>2.6</td>
<td>3.7</td>
<td>3.4</td>
<td>2.6</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br</td>
<td>3.8</td>
<td>4.2</td>
<td>2.9</td>
<td>2.5</td>
<td></td>
<td>2.4</td>
<td>3.0</td>
<td>2.8</td>
<td>2.2</td>
<td>2.3</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>3.1</td>
<td></td>
<td>2.5</td>
<td></td>
<td></td>
<td>2.1</td>
<td>2.0</td>
<td>2.2</td>
<td>2.2</td>
<td></td>
<td>2.2</td>
<td>1.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C—C</th>
<th>C=C</th>
<th>C≡C</th>
<th>N—N</th>
<th>N=N</th>
<th>N≡N</th>
<th>C—N</th>
<th>C≡N</th>
<th>C—O</th>
<th>C≡O</th>
<th>N—O</th>
<th>N≡O</th>
<th>N≡N</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6</td>
<td>6.3</td>
<td>8.7</td>
<td>1.6</td>
<td>3.9</td>
<td>9.8</td>
<td>3.1</td>
<td>6.4</td>
<td>9.2</td>
<td>3.6</td>
<td>7.7</td>
<td>11.1</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Tabulka 5-10: Experimentálně nalezené délké vazeb O—H a N—H v některých sloučeninách

<table>
<thead>
<tr>
<th>Vazba</th>
<th>Sloučenina</th>
<th>Délka vazby (pm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hydroxylový radikál OH</td>
<td>voda H₂O</td>
<td>97</td>
</tr>
<tr>
<td>O—H</td>
<td>peroxid vodíku H₂O₂</td>
<td>97</td>
</tr>
<tr>
<td>methanol CH₃OH</td>
<td>mřavecí kyselina HCOOH</td>
<td>96</td>
</tr>
<tr>
<td>anoniak NH₃</td>
<td>anoniiový ion NH₄⁺</td>
<td>101</td>
</tr>
<tr>
<td>N—H</td>
<td>hydrazinový ion N₂H₄⁺</td>
<td>107</td>
</tr>
<tr>
<td>molévrina CO[(NH₃)₂]</td>
<td>kyselina thiokyselát HNCS</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td></td>
<td>101</td>
</tr>
</tbody>
</table>

125
Při vyjadřování energie vaze ve víceatomových molekulách (jež mají dvě a více vazeb) vzniká určitá občas, neboť energie vazby mezi dvěma atomy obvykle dosti značně závisí na přítomnosti a charakteru ostatních vazeb v molekule. Například k rozšíření molekuly vody na atom vodíku a radikál OH podle rovnice

\[H-O-H = H-O^- + \cdot H \]

je třeba dodat energii 5,18 eV (čili 500 kJ mol\(^{-1}\)). Odštěpením jednoho atomu vodíku z molekuly vody se však změní vazebné parametry druhé vazby. To se mimo jiné projeví tím, že k jejímu rozštěpení podle rovnice

\[H-O^- = H + \cdot O^- \]

postačí dodání menší energie, a to 4,40 eV (čili 425 kJ mol\(^{-1}\)).

U polyatomických molekul typu AB\(_n\), v nichž A je středový atom, se proto experimentálně určuje energie potřebná k úplnému rozpadu celé molekuly na jednotlivé atomy. Obvykle se pak ještě důležitá celkové energie považuje za energii jedné vazby A-B a nazývá ji "srovnávání (průměrné) energie vazby".

K experimentálnímu zjišťování energie vazeb slouží nejčastěji termochemické a spektroskopické metody. V tab. 5-9 jsou uvedeny hodnoty energie nejčastěji se vyskytujících kovalentních vazeb (Energii iontové vazby se bude zde zabývat v kapitole věnované strukturně iontových krystalů). Čítané údaje jsou v tabulce pro přehlednost a názornost zaokrouhleny na jedno desetinné místo. Tabulka umožňuje učinit si představu o pevnosti jednotlivých vazeb a povinností, jak se popsou se v jakých vazbách se hodnot energie vazeb běžně pohybuje. Dolní část tabulky dokumentuje změny energie vazeb, které nastávají je vznikem řádu dané vazby.

- **Délka vazby**

Délku vazby se rozumí vzdálenost mezi středy atomů spojených vazbou, tedy meziatomová vzdálenost. Tato veličina vazbu velmi dobře charakterizuje a přitom je experimentálně poměrně snadno přístupná. Zjišťuje se metodami elektronové a neutronové difrakce, difrakce rentgenových paprsků nebo metodami spektroskopií, popř. kombinací těchto metod. Délka vazby se vyjadřuje v pikometrech (1 pm = 10\(^{-12}\) m).

Poznalo se, že tyto délky vazeb se v mnoha případech zachovávají v konstantní délce v různých sloučeních. příkladem je pro případ vazeb O-H a N-H potvrzuje délka v tab. 5-10.

Délku kovalentních vazeb lze dobře odhadovat na základě znalosti délky vazeb v homonukleárních uskupeních atomů. Platí, že délka vazby (A-B) je rovna aritmetickému průměru délky (A-A) a (B-B). Polòvině délky vazby (A-A) resp. (B-B) je říká "kovalentní poloměr prvku A", resp. B. V mnoha případech mají kovalentní poloměry aditivní vlastnosti. Kovalentní poloměry nejlepším příkladem uvedší v tab. 5-11.

Příklad odhadu délky určité vazby:

Chceme odhadnout délku vazby Si-C v karbidi křemíku. Vím, že délka vazby C-C v diamantu je \(l(C-C) = 154 \text{ pm} \) a délka vazby Si-Si v krystalickém křemiku je \(l(Si-Si) = 234 \text{ pm} \).

1) Názvem je vyjadřen rozdíl od tzv. dissociální energie vazby, která by se v případě molekuly AB\(_n\) určila jako energie potřebná k rozštěpení molekuly AB\(_n\), na AB\(_{n-1}\), a B a která by měla pro každou vazbu A-B jinou hodnotu (viz příklad postupného rozštěpení obou atomů H z molekuly H\(_2\)O). Součet dissociálních energií všech vazeb A-B v molekule AB\(_n\), dělený počtem vazeb v udává střední energii vazby A-B.

2) Až dosud se k vyjadřování délka v atomistice nejčastěji používala jednotka angström (1 Å = 10\(^{-10}\) m = 100 pm). Angström však nespatříme mezi schválené fyzikální jednotky soustavy SI.
Platí vztah
\[
\|\text{Si—C}\| = \frac{\|\text{C—C}\| + \|\text{Si—Si}\|}{2} = \frac{154 + 234}{2} = 194 \text{ pm}
\]

Téhož výsledku se dosáhne, sečtou-li se kovalentní poloměry atomů C a Si uvedené v tab. 5.11. Experimentálně bylo nalezeno \(\|\text{Si—C}\| = 193 \text{ pm}\).

Tabuľka 5.11. Kovalentní poloměry atomů některých prvků
(hodnoty jsou údány v pm)

<table>
<thead>
<tr>
<th>Atom</th>
<th>Vazba jednoduchá</th>
<th>Vazba dvojná</th>
<th>Vazba trojná</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br</td>
<td>104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>66</td>
<td>57</td>
<td>51</td>
</tr>
<tr>
<td>S</td>
<td>104</td>
<td>94</td>
<td>87</td>
</tr>
<tr>
<td>Se</td>
<td>117</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>Te</td>
<td>137</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>70</td>
<td>60</td>
<td>54</td>
</tr>
<tr>
<td>P</td>
<td>110</td>
<td>100</td>
<td>93</td>
</tr>
<tr>
<td>As</td>
<td>121</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>Sb</td>
<td>141</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>77</td>
<td>66</td>
<td>60</td>
</tr>
<tr>
<td>Si</td>
<td>117</td>
<td>107</td>
<td>100</td>
</tr>
<tr>
<td>Ge</td>
<td>122</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>Se</td>
<td>140</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>88</td>
<td>76</td>
<td>68</td>
</tr>
</tbody>
</table>

Délka kovalentní vazby je tedy především podmíněna rozměrem vazujících se atomů a lze ji určit jako součet jejich kovalentních poloměrů. Ke zmenšení délky vazby proti tomuto odhadu dochází v těchto případech:

1. Když vznikající vazba je polární. Obvykle se pak může k odhadu použít empirický vzorec
\[
\|A—B\| = \frac{\|A—A\| + \|B—B\|}{2} - 0.09(X_A - X_B) \tag{5-12}
\]

kde \(X_A\) je elektronegativita atomu A a \(X_B\) je elektronegativita atomu B.

3. Délku vazby ovlivňuje typ hybridizace překrývajících se HAO. Rostoucí zastoupení orbitalů s zmenšuje délku vazby. Například vazba v molekule, zprostředkovaná pouze orbitálem \(\sigma_{np}^b\) je delší než vazba mezi týmito atomy v jiné molekule, kde je zprostředkována orbitálem \(\sigma_{np}^b\) a má tedy zřetelnější „charakter s“.

127
Dipolový moment

Ukázali jsme, že vazba v heteronukleární molekule je prakticky vždy provázena existencí elektrického dipolu (str. 97).

Polarit vazuzy v dvouatomové molekule můžeme proto kvantitativně charakterizovat hodnotou tzv. dipolového momentu. Dipolový moment molekuly jako celku může být určen experimentálně měřením permittivity látky vystavené z daných molekul.

Dipolový moment \(p \) molekuly AB je dán za předpokladu, že atom A má náboj \(+\delta\) a atom B náboj \(-\delta\), vztahem

\[
p = \delta l
\]

kde \(l \) značí délku vazby.

V případě polyatomických molekul je dipolový moment molekuly dán vektorovým součtem dipolových momentů všech vaze v molekule.

O polárních molekulách, které mají stálou a nenulovou hodnotu dipolového momentu, říkáme, že tvoří permanentní dipól.

Dipolový moment molekuly je jejím velmi závažným fyzikálním parametrem, ve kterém se odráží struktura molekuly. Vyznačuje se v jednotkách C m nebo v násobcích jednotky zvané deby\(^1\) (1 deby = 3,34 \times 10^{-30} \text{ C m}). Hodnoty dipolových momentů některých molekul jsou uvedeny v tab. 5-12.

<table>
<thead>
<tr>
<th>Molekula</th>
<th>Dipolový moment (\vec{p}) (\text{C m} \times 10^{30})</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>6,08</td>
</tr>
<tr>
<td>HCl</td>
<td>3,37</td>
</tr>
<tr>
<td>HBr</td>
<td>2,64</td>
</tr>
<tr>
<td>HI</td>
<td>1,27</td>
</tr>
<tr>
<td>HCN</td>
<td>9,79</td>
</tr>
<tr>
<td>NH(_3)</td>
<td>4,38</td>
</tr>
<tr>
<td>H(_2)O</td>
<td>6,15</td>
</tr>
<tr>
<td>H(_2)S</td>
<td>3,67</td>
</tr>
<tr>
<td>CO</td>
<td>0,40</td>
</tr>
<tr>
<td>NO</td>
<td>0,50</td>
</tr>
<tr>
<td>HCl</td>
<td>2,17</td>
</tr>
<tr>
<td>H(_2)</td>
<td>0</td>
</tr>
<tr>
<td>O(_2)</td>
<td>0</td>
</tr>
<tr>
<td>N(_2)</td>
<td>0</td>
</tr>
<tr>
<td>CO(_2)</td>
<td>0</td>
</tr>
<tr>
<td>CS(_2)</td>
<td>0</td>
</tr>
<tr>
<td>CH(_4)</td>
<td>0</td>
</tr>
<tr>
<td>LiH</td>
<td>19,64</td>
</tr>
<tr>
<td>KF</td>
<td>28,72</td>
</tr>
<tr>
<td>KI</td>
<td>30,86</td>
</tr>
</tbody>
</table>

\(^1\) Jednotka deby nepatří mezi schválené fyzikální jednotky soustavy SI.
6 Formální vyjadřování a klasifikace chemických vazeb

Mimořádná složitost podstaty chemické vazby se nemusí vždy plně odrážet v jejím symbolickém zobrazení. Při jednoduchých chemických úvahách a při znázorňování vazeb v molekulách a složených ioniotech nebo při vyjadřování chemických změn probíhajících v souborech molekul nebo iontů lze vystačit s více či méně zjednodušeným popisem situace. Je ovšem nutné užívat jednotnou symboliku, která byla smluvena a která je — až na nepříliš podstatné výjimky — jednoznačná.

Uchylíte se k těmto zjednodušujícím přístupům je nezbytné, chceme-li třídit (klasifikovat) vazby na jednotlivé jejich typy, chceme-li popsat cesty jejich vzniku a zániku a chceme-li formuloval některé, i když ne zcela přesné, ale často užívané pojmy, které slouží k slovní či číselné charakterizaci uvažovaných se vazebných poměrů.

Symbolice vazby, její klasifikaci, zavedení některých pojmů mají původ v zjednodušených představách a zákonnostech odrážejících existenci vazby se budeme věnovat v této kapitole.

6.1 ATOMOVÁ A ELEKTRONOVÁ KONFIGURACE

Chceme-li popsat určité relativně stálé uskupení atomů, musíme vždy vyjádřit zejména jeho tzv. atomovou konfiguraci, tj. vzájemnou polohu atomů v prostoru. Atomová konfigurace je určována geometrií daného uskupení atomů. Formálně ji popisujeme určením geometrického tvaru, který atomy (jejich jádra) v prostoru vytvářejí, čielným vyjádřením vzdálenosti mezi jádry atomů a řádů, které svářejí spojnice jejich jader. Všechny tyto údaje lze zjišťovat různými objektivněmi experimentálními metodami.

Atomové konfigurace se mnohdy vyznačují vysokým symetrickým uspořádáním, jindy jsou naopak velmi složité a nepravidelné. Jednoduchý návod na odhad atomové konfigurace sloučenin nepřechodných prvků jsme uvedli při výkladu teorie VSEPR (odd. 5.7).

Vedle atomové konfigurace je základním znakem každého uskupení atomů i uspořádání zúčastněných elektronů čili tzv. elektronová konfigurace. Pod tímto pojmem si ve zjednodušení představujeme buď prosté rozložení hustoty elektronů po skeletu atomových jader, anebo — přesněji a podrobněji — jím rozumíme rozdělení elektronů na MO dané částice, energetickou posloupnost MO a posloupnost energetických elektronových stavů molekuly.

Vidíme, že určité atomové konfigurace může přislušet více konfigurací elektronových. Je třeba zdůraznit, že naopak změna atomové konfigurace je vždy provázena změnou konfigurace elektronové.

129
Z uvedeného příkladu dvojice částic \(\text{CH}_4 \) a \(\text{CH}_3^+ \) poznáváme, že chemické vazby v molekule nebo iontu jsou navzájem na sobě závislé. Přesný popis vazby znamená vždy popis elektronové konfigurace celé částice. To ovšem velmi komplikuje popis vazebných poměrů molekul, zvláště jsou-li složité (polytomické). Představa, že elektronová konfigurace určité vazby v molekule je nezávislá na elektronové konfiguraci zbytku molekuly, je zkracujícím zjednodušením v popisu vazebných poměrů molekul. Přesto se této představy často používá. Vazby v částicích chápeme jako izolované vazby lokalizované mezi dvěma atomy a umožňujeme si tak názorný popis situace, užívání strukturních vzorců a odhad prostorového uspořádání molekul.

6.2 SYMBOLIKA CHEMICKÉ VAZBY

Valenční elektrony atomů kreslíme jako tečky:

\[
\text{Li}^+ \cdot \text{Be}^+ \cdot \text{B}^- \cdot \text{C}^- \cdot \text{N}^- \cdot \text{O}^- \cdot \text{F}^- \cdot \text{Cl}^- \cdot \text{Ne}
\]

Dvojice elektronů však nejčastěji značíme čárek:

\[
\text{Li}^+ \cdot \text{Be}^- \cdot \text{B}^- \cdot \text{C}^- \cdot \text{N}^- \cdot \text{O}^- \cdot \text{F}^- \cdot \text{Cl}^- \cdot \text{Ne}
\]

Jen výjimečně označujeme nepárový elektron u symbolu atomu řípou:

\[
\text{Li}^+ \cdot \text{Be}^- \cdot \text{B}^- \cdot \text{C}^- \cdot \text{N}^- \cdot \text{O}^- \cdot \text{F}^- \cdot \text{Cl}^- \cdot \text{Ne}
\]

(V diagramoch MO a při rozpisu elektronových konfigurací atomů je naopak užívat řípky běžně.) Elektronový pár, který zprostředkovává vazbu mezi dvěma atomy A a B, kreslíme jako jejich spojnici \(A-B \), např.

\[
\text{H}-\text{Cl} \quad \text{H}-\text{O}-\text{H} \quad \text{H}-\text{N}-\text{H}
\]

V uvedených případech mají všechny vazby charakter \(\sigma \). Jestliž je vazba mezi dvěma atomy zprostředkována větším počtem elektronů (např. čtyřmi nebo šesti), tj. je-li vedle vazby \(\sigma \) přítomna ještě vazba \(\pi \) nebo dokonce dvoujíce vazeb \(\pi \), kreslíme mezi atomy příslušný počet čárků:

\[
\text{O} = \text{O} \quad \text{O} \equiv \text{O} \quad \text{O} \equiv \text{O}
\]

Systém konjugovaných dvojních vazeb lze znázornit dvojím způsobem:

\[
-\text{C} = \text{C} = \text{C} = - \quad -\text{C} = \text{C} = \text{C} = -
\]

Obdobně se delokalizace vazby \(\pi \) po skeletu molekuly vyjadří huď skupinou vzorců s putující dvojnicí vazby, nebo čárkami provázcími localizované vazby \(\sigma \):

\[
\begin{array}{c}
\text{O} \\
\text{S} \\
\text{O}
\end{array} \leftrightarrow \begin{array}{c}
\text{O} \\
\text{S} \\
\text{O}
\end{array}
\]

Elektronové páry, popř. jednotlivé elektrony valenční sféry atomů, které se neúčastní vazby (ne-vazebné elektrony) zobrazujeme čárek (pár) nebo tečkou (jednotlivý elektron) u symbolu prvku:

\[
\text{H} = \text{O} \quad \text{H} = \text{O} = \text{H} \quad \text{H} \equiv \text{O} = \text{H}
\]
Checeme-li znázornit, že určitá vazba má polární charakter, vyznačíme vzniklé částečné (parciální) náboje δ^+ a δ^- na obou zučastněných atomech nad symbolem prvku:

$$\begin{array}{c}
\text{H} - \text{Br}^+ & \text{H} - \text{S}^+ - \text{H} & \text{H} - \text{P}^+ - \text{H} \\
\text{O} & \text{O} & \text{O} \\
\text{Cl}^- & \text{N} & \text{S} \\
\text{O} & \text{O} & \text{O}
\end{array}$$

Vazbu, která je tak polární, že v ni již převládá iontová interakce nad interakcí kovalentní, nikdy neznázorňujeme spojovací čárkou, nýbrž pouze specifickým způsobem sloužícím k vyjádření iontové vazby — prostým uvedením iontů, které vazbu vytvářejí:

$$\text{Na}^+ \text{Cl}^- \quad \text{Na}^+ \text{Cl}^-$$

Pokud je některý z iontů viceatomový a jeho vnitřní vazby jsou kovalentní, znázorníme uspořádání iontu stejným způsobem jako strukturu molekuly:

$$\begin{array}{c}
\text{H} & \text{N} & \text{H} \\
2 \text{Na}^+ & \text{K}^+ \text{[IC=N]}^+ & \text{K}^+ \text{[O=N]}^+
\end{array}$$

6.3 CHEMICKÉ VZORCE

Chemické vzorce jsou sestavení symbolů atomů prvků, z nichž se skládá chemická látka. Pomocí vzorců se vyjadřuje chemické složení látek, zjednodušená elektronová struktura i geometrie molekul a viceatomových iontů, popř. krystalových měřítek. Využívají se ke znázornění některých struktur příběhu chemických reakcí. Pro všechny tyto účely samozřejmě nevystáčíme s jediným druhem vzorců.

S jednotlivými typy vzorců, s informacemi, které nám o molekulách poskytují, s pravdou, jimiž se řídíme při jejich sestavování, se nyní postupně seznámíme.

- **Vzorce stechiometrické**

- **Vzorce molekulové**

Molekulové vzorce vyjadřují druh a počet atomů obsažených v molekulách nebo vzorcových jednotkách (str. 141). Tím současně určíme i relativní molekulové hmotnosti. Uspořádání mole-
kulových vzorců je stejná jako u vzorců stechiometrických. Pokud chceme zdůraznit, že jde o molekulový vzorec, dáváme jej do kulatých závorek. V některých případech je užitečné označit určitý známý počet atomů nebo atomových skupin obecným indexem n a uvést hodnoty, jichž n nabývá. U makromolekul s neznámým počtem stavebních jednotek (merů) se užívá index x.

V tab. 6-1 je uvedeno několik příkladů dvojic stechiometrických a molekulových vzorců. Vzájemné srovnání obou druhů vzorců umožňuje utvořit si názornou představu o jejich uspořádání a významu.

Tabuľka 6-1. Příklady molekulových a stechiometrických vzorců sloučenin

<table>
<thead>
<tr>
<th>Stechiometrický vzorec</th>
<th>Molekulový vzorec</th>
</tr>
</thead>
<tbody>
<tr>
<td>HO</td>
<td>H₂O₂</td>
</tr>
<tr>
<td>Cl</td>
<td>Cl₂</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>P₂O₁₀</td>
</tr>
<tr>
<td>As₂S₆</td>
<td>As₂S₆</td>
</tr>
<tr>
<td>H₃P₂O₇</td>
<td>(HPO₂)₃; n = 3, 4</td>
</tr>
<tr>
<td>SiO₂</td>
<td>(SiO₂)ₙ</td>
</tr>
<tr>
<td>PNCI₄</td>
<td>(PNCI₄)ₙ</td>
</tr>
<tr>
<td>H₂S</td>
<td>H₂Sₙ; n = 1, 2, ...</td>
</tr>
<tr>
<td>HS</td>
<td></td>
</tr>
<tr>
<td>H₂S₃</td>
<td></td>
</tr>
<tr>
<td>HS₂</td>
<td></td>
</tr>
</tbody>
</table>

• Funkční vzorce

Říkáme jim též vzorce *racionalní*. Vyjadřují ve zjednodušené formě základní strukturu molekuly – její atomovou konfiguraci. Zdůrazňují v látce přítomnost a posloupnost funkčních skupin, tj. charakteristických atomových uskupení. Funkční skupiny se pro přehlednost vkládají do kulatých závorek, zejména je-li třeba vyjádřit jejich počet číslici v indexu. Jindy se pouze oddělují tečkou. Tvoří-li funkční skupina (u anorganických sloučenin) velmi stabilní čelek, tzv. komplex, uvádí se v hranatých závorkách. Typickými příklady funkčních vzorců jsou: Ca(OH)₂, (NH₄)₂SO₄, SO₄(OH)₂, Bi(OH)(NO₃)₃, CH₃, CH₃, NH₂NH₂, CuSO₄·5H₂O, SiO₂·xH₂O, K₂[PtCl₆], [Cr(H₂O)₆]Cl₃, [PtBr₄(NH₄)₂].

• Elektronové strukturní vzorce

Základní porozumění těmto vzorcům jsme předpokládali na několika místech předchozího výkladu. Pro úplnost a pro mimořádnou důležitost této symboliky se jí nyní budeme podrobněji zabývat.

Těmito vzorcům vyjadřujeme ve dvourozměrném prostoru topologii (místopis) atomové konfigurace molekuly nebo iontu (popř. krystalu) i jejich zjednodušenou elektronovou konfiguraci. Při konstrukci elektronových strukturních vzorců se používá symbolika chemických vazeb, kterou jsme uvedli na začátku této kapitoly. Například vzorec molekuly vody:

```
\begin{verbatim}
H——O——H
\end{verbatim}
```

132

Obdobně vzorec oxidu uhličitého vyjadřuje, že v jeho molekule nejsou atomy kyslíku spojeny přímo, nýbrž prostřednictvím atomu uhličitu:

\[\overset{\text{C}}{\text{O}} \]

Naopak v oxidu dusním, který vytváří lineární molekulu stejně jako oxid uhličitý, jsou oba atomy dusíku vzájemně vázány:

\[\overset{\text{N}}{\text{O}} \]

Z uvedených příkladů je zřejmé, že k tomu, abychom mohli napsat elektronový strukturní vzorec, potřebujeme být informováni o rozložení atomů v molekule.

Vzorce H₂O, N₂O a CO₂ svědčí jednoznačně o nízkomolekulárním charakteru těchto látek (molekuly jsou tvořeny jen několika atomy). Protikladem sloučenin tohoto typu jsou sloučeniny vysokomolekulární. Například struktura oxidu křemičitého SiO₂ je tvořena protonovou mříží atomů, jejíž divorozměrný obraz je vyjadřen neocharizovaným vzorcem:

\[
\begin{array}{cccc}
 & & & \text{Si-O-Si-O-Si-O-Si-O} \\
 & \text{Si-O-Si-O-Si-O-Si-O} \\
 & & & \text{Si-O-Si-O-Si-O-Si-O} \\
 & & & \text{Si-O-Si-O-Si-O-Si-O} \\
\end{array}
\]

Krystál SiO₂ je celý jedinou velikou makromolekulou.

Elektronové strukturní vzorce vyjadřují nejen topologii molekuly, ale i způsob rozdělení valenčních elektronů po jejím skeletu a jejich vazební funkci. Znázorňují elektronové páry zprostředkované vazbou mezi atomy, ukazují nevazebné elektrony a elektronové páry lokalizované na jednotlivých atomech a vyjadřují i event. přítomnost delokalizovaných vazeb.

Při formulaci elektronových strukturních vzorců bychom měli mít v úvahu z hlediska optimálního zkrácení délky vazeb a maximálního využití molekulových elektronů.

Rozdělení elektronových strukturních vzorců volíme nejčastěji tento formální postup:

a) Uvažujme, zda sloučenina je iontová, nebo kovalentní. U složitějších sloučenin rozhodneme, které z vazeb jsou kovalentní a které iontové.

b) Napíšeme skelet molekuly (iontu), který vyjadřuje její topologii (atomovou konfiguraci). Uspořádání atomů v molekule přitom odhadujeme na základě chemické zkušenosti nebo analogie.
Někdy nás odhad selhává a musíme být informováni o atomové konfiguraci z experimentálních údajů.

- Zjistíme celkový počet valenčních elektronů atomů tvořících molekulu (ion). Ziskáme jej jako součet početů valenčních elektronů dodaných do molekuly všemi jejimi atomy. U katiónů tento počet zmenšíme o náboj kationu, u aniontů jej naopak o náboj aniontu zvětšíme.

- Získaný počet elektronů se snažíme umístit ve formě elektronových páreň do skeleta molekuly tak, abychom respektovali oktetové pravidlo.

- Podle Lewisova oktetového pravidla je součet početu elektronů, zprostředkovávajících vazbu určitého atomu s atomy jej obklopujícími, a počtu nevazebných elektronů tohoto atomu roven osmi (u vodíku dvěma).

- Při konstrukci vzorce přihlížíme k fyzikálním vlastnostem látky (str. 163). Umožňují nám rozhodnout zejména o tom, zda sloučenina má nízkomolekulární, nebo vysokomolekulární charakter.

- U některých sloučenin je oktetové pravidlo porušeno (většinou pouze na jediném atomu). Jsou to obvykle sloučeniny s deficitem elektronů nebo sloučeniny, u nichž se alespoň na jednom z atomů účastní vazby orbitály d.

Příklady vzorců sloučenin respektujících oktetové pravidlo:

\[
\text{H} - \text{O} - \text{H}^+ \quad \left[\begin{array}{c}
\text{O}^2- \\
\text{H}^+ \\
\text{O}^-
\end{array} \right]
\]

\[
\text{H} - \text{O} - \text{H}^+ \quad \left[\begin{array}{c}
\text{O}^2- \\
\text{H}^+ \\
\text{O}^-
\end{array} \right]
\]

Příklady sloučenin s atomem porušujícím oktetové pravidlo:

\[
\text{F} - \text{O} - \text{F}^2- \quad \text{O} - \text{O}^2- \quad \text{O} - \text{O}^2-
\]

V některých případech při sestavování elektronových strukturních vzorců zjistíme, že molekulu nebo ion lze popsat dvěma i více zcela ekvivalentními vzorci plně respektujícími oktetové pravidlo. Například dusičnanový anion lze vyjádřit třemi vzorci:

\[
\left[\begin{array}{c}
\text{O}^2-
\end{array} \right] \\
\text{N} \\
\text{O}^-
\]

\[
\left[\begin{array}{c}
\text{O}^2-
\end{array} \right] \\
\text{N} \\
\text{O}^-
\]

Takovýto jev svědčí nejčastěji o přítomnosti delokalizované vazby π.
O tom, jak přibližný a zkrácený obraz vazby mohou v některých případech elektronové strukturní vzorce dávat, a o tom, že výrazové prostředky použité při jejich formulaci jsou někdy nedostatečné, se můžeme přesvědčit, pokusíme-li se formulovat např. vzorce \(\text{O}_2^+ \), \(\text{O}_2^- \), \(\text{O}_4 \) a \(\text{O}_8^- \). Přesnou vazebnou charakteristiku těchto částíc jsme již uvedli dříve (str. 93).

- **Geometrické vzorce**

 K vystižení skutečného geometrického uspořádání (atomové konfigurace) molekul a iontů slouží geometrické vzorce. Atomy v nich kreslíme jako kroužky, jejichž poloměr je úměrný velikosti atomů. Spojnicemi kroužků vyznačme charakteristické geometrické uspořádání. Spojnice zákreslujeme buď v místě vazeb (obr. 6-1a), nebo tak, aby vyjadřovaly celkový tvar molekuly bez příhlednutí k uspořádání vazeb mezi atomy (obr. 6-1b). Někdy se oba tyto způsoby kombinují, popř. se používá dalších grafických prostředků ke zlepšení názornosti vzorce. Příklady geometrických vzorců některých molekul jsou uvedeny na obr. 6-2.

- **Krystalochemické vzorce**

 Tyto vzorce, nazývané též někdy vzorce **koordinací**, vyjadřují způsob, jímž je každý atom, ion či molekula v krystalové mřížce bezprostředně oklopen ostatními stavebněmi jednotkami.
Jsou to vlastně stehiometrické vzorce, k nimž se přidávají ve tvaru zlomků krystalochemiická koordinační čísla. Způsob vytváření krystalochemicích vzorců je zřejmý z těchto příkladů:

<table>
<thead>
<tr>
<th>Vzorec</th>
<th>Složení</th>
<th>Bezprostřední koordinační čísla</th>
</tr>
</thead>
<tbody>
<tr>
<td>{NaCl₂}⁶</td>
<td>Na⁺:Cl⁻ = 1:1</td>
<td>atom Na je obklopen šestí atomy Cl atom Cl je obklopen šesti atomy Na</td>
</tr>
<tr>
<td>{SiO₂}⁴</td>
<td>Si⁺:O⁻ = 1:2</td>
<td>atom Si je obklopen čtyřmi atomy O atom O je obklopen dvěma atomy Si</td>
</tr>
<tr>
<td>{C₃}</td>
<td>C (grafit)</td>
<td>každý atom C je obklopen třemi jinými atomy C</td>
</tr>
<tr>
<td>{C₄}</td>
<td>C (diamant)</td>
<td>každý atom C je obklopen čtyřmi jinými atomy C</td>
</tr>
<tr>
<td>{PNC₃}⁴</td>
<td>P⁺:N⁻:Cl⁻ = 1:1:2</td>
<td>atom P je obklopen dvěma atomy Cl a dvěma atomy N atom N je obklopen dvěma atomy P</td>
</tr>
</tbody>
</table>

6.4 KLASIFIKACE TVORBY A ZÁNIKU KOVALENTNÍCH VAZEB

Účelně, i když někdy poněkud formální, je třídění procesů, kterými se vytvářejí a zanikají kovalentní vazby.

1. Můžeme-li si představit, že ke vzniku vazby mezi dvěma atomy došlo tak, že se na něm — pokud jde o počet elektronů poskytnutých na vytvoření vazebních elektronových párů — podílely oba atomy stejnou měrou, používáme pro tento děj název koligace:

 \[A⁺ + B⁻ = A⁻B \]

 Příklad: \[H⁺ + H⁻ = H⁻H \quad |\quad C\equiv C⁺ = C⁻\equiv C⁻ \quad |\quad N⁺⁺ + N⁻⁻ = N≡N⁻⁻ \]

2. Opačný děj je tzv. homolýza, tedy štěpení existující vazby mezi atomy, při němž se atomy vazebné elektrony rozdělí stejným dílem:

 \[A⁻B = A⁺ + B⁻ \]

 Příklad: \[F⁻ + F⁺ = F⁻ + F⁺ \quad H⁻O⁻H = H⁻O⁻H⁻ + H⁺ \]

3. Kovalentní vazba se může vytvořit i tzv. koordinaci. K tomuto ději dochází tehdy, když se vazebný MO vytváří z východních orbitalů, z nichž jeden je prázdný a druhý (patřící druhé zúčastněné části) je obsazen elektronovým pásem nevazebného charakteru:

 \[A + B = A⁺⁺B⁻⁺ \]

 Příklad: \[H⁺⁺ + O⁻⁻H⁻⁺ = H⁺⁺H⁻⁻ \]

\[\begin{array}{ll}
H & F⁺⁺ \\
H & F⁻⁻ \\
& H \\
& H \\
\end{array} \quad \begin{array}{ll}
H⁻⁻ & H⁺⁺B⁻⁻ \\
& H⁻⁻B⁺⁺F⁻⁻ \\
& H⁺⁺F⁻⁻ \\
& H⁺⁺F⁻⁻ \\
\end{array} \]

136
Atomy, molekuly a ionty, které obsahují nevazebné elektronové páry a mohou jimi obsazovat vakuantní orbitály jiných molekul, nazýváme důrcí čili donory elektronových párů. Tuto jejich schopnost považujeme za nejvýznamnější projev jejich tzv. nukleofilních vlastností.

Atomy, molekuly a ionty, které naopak mají průzné (vakuantní) orbitály, umístěné energeticky dostatečně nízko, aby pro ně bylo výhodné přijmout elektronový pár od donora, označujeme za přijmoučí čili akceptorovou. Schopnost částice být akceptorem elektronového páru považujeme za projev tzv. elektrofilních vlastností.

Chceme-li zdůraznit, že kovalentní vazba vzniklá koordinací, nazveme ji koordinační nebo těž donor-akceptorovou. Děj koordinace je zvlášť charakteristický pro vznik koordinačních sloučenin (komplexů):

\[
\begin{align*}
\text{Cu}^{2+} + 4 \text{NH}_3 & = [\text{Cu(NH}_3)_4]^{2+} \\
\text{PtCl}_4^- + 2 \text{Cl}^- & = [\text{PtCl}_6]^{2-}
\end{align*}
\]

Této štěpení sloučenin budeme věnovat pozornost v kap. 25.

Donor-akceptorová vazba se ve strukturních elektronových vzorcích vyražuje šipkou (místo spojovací čárky). Směr šipky souhlasí se směrem přesunu elektronového párů při vzniku vazby.

4. Opakem koordinace je takové štěpení vazby, při němž vazebný elektronový pár případně pouze jednomu z atomů. Proces se nazývá heterolýza:

\[
A - B = A^+ + e^- \\
\text{Příklad: } H\cdots\overline{O}\cdotsH = H^+ + \overline{O}\cdotsH \\
(\overline{I}\cdots\overline{C}) = I^- + \overline{Cl}^-
\]

Vznik a zánik kovalentních vazeb při průběhu chemických reakcí má obvykle mechanismus neměnné složky, než je sama podstata chemické vazby. Přesto v tomto mechanismu při zjednodušení přístupu můžeme velmi často najít a rozeznat jako dílčí reakční kroky některé ze čtyř uvedených procesů.

6.5 JEDNODUCHÁ CHARAKTERISTIKA VAZEBNÝCH SITUACÍ

- Oxidační číslo atomu

Jednou z nejběžnějších číslových veličin, jejichž pomocí se snažíme charakterizovat oxidační stav, v němž se určitý atom v molekule nebo iontu vyskytuje, je tzv. oxidační číslo, resp. oxidační stupeň. Tento pojem nahradil předchozí pojmy valence a materiální stavy, které byly do chvění počívaly v 60. letech minulého století. Tehdy byly rozvíjeny základy tzv. valenční nauky, primitivní představy o možnostech vazby prvků ve sloučeninách. Valence čili močenství vodíku bylo položeno za rovno jedné a močenství ostatních prvků bylo pak definováno jako počet atomů vodíku, s nimiž se atom prvků může vázat nebo je v jiných sloučeninách náhrazovat. Dnes se již tyto pojmy a představy neužívají.

Oxidační číslo atomu se nejčastěji definuje jako relativní elektřický náboj (tj. náboj vyjádřený počtem elektrarních nábojů), který by byl na atomu přitomen, kdybychom elektrony v každé vazbě z atomu vycházející přidělili elektronegativnostmu z vazebných partnerů. Pokud je vazba homo- nulekární, tj. spojuje-li atomy téhož směru, rozděluje počet elektronů zprostředkovávajících vazbu...

Jen výjimečně se při určování oxidačního čísla atomu ve sloučenině (iontu) postupuje podle definice tak, že se vžádi elektronegativity atomů a pak se ruší važby za přesouvání elektronových vazebných párů k elektronegativnějšímu z partnerů. Nejčastěji zjistíme oxidační číslo tak, že sloučeninu považuji za formalně složenou z iontů. Náboj takového iontu je shodný s oxidačními čísly atomů. Nedovedeme-li rozdělovat o velikostí nábojů hypotetických iontů a nejnovší ani dostatečné rozdíly v hodnotách elektronegativit, využijeme při určování oxidačního čísla znalosti chemických vlastností sloučeniny.

Pro rychlé určování oxidačních čísel atomů je užitečné zapamatovat si tato pravidla:
1. Ionoizované atomy a atomy v molekulech prvku mají oxidační číslo rovno nule.
3. Oxidační číslo jednofotomových iontů se rovná jejich elektrickému náboji.
4. Kyslík má ve všech svých sloučeninách kromě peroxidů a sloučenin s vazbou O=O oxidační číslo −II.
5. Algebraický součet oxidačních čísel všech atomů elektroneutrální molekuly musí být roven nule.

V kterémkoliv iontu musí být roven náboj iontu.

V kap. 8, věnované klasifikaci prvků, se dozvímme, jak souvisí největší a nejmenší hodnota oxidačního čísla atomu s postavením prvku v periodické tabulce.

Způsob jednoduchého určování oxidačních čísel prvků si ukládeme na dvou příkladech:

\[
\begin{align*}
\text{HClO}_4 & \quad \left[\text{PtCl}_4\right]^{2-} \\
4 \text{O}^{2-} & \quad 6 \text{Cl}^{-} \\
\text{H}^{+} & \quad \text{Pt}^{2+} \\
\text{Cl}^{-} & \quad ? \\
\sum & = 0 \\
\end{align*}
\]

Oxidační číslo atomu Cl v kyselině chloridě je VII. Oxidační číslo atomu Pt v hexachloroplatátčanovém aniontu je IV.

Uvedeme ještě několik sloučenin s vyznačovanými oxidačními čísly jejich atomů:

\[
\begin{align*}
\text{H}_2\text{O}^{2-} & \quad \text{voda} \\
\text{H}_2\text{SO}_4 & \quad \text{kyselina sírová} \\
\text{NaH}^{2-} & \quad \text{hydrid sodný} \\
\text{K}\text{MnO}_4 & \quad \text{manganit draselný} \\
\text{N}_2\text{H}_4\text{NO}_3 & \quad \text{dusičnan amonový} \\
\text{H}_2\text{O}_2 & \quad \text{peroxid vodík} \\
\text{N}_2\text{O}_2 & \quad \text{florid dusitý} \\
\text{O}_2\text{F}_2 & \quad \text{florid kyslíku} \\
\left[\text{C}^{6+}\text{O}_4\right]^{2-} & \quad \text{anion uhlíčitanový} \\
\left[\text{S}^{2+}\text{O}_4\right]^{2-} & \quad \text{anion thiokyslíkový} \\
\text{K}_2\text{[Mn(CN)]_3} & \quad \text{hexakyanomanganan pentadraselný} \\
\text{K}_2\text{Cr}_2\text{O}_7 & \quad \text{díkroman didraselný} \\
\text{K}_2\text{[Ni(CN)]_3} & \quad \text{tetrakyanoníkl tetradaselný} \\
\text{Na}_2\text{[Fe(CN)]_3} & \quad \text{tetrakarbonylferdrid disodný} \\
\text{NaCN}^{\text{2-}} & \quad \text{kyanid sodný} \\
\end{align*}
\]

Oxidační čísla můžeme vyznačit bud v všech atomů sloučeniny nebo jen u některých z nich.

Určení oxidačních čísel prvků v některých sloučeninách vyžaduje jistou chemickou zkušenost.
a ojediněle i hlubší znalost skutečného vazebného uspořádání. Někdy (např. u organických sloučenin) se dokonce přiřazení oxidačního čísla určitému prvku pro naprostou formálnost jeho hodnoty vybíháme, zejména dospíváme-li výpočtem k zmínké načasového oxidačního čísla. Ve většině případů však oxidační číslo do jisté míry, z hlediska rozložení valenčních elektronů, odráží vazebné poměry v daném uskupení atomů.

Pro primitivní objasnění stekiométrické sloučeniny je oxidační číslo užitečným pojmem. Stejně závažně je jeho použití při pojmenovávání anorganických sloučenin a při formálním vyčíslování chemických rovnic.

- **Vaznost**

K jednoduché charakterizace vazebné situace atomu v určité sloučenině může posloužit určení jeho tzv. vaznosti (vazebnosti, kovalence). Pod tímto pojmem rozumíme počet sdílených elektronových páre, které daný atom poutají k ostatním atomům.

Podle této definice je uhličitan metanu čtyřvazný. Naproti tomu vaznost atomů N a Cl v iontové molekule Na⁺Cl⁻ je rovna nule. Příkladem postupné vzrůstající vaznosti atomu kyslíku jsou částice

\[
\text{[O₂⁻H]}^-, \quad \text{H} = \text{O}^- + \text{H}^+
\]

V tabulce 6.2 jsou uvedeny vaznosti i oxidační čísla atomů v některých sloučeninách, tabulka umožňuje pochopit význam obou těchto pojmů.

<table>
<thead>
<tr>
<th>Molekula</th>
<th>Elektronový strukturní znak</th>
<th>Oxidační čísla atomů</th>
<th>Vaznost atomů</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂</td>
<td>H=H</td>
<td>H⁰</td>
<td>H(1)</td>
</tr>
<tr>
<td>N₂</td>
<td>N≡N</td>
<td>N⁰</td>
<td>N(3)</td>
</tr>
<tr>
<td>CO</td>
<td>C≡O</td>
<td>C⁰, O⁻²</td>
<td>C(3), O(3)</td>
</tr>
<tr>
<td>NH₃</td>
<td>H=\text{N}⁻⁻</td>
<td>H(1), N(4)</td>
<td></td>
</tr>
<tr>
<td>NH₄⁺</td>
<td>H=\text{N}⁻⁻</td>
<td>H(1), N(3)</td>
<td></td>
</tr>
<tr>
<td>HClO₄⁻</td>
<td>H=O⁻ \text{Cl}⁻⁻</td>
<td>H⁻, Cl⁻⁻, Cl⁻</td>
<td>Cl⁻, H(1), O(2), O(1), Cl(4)</td>
</tr>
<tr>
<td>SF₆</td>
<td>F=S⁻⁻</td>
<td>S⁰, F⁻⁻⁻</td>
<td>S(6), F(1)</td>
</tr>
<tr>
<td>CaO</td>
<td>Ca²⁺ O²⁻</td>
<td>Ca⁰, O⁻⁻⁻</td>
<td>Ca(0), O(0)</td>
</tr>
<tr>
<td>Na₂O₂</td>
<td>2 Na⁺ [O²⁻]²⁻</td>
<td>Na⁺, O⁻⁻⁻</td>
<td>Na⁺, O(1)</td>
</tr>
</tbody>
</table>

139
Formální náboj

Dalším užitečným pojmem používaným při zjednodušení popisu chemické vazby je představa *formálního náboje* atomu. Umožňuje přibližně charakterizovat rozložení valenčních elektronů po atomovém skeletu moleuly a zjednodušeně i některé fyzikální a chemické vlastnosti molekuly.

Formální náboj je dán rozdílem mezi počtem valenčních elektronů daného atoma v nesloučeném stavu a počtem valenčních elektronů, které mu formálně přísluší v dané sloučenině.

Počet valenčních elektronů atomu v nesloučeném stavu odpovídá číslu jeho skupiny v periodickém systému prvků (str. 73). Formální příslušnost valenčních elektronů u sloučených atomů zjišťujeme z počtu jejich vazebných a nevazebných elektronových páří. Každý vazebný elektronový pár přísluší atomu z poloviny, tj. jediném elektronem. Nevazebný elektronový pár přísluší atomu celý a příspěv k celkové bilanci dvěma elektrony.

Výpočet formálního náboje si ukážeme na příkladu kyseliny chlorové:

\[
\begin{align*}
\text{H} & \quad 1 & - & (1 + 0) & = 0 \\
\text{O} & \quad 6 & - & (2 + 4) & = 0 \\
\text{O}_\text{ne} & \quad 6 & - & (1 + 8) & = -1 \\
\text{Cl} & \quad 7 & - & (4 + 0) & = +3
\end{align*}
\]

Elektronový strukturní vzorec s formálními náboji uvezenými v závorkách (nebo kroužcích) napišeme takto:

\[
\begin{align*}
\text{H} & \quad - \quad \text{O}^{2+} \quad \text{O^{2+}} \\
& \quad - \quad \text{Cl}^{2-}
\end{align*}
\]

Správnost výpočtu formálních nábojů lze prověřit sečtením jejich hodnot u všech atomů. Celkový součet formálních nábojů atomů v molekule musí být roven nule. U iontu se rovná jeho náboj.

Izoelektronové a izosterní moleuly a iony

Obsahují-li dvě moleuly nebo dva iony shodný počet atomů (x) i valenčních elektronů (y), říkáme, že jsou *izoelektronové*. V naprosté většině případů mají takovéto částice analogickou atornovou i elektronovou konfiguraci. Jejich vazebné uspořádání je obdobné a je popsáno diagramy MO téhož typu (str. 95).

Dva izoelektronové útvary, které mají stejný celkový náboj, se nazývají *izosterní*. Izosterní moleuly vytvářejí látky, které si jsou velmi podobné svými chemickými i fyzikálními vlastnostmi. Nejběžnější izoelektronové a izosterní částice jsou uvezeny v tab. 6-3.
<table>
<thead>
<tr>
<th>Skupiny izoelektronových částic</th>
<th>H₂, HD, D₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HF, HCl, HS⁻</td>
</tr>
<tr>
<td></td>
<td>NH₄⁺, PH₃⁺, CH₄⁺, SiH₄⁺, [BH₄]⁻, [AlH₄]⁻</td>
</tr>
<tr>
<td>Skupiny izosterních částic</td>
<td>NO⁻, N₂⁻, CO⁻, CN⁻</td>
</tr>
<tr>
<td></td>
<td>NO₂⁻, CO₂⁻, CS₂⁻, N₂O⁻, CN⁻⁻, NCO⁻</td>
</tr>
<tr>
<td></td>
<td>TiCl₄⁻, MnO₂⁻</td>
</tr>
<tr>
<td></td>
<td>SO₄⁻², PO₄⁻³</td>
</tr>
</tbody>
</table>

6.6 NĚKTERÉ ZÁKLADNÍ CHEMICKÉ POJMY A ZÁKONITOSTI

Buďme se zabývat pojmy, představami a elementárními zákonitostmi, které souvisí s existencí chemické varzy, popř. jsou důsledkem atomární skladby látkových forem hmoty. Jejich znalost se předpokládá u každého středoškoláka. Proto jsme tyto pojmy běžně užívali v celém dosavadním výkladu. Nyní uvedeme jejich přesné definice a výklad.

- **Molekula**

 Jestliže se atomy spoji chemickými vazbami, vytvoří vyšší relativně stabilitní celek, který se nazývá molekula. Často říkáme, že molekula je samostatné seskupení atomů, které je při převádění látky do plynového stavu velmi pohyblivá. Některé látky se však nedaji převést do plynového stavu bez pozměnění struktury molekul, které je tvoří. Právě tak některé molekuly obsažené v tuhé fázi nemohou existovat v plynovém skupenství. Širší a univerzálnější platnost lze přísoudit této definici: Molekula je nejmenší část látky, která má chemické vlastnosti této látky a vyznačuje se přesně definovanou atomovou a elektronovou konfigurací.

Veškeré často jsou molekuly stavebními jednotkami látek. Někdy ovšem jednotlivé (několikaatomové) molekuly ve struktuře látky nelze identifikovat. Celý krystal je například makromolekulou tvořenou atomy propojenými kovalentními vazbami (diamant, oxid křemičitý apod.) nebo je ionový a je vystaven ze vzájemně koordinovaných iontů (fluorid sodný, síran draslenný).

V těchto případech formalně určujeme nejmenší část látky, která svým složením ještě odpovídá složení látky, a nazýváme ji vzácnou jednotkou (atom C v diamantu, atom Si a dva atomy O v oxidu křemičitěm, dvojice iontů Na⁺ a F⁻ ve fluoridu sodném a dva ionty K⁺ a jedna SO₄⁻² v síranu draslenném).

Název molekula se dosti často užívá i k označení jakéhokoliv relativně stálého uskupení atomů, a tedy také k označení nabitých částic, které vznikají z molekul odstraněním nebo připojením elektronů (NO⁻², O₂⁻, H₂⁻ apod.). Přesněji je užívat pro tyto částice název molekulový ion.

- **Hmotnost molekuly**

 Pod pojmem hmotnost molekuly se rozumí součet klidových hmotností atomů, které ji vytvářejí. Hmotnost molekuly lze uvádět v obvyklých jednotkách hmotnosti (kg, g). To však v chemii není běžně ani výhodné. Nejčastěji se hmotnost molekuly vyjadřuje pomocí veličiny nazývané relativní molekulová hmotnost (dříve molekulová víaha). Je definována jako poměr hmotnosti
molekuly k atomové hmotnosti konstantě \(n_a \) (str. 27). Označujeme ji obvykle (pro případ molekuly např. \(AB_2 \) symbolem \(M_{AB_2} \)). Relativní molekulovou hmotnost lze vypočítat prostým sečtením relativních atomových hmotností všech atomů, které molekuлу tvoří.

- **Látkové množství**

 V chemii je vhodné vyjadřovat množství látek veličinou, která je uměrná nikoli hmotnosti látky, nýbrž počtu jejich základních jednotek. Veličinou, která má požadované vlastnosti, je tzv. látkové množství. Jeho jednotkou je mol \(^1\). Mol je takové látkové množství, které obsahuje právě tolik elementárních jedinců (entit), kolik jsou uhlíkových atomů v 0,012 kg uhlíku \(^{12}C \). Počet atomů v 12 g uhlíku \(^{12}C \) je samozřejmě znám jen přibližně. Je to \((6,022 \times 10^{23} \pm 0,000031) \times 10^{23}\) atomů. Definice molu se nezmění ani tehdy, až v budoucnu stanovíme hodnotu tohoto čísla přesněji.

 Při každém použití jednotky mol musí být přesně specifikován druh sledované **entity**. Těmito entitami mohou být atomy, molekuly, ionty a elektrony, popř. bliže určená seskupení těchto částic, vezby mezi atomy aj.

- **Molární hmotnost**

 Chceme-li zjistit, kolik molů určitých částic představuje nějaký systém (rozměry blízký utvaru ná obklopujícího světa), nemůžeme z pochopitelných důvodů tento úkol řešit odpočítáváním jednotlivých částic. Postupujeme obvykle tak, že určíme, jakou hmotnost má 1 mol částic, a vypočteme, kolikrát je celková hmotnost daného systému větší než hmotnost 1 molu částic. Pro hmotnost takového množství látky, které obsahuje 1 mol určitých jedinců, se užívá název molární **hmotnost**. Tak např. molární hmotnost sodíku je přibližně 22,990 g mol\(^{-1}\), molární hmotnost vody je 18,015 g mol\(^{-1}\) a molární hmotnost chloridových iónů je 35,453 g mol\(^{-1}\). Platí, že molární hmotnost vyjadřená v jednotkách g mol\(^{-1}\) je čísleně rovná relativní molekulové hmotnosti dané částice [\(M_{\text{Na}} = 22,990 \), \(M_{\text{H}_2\text{O}} = 18,015 \), \(M_{\text{Cl}^-} = 35,453 \)]. Toto shrnutí je zároveň dosaženo vzhledem atomové hmotnosti jednotky u a jednotek látkového množství – molu.

 Také při úvádění souvislejších s představou molární hmotnosti musí být zcela přesně specifikována entita, na niž je pojem molu právě aplikován. Například 1 mol atomů H má hmotnost 1,008 g, 1 mol molekul \(\text{H}_2 \) má však hmotnost 2,016 g a obsahuje 2 moly atomů H. Pojem „1 mol vodíku“ je tedy dvojnačný a v podstatě nepřesný, pokud v kontextu navýšený, jaké „částice vodíku“ máme na mysli.

- **Chemický ekvivalent**

 V chemii atáčkě úžitným pojmem, odrážejícím atomární uspořádání látek i stechiometrii procesů tvorby a zániku chemických sloučenin, je představa tzv. chemického ekvivalentu.

 Pod pojmem chemický ekvivalent prvku nebo sloučeniny se rozumí zlomek atomu, molekuly nebo iontu dané látky, který je při dané chemické změně (včetně či vzniku chemických vazeb, přesně elektronové epódy) formálně (chemicky) rovnocenný jednomu atornu H, iontu H\(^+\) nebo jednomu elektronu. Jestliže tedy např. v příběhu určitého děje jsou každámu z přítomných atomů Fe odevzdané dva elektrony, je chemický ekvivalent želéa pro tento děj roven polovině atomu Fe. Pokračuji-li později chemická změna tak, že každý ion Fe\(^{3+}\) přechází na Fe\(^{2+}\) odtření jediného elektronu, je pro tento další proces chemickým ekvivalentem celý ion Fe\(^{3+}\). Lze samozřejmě uvažit též oba následné děje souborně. Při přeměně Fe \(\rightarrow \) Fe\(^{2+}\) je pak chemický ekvivalent roven jedné třetině atomu Fe.

\(^1\) Jednotka mol byla přijata a zařazena mezi základní jednotky systému SI na 14. generální konferenci pro míry a váhy, konané v roce 1971 v Paříži.

\(^2\) Lze ji těž vyjádřit v jednotkách kg kmol\(^{-1}\).
Obdobně molekula kyseliny sírové, která při určitém chemickém ději zruší dvě své vazby O—H za odštěpení dvojí protonů H⁺, představuje dva chemické ekvivalenty. Ekvivalentem kyseliny pro tento děj je tedy pokrova její molekuly. Pokud by kyselina při jiné reakci odštěpovála pouze jedním proton a měnila se na sau HSO₄⁻, rovněž by se její chemické ekvivalenty celé molekule.

V běžných chemických výpočtech nebilancujeme jednotlivé chemické ekvivalenty, tj. formální zlomky atomů, molekul a iontů, nýbrž mohou těchto ekvivalentů).

Mol chemických ekvivalentů bývá označován názvem mol. Hmotnost jednoho valu se nazývá molarní hmotnost.

Váž však nepatří v soustavě SI mezi jednotky přípustné pro vyjadřování látkového množství a ve formulaci fyzikálně chemických vztahů se nesmí použít. „5 valů“ znamená pro děj Fe → Fe²⁺ tedy vyjádříme „5 mol [Fe(II)]. Obdobně „2,15 valů“ kyseliny sírové pro děj H₂SO₄ = SO₄²⁻ + 2 H⁺ zapiseme „2,15 mol [H₂SO₄].

Bez jakékoliv výjimky platí, že látky účastící se chemické reakce reagují spolu v poměru hmotnosti svých chemických ekvivalentů. Znamená to, že v praxi reakční komponenty zasahuje bez zbytek s valením druhé reakční komponenty a s valy dalších komponent, pokud v reakci vystupují. Chemické ekvivalenty a jejich násobky – valy – musí být ovládány právě pro daný chemický děj.

Pojem valu a valové hmotnosti je v moderní chemii (jmenovitě u nás v ČSSR) opuštěn. Jeho používání v chemických výpočtech všeho druhu se nahrazuje výpočty na základě chemického rovnicne a jejich koeficientů.

Zákon stálých slučovacích poměrů

Je jedním z empirických zákonů chemie. Objevil jej na základě experimentálně zjištěného složení různých látek francouzský chemik Proust (1799) a zcela nezvází její formulovat na základě představ atomové hypotézy Dalton (1803).

Všechny sloučeniny, které splňují zákon stálých poměrů slučovacích, se podle jednoho z jeho objevitelů nazývají daltonovky.

Novodobě chemie ukázala, že u tuhých látek (krystalických i amorfních) je poměrně běžným jevem jisté porušení tohoto zákona. Ve struktuře látek bývají přítomny poruchy (defekty). Například v mlží jsou navíc rozmišleny atomy některého z prvků nebo naopak určitá část atomů v mlže chybí. Jsou možné i další, dosti složité struktury. Tak dochází k odchylkám stehmiometrie látky od složení určeného vzorcové jednotkou. Většinou bývají tyto odchylky zcela malé, ale u některých sloučení mohou být i experimentálně (analýzou) prokazatelné, popř. se složení sloučeniny může v řadě případů zvětšit takovýmto sloučeninám říkáte nedaltonovky (berthollitické).

Zákon násobných slučovacích poměrů

Některé prvky se spolu slučují v několika různých hmotnostních poměrech, tvoří spolu více sloučení (H₂O a H₂O₂, NH₃, NH₂NH₂ a NH₄⁺ apod.). Podle Daltonem (1803) určeného zákona platí pro hmotnostní zastoupení prvků v těchto sloučeních toto pravidlo:

Tvoří-li spolu dva prky více sloučení, jsou hmotnosti jednoho prku, připadající na určitou hmotnost druhého prku v těchto sloučeních, k sobě v poměru malých celých čísel.

Například ve vodě je hmotnostní zastoupení vodíku a kyslíku dán poměrem m(H):m(O) = 1:8. V peroxidu vodíku je m(H):m(O) = 1:15,8724. Čísla vyjadřují zastoupení kyslíku v obou sloučeních musí být vzájemně v poměru malých celých čísel, tj. 7,9362:15,8724 = 1:2.
7 Slabé interakce mezi molekulami

Molekulové síly působí samozřejmě nejen mezi molekulami téže látky, ale i mezi nesejmi molekulami. Působí na sebe tedy např. nejen molekuly H₂O v kapalné vodě a molekuly C₂H₅OH ve vodě, ale i mezi molekulami H₂O a C₂H₅OH ve směsi vody a etanolu.

Molekulové síly lze podle jejich fyzikálně chemické podstaty rozdělit na dva druhy:
1. síly van der Waalsovy,
2. vazbu vodíkovým můstkem.

7.1 VAN DER WAALSOVY SÍLY

Existenci těchto sil musíme předpokládat při vzájemném přibližení jakéhokoli dvou atomo- volých uskupení. Jsou-li oba útvary stálé, t.j. vyznačují-li se stabilní elektronovou konfigurací, a mají-li minimální tendenci změnit své dosavadní vazebné uspořádání, jsou slabě van der Waalsovy mezmolekulové síly jediným typem interakce, který se mezi nimi projeví.

Van der Waalsovy síly jsou tvořeny příspěvky trojho druhu. Tyto tři typy sil jsou pod- míněny přítomnosti
1. Coulombických,
2. indukčních,
3. disperzních sil.

• Dipol-dipolové coulombické síly

Coulombové (orientační) síly vznikají v systému takových atomových útvarek, které mají permanentní elektrický dipol (str. 128), tedy u molekul, jejichž kovalentní vazba je polární. Fyzikální podstatu těchto sil je čistě elektrostatická. Permanentní dipoly představovávají jednotlivými molekulami se vzájemně silově ovlivňují. Opačně nabité konce molekul se přitažují, stejně nabité odpuzují. Molekuly proto při zaujímaní vzájemné polohy některé pozice preferují, a to ty, při nichž celková energie souboru molekul poněkud klesá. Nejběžnější energeticky výhodné orientace dipolů jsou uvedeny na obr. 7.1. V kapalnicích dochází všem tepelněm pohonu molekul k neustálému porušování vzniklých kon- figurací a k ustavení určité dynamickeho rovnováhy. V krystalích naopak zůstávají vzniklá uspořádání zachována a pravidelně se v krystalové mřížce opakují.
Orientační asociace dipólů se obvykle označuje názvem Keesonův efekt. Je nezanedbatelnou částí celkové štěpné interakce polárních molekul s dostatečně velkým dipolovým momentem (např. molekul H₂O, NH₃ nebo SO₂).

Obr. 7-1. Tři příklady orientační interakce permanentních dipólů

Dipol–molekulové a dipol–dipolové indukční síly

Elektrostatické působení molekul s permanentním dipolmem na jinou molekulu vyvolává určitou deformaci jejího elektronového obalu a vznik indukovaného dipolového momentu. Pokud druhá molekula má svůj vlastní permanentní dipolový moment, pak indukovaný dipolový moment se k němu vektorově přičítá (obr. 7-2). Permanentním dipolmem druhé molekuly je pochopitelně zpětně ovlivňována molekula

Obr. 7-2. Vznik indukovaného dipolového momentu. Permanentní dipoly označeny p₎, indukované pₛ a celkový dipolový moment p. Tečkované je znázorněno zpětné působení druhého permanentního dipolu na první částice

prv. Indukčním působením zasílené dipoly se elektrostatickými silami pouštají. Zvýšení soudržných sil způsobené popsaným jevem se nazývá Debyeův efekt. Vzniklé silové působení nazýváme dipol–dipolové indukční síly (pokud interagují dva a více permanentních dipólů) nebo síly dipol–molekulové (jestliže jedna z částic permanentního dipolu postrádá).

Indukční síly nebojí se příliš velké. Jsou závislé na velikosti permanentních dipolových momentů zúčastněných molekul a na jejich tzv. polarizovatelnosti (deformovatelnosti elektronového obalu molekuly).

Polarizovatelnost molekuly lze vyjádřit bud veličinou, zvanou elektrická polarizovatelnost molekuly μ, odrážející pevnost použití elektronov v elektronovém obalu molekuly (μ má rozměr C m² V⁻¹), nebo tzv. molární polarizovatelnost Pₚ, vystihující jak elektrickou, tak i orientační polarizaci systému molekuly (Pₚ má rozměr m³ mol⁻¹). Polarizovatelnost roste se zvětšující se vzájemnosti valenčních elektronů od jader atomů a v řadách příbuzných molekul se zvyšuje s rostoucí delokalizací elektronů.

- F₂ Cl₂ Br₂ I₂ ethan ethylen butadien
- roste velikost atomu roste počet a delokalizace elektronů
- roste polarizovatelnost roste polarizovatelnost

Disperzní síly

Oba předchozí typy van der Waalsových sil jsou důsledkem přítomnosti permanentních dipólů na molekule a mezi se proto objevovat jen u polárních molekul.

Mezimolekulové interakce u nepolárních uskupení atomů jsou ponechán jiného druhu.

Lze si představit (velmi zjednodušeně), že kladné náboje jednotlivých molekul, nejsou elektrostaticky plně odstíněny vlastními elektrony, a působí proto i na elektrony většiny molekul, které se přibližují. Takovéto ovlivnění dvojice molekul je vzájemné a je přítomné vzniku soudržných sil.

Jiná představa (přesněji a podložitelně kvantově mechanickými výpočty) je založena na předpo-
kluď, že elektrony určité molekuly nesou různé vlivy na vznícení atomových jádr. Při tom těžších poloh všech způsobům nabitých elektronů a těžší kladných nábojů jader spolu v každém časovém okamžiku nesou různé vlivy. Molekula jako by byla časově velmi rychle proměnným dipolům. Vektový součet všech hodnot dipolového momentu, kterého molekula za určitý čas (řádově delší, než je perioda oscilace dipolů) nabyla, je ovlivňován molekuly ronovan nulou. Při přiblížení dvou molekule k sobě jejich proměnné dipoly indukují v různém vzdálenostním usměrnié další proměnný dipol, s nímž mohou interagovat.

Tato interakce se řídí Londonovým efektem. Je stejně jako efekt Debyeu tím, že polarizovatelnější jsou zúčastněné molekuly.

Van der Waalsova vazba reálných molekul

Na existenci van der Waalsových sil se začalo usuzovat po zjištění odchylk mezi chováním reálných plynů a plynu ideálního. Van der Waals (1873) sestavil korigovanou stavovou rovnici platnou pro reálný plyn a podal jednoduché objasnění fyzikálního smyslu jejich korekčních členů. Teprve Keeson (1921), Debye (1920) a London (1930) však podrobili většině fyzikální podstatu mezinálekuových sil.

V reálných molekulách s permanentním dipolom se uplatňují všechny tři druhy van der Waalsových sil. Při tom největší příspěvky tvoří většinou disperzní sily Londonovy. V reálných molekulách bez permanentního dipola jsou disperzní sily jediným možným způsobem van der Waalsovy varby. Tyto skutečnosti dokreslí příklady uvedené v tab. 7-1. Jsou v ní uvedeny vypočtené hodnoty energie jednotlivých typů van der Waalsových interakcí u několika molekul spolu s hodnotami jejich dipolových momentů a množství polarizovatelnosti.

Z tabulky je patrné, že Londonovy sily tvoří v řadě případů nejvýznamnější část van der Waalsových sil a jsou zřetelně závislé na polarizovatelnosti molekul. Celková energie van der Waalsovy vazby dvojice molekul nabývá v průměru hodnotu 10⁻¹⁵ eV. Znamená to, že je tento typ slabé interakce mezi molekulami asi 10⁴krát slabší vazbu než běžná vazba kovalentní.

Body varu uvedené v tabulce dokumentují souvislost mezi energií van der Waalsovy vazby a teplostou, při níž teplotní pohyb tuto vazbu rozkráví. Anomalně vysoké body varu vody, amoniu a halogenovodíků jsou způsobeny tím, že se u těchto látek uplatňuje vedle van der Waalsových sil vazby vodíkových můstek (str. 149).

Na obr. 7-3 je uvedena závislost body varu některých nízkomolekulárních látek (u kterých se nemá vyvolávat vazba vodíkovým můstek) na elektronové konfiguraci vnějších atomů molekul. Elektronová konfigurace je vyjádřená hodnotou hlavního kvantového čísla vazby zkomplikovaných orbitálů sₓ e px.

Největší body varu zaznamenáváme u vzácných plynů, jejichž dokonale symetrické jednotomové molekuly se váží pouze Londonovými silami.

Obr. 7-3. Závislost body varu některých těkavých látek na hlavním kvantovém čísle valenční sféry vnějšího atomu molekuly

Body varu vzácných plynů představují dolní mez, pod kterou body varu ostatních látek o přibližně stejné molekulové hmotnosti nemohou klesnout. Na bodech varu vzácných plynů je však vidět, že polarizovatelnost molekul je plno uměrná jejich hmotnosti a Londonovy sily proto se vzájemně hmotností molekul rostou. To platí obecně a vždy můžeme předpokládat, že tešší molekuly se váží pevněji než molekuly lehčí.
<table>
<thead>
<tr>
<th>Molekula</th>
<th>Permanentní dipolový moment μ 10^9</th>
<th>Molarní polarizovatelnost ε_0 10^7</th>
<th>Efekt Keesona v eV</th>
<th>Efekt Debye v eV</th>
<th>Efekt Londonův v eV</th>
<th>Součet v eV</th>
<th>Bod varu t_0 v °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>0</td>
<td>1,2</td>
<td>0</td>
<td>0</td>
<td>0,03</td>
<td>0,03</td>
<td>-269</td>
</tr>
<tr>
<td>Ar</td>
<td>0</td>
<td>9,6</td>
<td>0</td>
<td>0</td>
<td>1,8</td>
<td>1,8</td>
<td>-186</td>
</tr>
<tr>
<td>CO</td>
<td>0,40</td>
<td>12,0</td>
<td>0,00017</td>
<td>0,0051</td>
<td>2,9</td>
<td>2,9</td>
<td>-192</td>
</tr>
<tr>
<td>Xe</td>
<td>0</td>
<td>24,0</td>
<td>0</td>
<td>0</td>
<td>11,2</td>
<td>11,2</td>
<td>-108</td>
</tr>
<tr>
<td>CCl₄</td>
<td>0</td>
<td>63,2</td>
<td>0</td>
<td>0</td>
<td>72,4</td>
<td>72,4</td>
<td>+76</td>
</tr>
<tr>
<td>HCl</td>
<td>3,57</td>
<td>15,6</td>
<td>0,7</td>
<td>0,2</td>
<td>4,9</td>
<td>5,8</td>
<td>-85</td>
</tr>
<tr>
<td>HBr</td>
<td>2,64</td>
<td>21,6</td>
<td>0,2</td>
<td>0,1</td>
<td>9,5</td>
<td>9,8</td>
<td>-67</td>
</tr>
<tr>
<td>HI</td>
<td>1,27</td>
<td>32,5</td>
<td>0,02</td>
<td>0,1</td>
<td>20,6</td>
<td>20,7</td>
<td>-36</td>
</tr>
<tr>
<td>H₂O</td>
<td>6,15</td>
<td>9,0</td>
<td>7,4</td>
<td>0,5</td>
<td>1,6</td>
<td>9,5</td>
<td>+100</td>
</tr>
<tr>
<td>NH₃</td>
<td>4,58</td>
<td>13,2</td>
<td>3,2</td>
<td>0,5</td>
<td>3,5</td>
<td>7,2</td>
<td>-33</td>
</tr>
</tbody>
</table>
7.2 VAZBA VODIKOVÝM MŮSTKEM

Atom vodíku obsahuje jeden elektron, který je umístěn na orbitalu 1s. Ostatní orbitaly jsou energeticky značně vzdálené a nemohou ani hybridizaci, ani jiným způsobem přispívat k možnostem vazby atomu vodíku na jiné atomy. Každý atom vodíku by proto měl být ve složení několika vzájemně vzdálených atomů. Většinou tomu tak skutečně je. V některých uskupeních však atom vodíku nacházíme mezi dvojicí jiných atomů, kde působí funkce *můstka*. Dva atomy propojené můstkovým atomem vodíku mohou být tedy prvky, nebo prvky rozdílných, a mohou být součástí těže molekuly, nebo dvou různých molekul. Pokud jsou atomem vodíku propojeny dvě molekuly, hovoříme o *intramolekulární* vazbě vodíkovým můstkem; jsou-li prstenovitě vodíkové vazby spojeny dvě části těže molekuly, označujeme vodíkový můstek za *intramolekulární* (obr. 7-4).

Vazba vodíkovým můstkem se významně uplatňuje jen v případě, kdy atom vodíku je vznik kovalentní vazbou na silně elektroregativní atom a může vytvořit můstek směřující k nevazebnému elektronovému párů jiného silně elektroregativního atoma. Funkcí silně elektroregativních atomů mohou dostatečně účinně zastavit v podstatě pouze atomy fluoru, kyslíku a dusíku.

Podstata vodíkové vazby

Pro vznik vodíkové vazby má hlavní význam skutečnost, že ze všech prvků jedině vodík neobsahuje žádné vnitřní elektrony. Odtažením vazebného elektronového páru směrem k elektroregativnímu partneru je značně odhalováno jádro atomu vodíku, jehož kladný náboj může silně ovlivnit i použit nevazebné elektronové páry okolních molekul (nebo i těže molekuly).

Povaha vodíkové vazby je složitá a zahrnuje jednak elektrostatické, jednak kvantově mechanické interakce.

Elektrostatické příspěvky jsou téhož charakteru jako u vazby van der Waalsovy. Vzniká silná dipol-dipolová interakce (polarita vazby X—H je značná a vazba má velký permanentní dipolový moment) a v menší míře se vyskytuje i Londonovy disperzní sily.

\[
E = 0 \quad \rightarrow \quad X^+ + H^- \quad \rightarrow \quad X^+ + H^-
\]

Obr. 7-5. Diagram MO znázorňující vznik vodíkové vazby mezi oběma molekulami typu HX
Kvantově mechanický příspěvek vodíkové vazby vyplývá z přímé interakce jádra atomu vodíku, zbarveného stínění svým elektrotem, s nevazebným elektronovým řetězem dalšího atomu. Původně nevazebné elektronový pár je deformován a částečně přetažen k atomu vodíku, tj. do oblasti potenciálové jámy vytvářené jádrem atomu vodíku.

V pojistě teorie MO lze při popisu vazby např. mezi dvěma molekuly typu H—X vyjít z diagramů MO těchto látek (viz diagram MO molekuly HF, str. 95). Situace je znázorňena na obr. 7-5. V jeho horní části jsou elektronové strukturní vzorce přibližující se částic HX, v dolní části je příslušný diagram MO.

Vzniku vodíkové vazby se účastněn obou molekul σ* a protivazebných orbitalů levé molekuly HX a obou molekul vazebných ψ(X), npř. ψ1, ψ2, nebo HAO lokalizovaných na atomu X pravé molekuly. Soustavou přiblížením molekulu a překryvem uvedených orbitalů vzniká tři nové orbitály, jež označíme ψ1, ψ2 a ψ3. První z nich má vazebný charakter, a proto doplníme jeho označení na ψ1; druhý je nevazebný a třetí je protivazebný a jeho přesné značení je tedy ψ3. Oba zúčastněné elektronové páry obsadí po přiblížení se molekulu k sobě nové vzniklé orbitály ψ1 a ψ3 a celková energie systému poněkud poklesne, i když méně než při vzniku běžné kovalentní vazby.

- **Energie a délka vodíkové vazby**

 Energie vodíkové vazby je mírou její pevnosti. Závisí na povaze obou okrajových atomů místě. Její hodnoty neprekračují obvykle hranice 0,6 eV. Znamená to, že vazba vodíkovým místem je asi lící stabiční a běžné kovalentní vazby. Pro tyč okrajový atom místu, který označime např. Y, vzrůstá energie vodíkové vazby v řadě

\[
\text{C—H···Y < S—H···Y < Br—H···Y < Cl—H···Y < N—H···Y < O—H···Y < F—H···Y}
\]

- *Velmi slabá vodíková vazba, která se vyskytuje ve fyzikálně chemických vlastnostech látěk*

Jsou-li oba okrajové atomy vodíkové vazby součástí větších molekul, závisí pevnost místu také na druhu atomů a skupin, které jsou na oba atomy vazány.

Za délku vodíkové vazby se považuje meziáčeradná vzdálenost obou okrajových atomů. Přesná rovnovazná poloha atomu vodíku mezi nimi není obvykle známá. Pokud jsou oba okrajové atomy stejně, je rovnovazná poloha atomu H přibližně uprostřed délky místu.

Délka vodíkové vazby mezi atomy X a Y je vždy větší než sečet délky kovalentních vazeb \(|X—H| \) a \(|Y—H|\), ale je výrazně ovlivnována nábojem vzniklého uskupení atomů i dalšími strukturálními vlivy (jejichž vliv na elektrostatické mast ať už na krystalové masti). Trojice atomů tvořících vodíkovou vazbu bývá uspořádána lineárně. Případů, kdy je místek pokončen lomený (v tuhé fázi), je známo jen málo.

- **Vliv vodíkové vazby na fyzikálně chemické vlastnosti látek**

Přítomnost intermolekulárních vodíkových vazeb v určitém systému molekul se projeví zvětšením mezimolekulových vztahův sil. Tim jsou vždy velmi výrazně ovlivněny fyzikální i chemické vlastnosti takového látky. Sloučeniny s touto vazbou mezi svými molekulami mají proti podobným sloučeninám, u nichž k tvorbě vodíkové vazby nedochází, výšší body varu a tání, větší výprsní tepla, větší viskozitu atd. Jako příklad lze uvést grafické znázornění bodů varu některých těkavých molekulárních hybridů. Znázorňuje je obr. 7-6.

Hydryd se středovými atomy, jejichž valenční sfera má totéž hlavní kvantové číslo, jsou uvedeny v grafu pod sebou. Vidíme, že až na řadu CH4, SiH4, GeH4, SnH4 body varu nevzrůstají monotónně, jak by se podle rozsahu polarizovatelnosti a hmotnosti molekul mohlo očekávat. Monotónně vzrůstují jen body varu pro uvedená anomálně vysoký body varu H2O, HF a NH3.
Ponekud vyšší proti očekávání jsou i body varu HCl a H₂S. Je vidět, že zvýšení body varu je přímo úměrné výskytu a pevnosti vodíkové vazby.

Vodíkové vazby se projevují i vznikem zajímavých struktur v látkách s tímto druhem vazby. Struktura takových látek je tvorená shluky částic s určitou orientací v prostoru. Asociáty molekul nacházejí se v prvním nejen v krystalkém stavu, ale i v menší míře i v kapalném nebo dokonce v plynném skupenství. Takové sestupné částic by bez vodíkové vazby nebyla myslitelná a také neexistují u sloučenin, v nichž jsou molekuly poutány jen slabou van der Waalsovou vazbou.

V důsledku vodíkové vazby mohou vznikat dimery nebo polymery molekuly, ať už lineární, nebo rovinné, různě rozvětvené nebo spojené v kruhy, nebo konečně polymerové struktury.

Velmi silné interakce vedoucí ke vzniku vodíkové vazby jsou v soustavě molekul fluorovodíku. V jeho krystaloch získaných silným ochlazením nacházejí nekonečné řetězce:

\[
\text{F} \quad \text{H} \quad \text{H} \quad \text{F} \\
\text{F} \quad \text{H} \quad \text{H} \quad \text{F} \\
\text{F} \quad \text{H} \quad \text{H} \quad \text{F}
\]

Kryštaly ostatních halogenovodíků jsou naproti tomu téměř čistě molekulové, tedy složené z diskretních molekul. Podobné řetězce jako fluorovodík tvoří v těchto stavech jen např. methanol nebo mrazená kyselina. Lineární polymery vytvářejí i molekuly kyanovodíku HCN. Polymerní struktura fluorovodíku je do jisté míry zachována i v kapalném stavu. Shluhy molekul však neobsahují více než 6 molekul HF.

Zajímavé jsou tetraedrické struktury souborů molekul H₂O vytvářené prostřednictvím vodíkové vazby v ledu a v kapalné vodě. Prostorová síť vodíkových vazeb mezi molekulami H₂O brání až do relativně vysokých teplot rozpadu struktury na jednotlivé molekuly. Jak jsme již ukázali, má v důsledku toho voda přes svou velmi malou relativní molekulovou hmotnost podstatně vyšší bod tání a bod varu než jiné látky s stejně relativní molekulovou hmotností.

Vodíková vazba se neomezuje pouze na interakce mezi molekulami, nýbrž uplatňuje se i při spojení elektroneutralních molekul s ionty. Svědčí o tom existence velmi stálého iontu HF₂⁻ se strukturou [F⁻•H⁺•F⁻].
Právě tak je dosti věrohodných experimentálních výsledků nasvědčujících tomu, že ve vodných roztocích jsou přítomny částice H_2O^+ uvedeného elektronového strukturálního vzorce.

V krystalech mnohých hydratovaných kyselin pak můžeme vedle iontů H_2O^+ a H_3O^+ nalézat i ionty H_2O_2^- a H_2O_2^-.
8 Klasifikace chemických látek

Celá příroda, která nás obklopuje, je materiálně jednotná, a přitom diferencovaná, má hmotnou podstatu a látkové formy hmoty mají nejen v pozemských podmínkách, ale i v celém vesmíru diskrétní struktury. Přitom stavebními jednotkami valně částí látkových forem hmoty jsou atomy.

Celky vznikající seskupováním atomů v důsledku uplatnění chemické vazby jsou přesto nekonečné rozmanité, proměnlivé a často mimořádně složité. Vnímáme je svými smysly jako hmotné objekty rozličných vlastností.

Abychom mohli jednoznačně identifikovat a pojmenovávat určité typy uskupení atomů (určité typy chemických látek a jejich soustav) a vyjadřovat souvislosti mezi vnitřní (atomární) strukturou těchto látek a jejich vlastnostmi, používáme v chemii určité zavedené pojmy a představy, které nám slouží při tvlčení a popisu látek a chemických systémů, jež nás obklopují. S některými z těchto pojmi a s jejich obsahem se nyní seznamíme. V dalších částech této kapitoly využijeme zavedený pojmový aparát při klasifikaci reálných chemických látek podle jejich složení, struktury a vlastností.

- Prvky a sloučeniny

Pojem chemického prvku pochází ze 17. století. V roce 1661 definoval Boyle prvek jako látku, kterou již není možno chemicky rozložit v látky jednodušší. Avšak již Lomonosov vystihl, že správnější a přesnější definice prvku musí přihlížet k atomové struktuře hmoty.

Definujeme proto dnes chemický prvek jako látku, jejíž všechny atomy mají stejné atomové číslo (str. 26).

Pro názornost uvádíme, že prvky je např. jak soubor molekul kyslíku O₂, tak i soubor molekul oxonu O₃, stejně jako systém vytvořený smíšením dvou různých druhů molekul, O₂ a O₃. V prvéj dvou případech jde o systémy tvořené jednoduchými látkami, v posledním případě o směs dvou strukturních modifikací prvku kyslíku.

Sloučenina je látky vystavěná z atomů o nejméně dvou rozdílných hodnotách atomového čísla (tj. nejméně ze dvou prvků), spojených do molekul (nebo formálně do vzorců jednotek) jedného typu.

Sloučeninou je tedy např. soubor molekul H₂O, jinou sloučeninou je soubor molekul H₂O₂, Roztok peroxidu vodíku H₂O₂ ve vodě naproti tomu není jedinou sloučeninou, neboť atomy H a O jsou v něm spojeny do molekul nikoli jediného, nýbrž dvouhodinou.

Poměrně nevelký počet známých chemických prvků vytváří známé velký počet sloučenin. Dnes je známo asi 450 tisíc anorganických sloučení a okolo 3 miliónů sloučení organických.

- Chemické látky

Prvky, sloučeniny a jejich směsi se velmi často označují zcela obecným společným názvem chemické látky.

Tímto označením jsou vylučeny ze souboru všech látkových forem hmoty ty její druhy, které jsou vystavěny z atomů prvků.
Paprsek neutronů vycházející z neutronového generátoru nebo elektrony procházející vodíčem nejsou tedy chemickými látkami. Naproti tomu je chemickou látkou stříbro (a jakýkoli jiný prvek), oxid sířičitý (a jakákoli jiná sloučenina), vodný roztok chloridu sodného i olej emulgovaný ve vodě (nebo jakákoli jiná směs dvou či více sloučenin nebo prvků).

- Chemické individuum — čistá látka

Každý prvek a každá sloučenina představují jediné tzv. chemické individuum (chemické jedince). Tomuto pojmu je velmi blízké označení čistá (chemická) látka. Čistou látkou se rozumí určitá strukturní modifikace prvků nebo sloučeniny, u níž se na výstavbě její struktury podílejí stejné druhy částic, které jsou stejným způsobem uspořádané.

Stavebními jednotkami čisté látky mohou být buď atomy jednoho prvku (např. v diamantu nebo v síře), nebo atomy různých prvků (v karbido křemu SiC, v nitrídu boritěm BN aj.). Mohou to být i fotony (v chloridu sodného, strunu sodného aj.), popř. cele molekuly (jod, voda, benzen aj.). Látky s molekulovou strukturou považujeme za čisté i tehdy, když se jejich jednoduché molekuly shlukují ve větší celky (kyselina fluorovodíková, octová kyselina, voda aj.) nebo se vratně stěhují (autoionizují) apod.

V přírodě jen velmi zřídka nalezeme látky v čistém stavu. Většina přírodních surovin je tvořena rozčleněnými směsmi, skládajícími se z většího či menšího počtu různých chemických jedinců. I když izolujeme určitou látku ze směsi, nezískáváme ji v absolutně čistém stavu. Zůstává — přesně vzato — i nadále směsí, v níž se jen výrazně zvětšilo relativní zastoupení určitého chemického jedince na úkor všech ostatních složek (komponent), jinak se v takovém případě řiká nečistoty. Lze tedy říci, že v praxi se s absolutně čistými látkami nesetkáváme a pracujeme s látkami, které se tomuto ideálnímu stavu pouze blíží. Vžilo se proto označovat za čistou takovou látku, která má konečné specifické vlastnosti (str. 154), tedy vlastnosti, jež se již dalším čištěním nemění.

Míra čistoty látě se nejčastěji vyjadřuje čidelným určením relativního množství nečistot v ní obsažených, popř. zařazením látky do určitého urození třídy čistoty.

Příprava látě v poměrně čistém stavu je často a důležitým úkolem chemika jak v laboratoři, tak i v průmyslové výrobě. Izolace čisté látky ze surovin byvá někdy celkem jednoduchá, jindy obtížná a zdolná. Obtíži vznikají zejména tehdy, když je žádaná látka obsažena ve výchozím materiálu jen v nepatrném množství nebo když se komponenty dělené směsí od sebe jen nevýrazně lší svými fyzikálními a chemickými vlastnostmi.

V laboratoři i v průmyslu většinou vystačíme s nevelkým počtem typů dělících metod, které souborně označujeme jako základní operace. K jejich realizaci byla sestrojena řada zařízení a přístrojů, jež se neustále techniky zlepšují.

Základní operace dělení systémů látě (frakcionace) spočívají někdy ve využití rozdílných fyzikálních vlastností komponent (to plati o filtraci, sedimentaci, plavení, flotaci, magnetickém třídění, destilaci, sublimaci aj.), jindy (při třídění, vytěsnění, elektrolýze aj.) se využívá rozdílného chemického chování.

Postup čištění určité látky obvykle sledujeme stanovením některých jejích fyzikálních konstant, popř. i chemickou analýzou.

- Kvalita chemické látky

Kvalitativní charakteristika určité chemické látky, pomocí níž lze touto látku odlišit od všech ostatních chemických látek a současně zjistit (identifikovat) s jiným vzorkem téže látky, se nazývá její kvalita.

1) Slovo „chemická“ se vynořilo.
Kvalita látky je podminěna těmito faktory:

1. jejím chemickým složením, tj. druhem a poměrným zastoupením základních stavebních jednotek, které látku vytvářejí,
2. způsobem uspořádání stavebních jednotek, tedy strukturou látky.

Dvě chemické látky jsou identické (maji tutéž kvalitu), shodují-li se jak svým složením, tak i detailní strukturou své výstavy.

Čisté látky, které splňují pouze prvni z obou podmínek, tj. mají stejné složení, ale liší se od sebe strukturou, nazýváme izomeri. Například molekulovému vzoru \(\text{C}_3\text{H}_6 \) odpovídají šest různých uhlovodíků lišících se od sebe vnitřním uspořádáním svých molekul.\(^1\) Naopak čisté látky, jež mají shodnou strukturu molekul nebo krystalových mříží, ale liší se druhem atomů, z nichž jsou vytvářeny, označujeme za izostruktury. Stejnový mřížku v tuhý řád např. vytvářejí \(\text{KClO}_3 \) a \(\text{KMnO}_4 \). Říkáme těž, že jsou izomonerní. Z hlediska své atomové i elektronové konfigurace jsou izostruktury všechy dvouatomové molekuly plynů, molekuly \(\text{CO}_2 \) a \(\text{N}_2\text{O} \) i všechny další částice, jež jsou již dříve poznali a označili jako izoelektronové (str. 140).

- **Vlastnosti čistých látek**

Podle změny, již látku podléhající při uplatňování své vlastnosti, dělíme specifické vlastnosti na fyzikální a chemické. Za **fyzikální specifickou vlastnost** označujeme např. barvu, hustotu, tvrdost, pevnost v tahu, bod tání, bod varu, index lomu, měrnou elektrickou vodivost nebo magnetickou susceptibilitu.

Za **chemické specifické vlastnosti** lze považovat těž, způsob reakce látky s vodou, s kyslíkem, s kyselinami, stabilní na světle a za zvýšené teploty, acidobazické vlastnosti a jiné.

Míru fyzikálních vlastností látek vyjadřujeme číselnými veličinami, kterým říkáme fyzikální konstanty látek. Chemické vlastnosti mohou být charakterizovány chemickými rovnicemi uplatňujícími se déjí a jinými, obvykle složitějším způsobem definovanými parametry, s nimiž se seznámíme později.

- **Soustavy látek**

Uvedli jsme, že většina přírodních surovin je tvořena rozličnými směsmi chemických jedinců. Právě tak jsou mnohé složité systémy i materiály, které uměle vytváříme ve výrobě. Abychom mohli přesně vyjadřovat kvalitu těchto systémů (a déjí v těchto systémech probíhajících), užíváme dohodnutou nomenklaturu.

Část prostoru a jeho lakovou náplň, tedy určitou část hmotného světa, na kterou vzataje naše úvahy, nazýváme soustavu nebo systém. Při tom vždy vymezejeme soustavu skutečně nebo pomyslněm ohraničením, které ji odděluje od všeho ostatního, tj. od jejího okolí.

Soustavu, na níž její okolí nepůsobí, tj. přes její hranici nepřechází v žádném směru ani látky, ani energii a také jiné, označujeme za izolační.

Soustavu, její hranici prochází energie, nikoli však látkové formy hmoty, nazýváme uzavřenou.

Názvem otevřené soustavy označujeme systém, jež hranice prochází jak látky, tak i energii (obr. 8-1).

1\(^{1}\) 1-Buten, 2-methylpropan, cis-2-buten a trans-2-buten, methylcyklopropan, cyklobutan.
Jsou-li specifické vlastnosti látky ve všech částech (bodech) daného izolovaného nebo uzavřeného systému stejné, popř. měnì-li se plynule (od bodu spojité), říkáme, že systém je homogenní a je tvořen jedinou tzv. fázi.

\[\text{Obr. 8.1. Schematické vyjádření soustavy:} \\
\text{a) izolované, b) uzavřené,} \\
\text{c) otevřené} \]

Heterogenní systém se naproti tomu skládá ze dvou nebo více druhů homogenních fází. Fáze jsou při tom navzájem odděleny ostrým rozhraním, na němž se vlastnosti mění skokem.

Příkladem homogenního systému je určitý prostory zaplněný vzduchem (resp. jakýmkoliv plynom nebo jejich směsí) nebo vodou (resp. jakoukoli kapalinou nebo směsí vzájemně miscelních kapalin). Homogenní soustavou je i libovolný soubor krystalů téže čisté látky apod.

Naproti tomu dvoufázový a tedy heterogenní systém představuje např. prostor naplněný současné olejem a vodou (jakoukoli dvojicí nemiscelních kapalin), prostor s krystaly stříbra v ethanolu (jakákoliv tuhá fáze s kapalinou, v níž se nerozpouští) nebo prostor vyplněný např. vodou a ledovou drtí (jakakoli směs dvou skupenkových stavů téže látky) atd. Není obtížné nalézt příklady dalších dvoufazových i vícefazových heterogenních soustav.

U každé určité soustavy je velmi důležité poznat všechna chemická individua, všechny čisté látky, které mohou být fyzikálně cestou ze soustavy odděleny. Tento látka (jež musí být schopný samostatné existence) říkáme složky (komponenty) soustavy.

Například v homogenním, a tedy jednofázovém systému tvořeném vodným roztokem NaCl označme za jeho složky vodu a chlorid sodný. Zásadně něže za složky považuji ionty Na\(^+\), Cl\(^-\), H\(_2\)O \(=\) OH\(^-\) ani elementární sodík a chlor, protože ionty nejsou schopně samostatně existovat jako chemické látky a elementární sodík i chlor lze z daného roztoku získat pouze chemickou změnou.

Homogenní a heterogenní látky

Zabýváme-li se kvalitou (identitou) určité látky, musíme uvážit, zda látku představuje homogenní, anebo heterogenní systém. Podle toho pak můžeme látku označit běžu podle homogenní (středoroztou) nebo heterogenní (různoroztou). K rozhodnutí o homogenní nebo heterogenní látky dospíváme nejčastěji tak, že vizuálně či jiným zkoumáním zjišťujeme počet v látkách přítomných fází.

Samotné číslo látky (prvků a složení) bývají nejčastěji homogenní soustavou. Spíše výjimečně, za určitých fyzikálních podmínek, tvoří chemická individua heterogenní soustavy dvoufázové a třífázové. Tento případ nastává tehdy, když je čistá látku přítomna ve dvou či všech třech svých skupenkových stavech.

Směsí čistých látek mohou být opět homogenní i heterogenní. Prostoupí-li se stavební jednotky chemických látek tvořících dvousloučkové nebo vícesločkové směsi na molekulární úrovni tak dokonale, že vytvoří novou mikrostrukturu, pozorujeme z makroskopického hlediska vznik jediné fáze. Říkáme, že složky vytvořily roztok. Vzniklá směs je homogenní.

Když jsou ve směsi čistých látek zachovány rozsáhlé soubory stavebních jednotek těchto látek v původních mikrostrukturách, je vzniklý systém tvořen více fázemi, a je tedy heterogenní.

Reziliční homogenity a heterogenity určitě směsí není vždy jednoznačné. Heterogenní systémy s velmi jemným rozptýlením (znitrostí) svých fází se hlásí systémům homogenním. Za hranění jsou povazovány systémy, jejichž fáze jsou fragmentovány do částic o rozmezích 1 až 200 nm. Takovýmto systémům se říká koloidní.
8.1 KLASIFIKACE PRVKŮ

Již v době, kdy bylo známo teprve asi šedesát prvků, docházelo k pokusům o jejich třídění (klasifikaci); badatelé byli uživí rozmazanosti vlastností popsaných prvků u současného tím, že některé prvky si naopak jsou vysloveně podobné. Pokoušeli se odlákat zákonitosti, jimž se výskyt vlastností prvků řídí. Nejvíce pravděpodobně a periodické bylo zjištěváno zejména tehdy, zkoušela-li se seřazení prvků vzniklo jejich uspořádáním podle vzájemnější atomové hmotnosti. Atomové hmotnosti prvků byly tehdy určovány jednoduchým experimentálním postupem s dostatečnou přesností.

● Periodický zákon

První pokusy o klasifikaci prvků na uvedeném základě konal Döbereiner (1829 — pravidlo tríád), de Chancourtois (1862 — tellurický trojub), Newlands (1864 — zákoun oktáv), Meyer (1869 — křivky periodicit atomových objemů) aj.

Vznikla tak přirozená soustava prvků, kterou sám Mendělejev nazval periodickou, neboť nejen běžné oxidacní stavy prvků, ale i další jejich chemické vlastnosti a mnohé vlastnosti jejich sloučenin byly periodickou funkci atomových hmotností prvků. Dnes, kdy je známo, že primárně charakterizuje kvalitu prvku jeho atomové číslo (a nikoli atomová hmotnost), je Mendělejovem nalezená zákonitost — tzv. periodický zákon — formulována takto:

Chemické a mnohé fyzikální vlastnosti prvků jsou periodickou funkcí jejich atomových čísel.

Periodicitu vlastností nacházíme i v řádě homologických sloučenin.

Platnost periodického zákona byla záhy po jeho formulaci skvěle potvrzena objevením nových prvků, jejichž existence vyplývala ze struktury tabulky a jejichž vlastnosti Mendělejev interpolačním odhadem předpověděl. Prvními z nalezených prvků byly ty, jež Mendělejev označil ekaluminium, ekabor a ekasilicium\(^1\). Dnešní jejich názvy jsou gallium (de Boisbaudran, 1875), skandium (Nilson, 1879) a germanium (Winkler, 1886).

Mendělejev byl periodický zákon a periodická soustava prvků základem pro hodnocení některých chemických faktů všech. Tak např. opravil u některých prvků (In, La, Y, Er, Ce, Th, U) tehdy uvedené atomové hmotnosti. Nechal také učinit opravu i v pořadí prvků Ni — Co a 1 — Te, u nichž se (jak bylo zjištěno mnohem později) sled podle atomových hmotností a podle atomových čísel různí v důsledku jejich izotopového složení.

Mendělejev se tak několik desítek let před rozčleněním struktury atomu podařilo odhalit, využít a přesně popsat její vliv na vlastnosti prvků. Ovlivní tak zásadním způsobem další vývoj chemie. Podnítil objev řady prvků a v několika případech k objevu přispěl tím, že velmi přesné předpověděl chemické vlastnosti prvku dosud neznámého, a tedy i okruh přírodních materiálů, v nichž by se mohlo vyskytovat.

\(^1\) Sanskrétská číslovka eka = I. Například ekasilicium ználeží první prvek, který je v periodické soustavě pod křemenem.
Periodická soustava prvků a její struktura

Tabulární uspořádání nejhodněji vyjadřuje kvalitativní i kvantitativní změny vlastností prvků. V minulosti došlo k mnoha pokusům modificovat tvar a konstrukci periodické soustavy tak, aby byla co nejkonformnější formálním vyjádřením elektronové struktury atomů prvků a aby z ní vyplývalo co nejvíce informací o vzájemných vztazích mezi prvky a změnách jejich vlastností. Z velkého počtu variant se nejvíce vždy dva standardní úpravy – tzv. krátká a dlouhá tabulka. Dlouhá tabulce se nyní často dává přednost pro její rozumitelnost, názornost a dobrou zapamatovatelnost.

Běžná úprava dlouhé periodické tabulky je uvedena na obr. 8-2. Přirozená řada prvků je rozdělena na úseky obsahující 2, 8, 8, 18, 18 a 32 prvků. Těmto uspořádaným skupinám prvků,

![Periodická tabulka prvků](image)

situovaným v tabulce ve vodorovných řadách, se říká periody. Prvky na počátku každé periody se vyznačuje tím, že v jeho atomech bylo zahájeno vytváření nové elektronové sféry. Každá perioda je ukončena vzácným plynem. Periody se průběžně čísly čísly. Číslo periody odpovídá hlavnímu kvantovému číslu elektronové sféry, jestže u prvků periody postupně zahřívá. Počet prvků v každé periodě je dán počtem elektronů, o něž se lší konfigurace dvou vzácných plynů periodu ohraničujících 1)

<table>
<thead>
<tr>
<th>Konfigurace prvků</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. perioda 2s²</td>
</tr>
<tr>
<td>2. perioda 2s² 2p⁶ - 2s² 2p⁶</td>
</tr>
<tr>
<td>3. perioda 3s² 3p⁶ - 3s² 3p⁶</td>
</tr>
<tr>
<td>4. perioda 4s² 4p⁶ - 4s² 4p⁶</td>
</tr>
<tr>
<td>5. perioda 5s² 4d⁶ 5p⁶ - 5s² 4d⁶ 5p⁶</td>
</tr>
</tbody>
</table>

1) Pouze prvá perioda má tolik členů, kolik elektronů má konfigurace prvého vzácného plynu (š. 2 elektrony).
Dvojice „sudá + následující třídu perioda“ se někdy označují jako cykly. Pak je ovšem nutné doplnit tabulku o tzv. subh perioda, do které bývají zařazovány elementární částice elektron \(\cdot e \) a neutron \(\cdot n \). Počet prvků v cyklech, označme jej \(C \), je určen vztahem

\[
C = 4N^2
\]

v němž \(N \) je pořadové číslo cyklu.

V periodické tabulce tak nacházíme tzv. základní cykly \((N = 1) \) obsahující \(\cdot e \), \(\cdot n \), \(H \) a \(He \).

Lze si představit, že tyto čtyři největší slouhy vůdcovy se sdružují za vzniku všech ostatních prvků.

Druhý cyklus je cyklus typických prvků. Obsahuje druhou periodu, kdežto začínají \(\cdot Li \) a končí \(\cdot Ne \), a třetí periodu, jež začíná \(\cdot Na \) a končí \(\cdot Ar \). Všechny šestnáct prvků tohoto cyklu se vyznačuje ošetřenými (typickými) chemickými vlastnostmi.

Třetí cyklus se nazývá cyklus primárního doplnění. Každý jeho perioda má osm prvků.

Čtvrtá perioda začíná \(\cdot K \) a končí \(\cdot Kr \) a obsahuje tzv. prvni řadu přechodných prvků, \(\cdot Sc \) až \(\cdot Zn \). U nichž jsou elektrony započítávány vnitřní orbitaly 3d. Pátá perioda začíná \(\cdot Rh \) a končí \(\cdot Xe \). Její součástí je skupina prvků druhé přechodné řady \(\cdot Y \) až \(\cdot Cd \), u nichž jsou průběžně zapařovány orbitaly 4d.

Čtvrtý cyklus je cyklem sekundárního doplňení. Oba jeho periody obsahují po 32 prvcích.

Šestá perioda začíná \(\cdot Cs \) a končí \(\cdot Rn \). Zahrnuje třetí řadu přechodných prvků \(\cdot La \) až \(\cdot Hg \).

Při tom čtíná prvků \(\cdot La \) až \(\cdot Lu \) z ní vyjdešův. Samy touto tvoří charakteristickou skupinu, kterou označujeme názvem lanthanoidy. Je u nich postupně započítáván systém orbitálů 4f a chemicky si jsou velmi podobné. Ostatní prvky třetí přechodné řady, tj. \(\cdot As \) až \(\cdot Hg \), mají orbitaly 5f již plně obsazené a postupně doplňují orbitaly 5d. Sedmá perioda patříci do cyklu sekundárního doplňení je neúkončená. Začíná prvkem \(\cdot Fr \) a končíla by prvokem \(Z = 118 \). V našich názvání skupin prvků s postupně započítaným systémem orbitálů 4f a 5d se ze však projevuje jistými nepravidelnostmi ve vlastnostech těchto prvků.

Tuto skupinu prvků vyznačujeme z tabulky jako tzv. actinoidy. Při tom prvkům následujícím po uranu hledáme transuranovy a rozdělujeme je na skupinu uranoidů (\(Z = 92 \) až \(95 \)) a skupinu euroridů (\(Z = 96 \) až \(103 \)).

Obr. 5.3: Rozdělení periodické tabulky prvků na skupiny A a B; trivální názvy skupin prvků

158
Periodická tabulka je svým uspořádáním a počtem prvků, jež do ní mohou být zařazeny, neomezená. Každý nový prvek v ní najde příslušné umístění.

V popsaném uspořádání periodické tabulky se prvky analogických vlastností objevují pod sebou a vytvářejí tak přirozené (visité) skupiny nazývané též

Obr. 8-3)

Ve skupinách A jsou první, jejichž atomům přebývá nad strukturně nejbližší nižšího vzněčného plynu méně elektronů, nenž kolik jich chybí do struktury nejbližší výššího vzněčného plynu. U prvků skupin B je toto pravá naopak. Nad strukturně nejbližší nižšího vzněčného plynu jím přebývá více elektronů, nenž kolik jen jich chybí do struktury výššího vzněčného plynu.

Číselné jednotlivých skupin a rozdělení na skupiny A a B je značně rozdělené na obr. 8-3.

Sloupec čísluje zleva arabskými číslicemi 1 až 7 a připomíná jejich symbol A, přičemž do 8. skupiny zahrnujeme trojici sloupců a označení A obvykle vynecháme:

8. skupina

Fe, Co, Ni
Ru, Rh, Pd
Os, Ir, Pt

Další skupiny číslujeme znovu postupně od 1 do 7 a připomínáme symbol B. Skupinu vzněčných plynů označujeme 0. Z obr. 8-3 je těž patrně, že prvky B, Al a C, Si, patří do skupin A, přesouváme do oblasti prvků zaplnivých orbitály p.

Některé skupiny prvků mají vžitě triviální názvy. Prvkům skupiny 1A (kromě vodíku) se říká alkalické kovy, Ca, Sr a Ba se skupiny 2A jsou tzv. kovy alkalických zemí. Ve skupině 3A se prvky Sc, Y a všechny lanthanody souhrnně označují jako kovy vzněčných zemí. Ve skupině 8 jsou Fe, Co a Ni nazývány tríada železa (zejména jihovýchodní Evropy). Analogicky je tríada Ru, Rh, Pd tvořena tzv. zlatoznivými kovy a tríada Os, Ir, Pt těžkými platízními kovy. V poslední době byly pro prvky skupin 3B, 4B a 5B navrhny název triy, tetry a penty, týká tyto názvy se dosud nevýznamný. Prvky skupiny 6B se běžně nazývají halogeny a prvky skupiny 7B mají název halogény.

Ve sloupci A a B periodické tabulky prvků se vyskytuje též její dělení na skupiny hlavní a vedlejší. Tento způsob značení skupin je uveden na obr. 8-4. Jako hlavní skupiny se označují ty sloupec prvků, jímž bud nejvýše dva elektrony přebývají nad strukturně nejbližší

Obr. 8-4. Hlavní a vedlejší skupiny periodické tabulky prvků; přechodné a nepřechodné prvky
nižšího vzácného plynu, anebo jím nejvýše pět elektronů scházejí do konfigurace nejlépe vyššího vzácného plynu. Ostatní prvky patří do vedlejších skupin. V čele hlavních skupin stojí tzv. tipické prvky. Soubor všech prvků příslušejících do hlavních skupin se říká prvky neprěchodné. Prvky vedlejších skupin zaplňují vnitřní orbitály d, resp. f jsou označovány jako přechodné (transitní). Zařazení Zn, Cd a Hg, tj. prvků skupiny 2B, mezi přechodné prvky je však oprávněné spíše jen formalně. Tyto prvky mají dokončené zaplňování svých orbitálů d, mají tedy konfiguraci sd nebo sd nevznášejí se proto chemickými vlastnostmi tipickými pro prvky s neúplně obsazeným systémem orbitálů d.

Vedle dlouhé tabulky se těž používá již uvedená forma krátká. Získá se přerusením dlouhé tabulky mezi skupinami 8 a 1B a zasunutím vzniklé právě části mezi řádky levé. Krátkou tabulku vidíme na obr. 8-5. Forma krátké tabulky dobře vyjadřuje některé analogie mezi prvky skupin A a B téhož člás sloupce, avšak poradí zastává periodickou výsadby elektronového obalu atomů.

Obr. 8-5. Periodická tabulka

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>He</td>
<td>Li</td>
<td>Be</td>
<td>B</td>
<td>C</td>
<td>N</td>
<td>O</td>
</tr>
<tr>
<td>Na</td>
<td>Mg</td>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td>Ar</td>
</tr>
<tr>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
</tr>
<tr>
<td>Cu</td>
<td>Zn</td>
<td>Ga</td>
<td>Ge</td>
<td>As</td>
<td>Se</td>
<td>Br</td>
<td>Kr</td>
</tr>
<tr>
<td>Rb</td>
<td>Sr</td>
<td>Y</td>
<td>Zr</td>
<td>Nb</td>
<td>Mo</td>
<td>Tc</td>
<td>Ru</td>
</tr>
<tr>
<td>Cs</td>
<td>Ba</td>
<td>La</td>
<td>Hf</td>
<td>W</td>
<td>Re</td>
<td>Os</td>
<td>Ir</td>
</tr>
<tr>
<td>Fr</td>
<td>Rn</td>
<td>Ac</td>
<td>104</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Je velmi užitečné určit z atomového čláska kteréhokoliv prvku nejen vyvodit strukturu jeho elektronového obalu (viz kap. 4), ale i určit jeho místo v periodické tabulce. Z těchto dvou údajů lze jednoduchým způsobem vyvodit chemické a některé fyzikální vlastnosti prvků.

Určit umístění prvku v tabulce z jeho atomového čláska je snadné. Postačí zapamatovat si atomová čláska vzácných plynů a čláska periodu podle schématu

1. He 2. 3He 3. 10Ne 4. 14Ar 5. 36Kr 6. 38Xe 7. perioda

Postup si vyžáde ne příkladech:

160
Periodicitá oxidáčních stavů prvků

Výraznou periodicitu vykazuje stechiometrické složení sloučenin prvků. Při tom stechiometrie sloučenin závisí na vznikajících vazebných poměrech mezi atomy. Nejzajímavější a při tom právě jen z hlediska stechiometrie dobře vyhovující charakteristikou vazeb v určité sloučenině jsou oxidáční čísla jednotlivých atomů (str. 137).

Většina prvků se ve svých sloučeninách vyskytuje v několika různých oxidáčních stavech. Některé jsou velmi časté a stabilní, jiné jsou méně běžné a nestálé, popř. zcela výjimečné a vysloveně labilní. Stabilní jsou to oxidáční čísla prvků, která vyjadřují vazebné poměry, za nichž u atomů prvků bylo by skutečné (u iontové sloučeniny), anebo v určitém příbližení (u kovalentní sloučeniny) dosaženo elektrované konfigurace, kterou lze označit jako stálou. Z výkladu v kap. 4 a 5 víme, že nejstálější jsou konfigurace vzácných plynů (ns²np₃), konfigurace elektronové osmáníčky či jí pseudovazenceného plynu (ns²np⁶nd¹⁰) u konfigurace elektronové dvacítky s inertním elektronovým pártem [ns²np⁶nd¹⁰(n + 1)s¹]⁴. Zakreslíme-li tyto konfigurace do periodické tabulky prvků, můžeme — stejně jako jsme to učinili v kap. 5 při výkladu o stabilních strukturách iontů — určit, jaké přesně elektronu z jaké oxidáční čísla prvků jsou v jednotlivých skupinách periodické tabulky prvků nejstálější. Závěrečným případně je, že prvky někdy nepřijímají ani neuvolňují větší počet elektronů, než je třeba k dosažení konfigurace vzácného a pseudovazenceného plynu. Proto platí:

Prvky 1. skupiny (A i B) mají maximální pozitivní oxidáční číslo I.
Prvky 2. skupiny (A i B) mají maximální pozitivní oxidáční číslo II.
Prvky 8. skupiny (A i B) mají maximální pozitivní oxidáční číslo VIII.

Maximální pozitivní oxidáční číslo prvku souvisí s jeho postavením v periodické tabulce a shoduje se s číslem sloupec, v němž prvek leží. Dosažení těchto oxidáčních čísel je u prvků skupin A spojeno se vznikem konfigurace vzácného plynu, u prvků skupin B se vznikem elektronové osmičky. Výjimku z tohoto pravidla nacházíme u kyslíku (6B), některých halogenů (7B) a u prvků 8. skupiny. Maximální pozitivní oxidáční stavy v některých z těchto prvků jsou nižší. Kyslík nechatrně nabývá jakéhokoli kladného oxidáčního čísla, fluor má většiny svých sloučenin jen záporné oxidáční číslo. U většiny vzácných plynů a prvků 8. skupiny se dosáhlo nepodílku příprav konfigurace, v nichž by tyto prvky dosáhly oxidáčního čísla VIII. Jinou výjimkou jsou naopak vyšší maximální pozitivní oxidáční číslo běžně pozorovaná u prvků skupiny 1B. Měd se kromě ve stále oxidáčním stavu I běžně vyskytuje i v oxidáčním stavu II a dokonce i v nestále oxidáčním stavu III. Obdobně je tomu u Ag i Au. Příčiny těchto výjimek poznamene později.

Z postavení prvku v periodické tabulce lze vyčíst i jeho nejvyšší negativní oxidáční číslo. Hodnotu čísla zjišťujeme jednoduše tak, že od 8 odčteme číslo skupiny, v níž je prvek zařazen:

Prvky skupiny 7B mají nejnižší negativní oxidáční číslo — I.
Prvky skupiny 6B mají nejnižší negativní oxidáční číslo — II.
Prvky skupiny 5B mají nejnižší negativní oxidáční číslo — III.
Prvky skupiny 4B mají nejnižší negativní oxidáční číslo — IV.

Vzniklé ionty mají konfiguraci vzácného plynu.
Prvky jiných než uvedených skupin se dosažením záporného oxidáčního stavu stabilizují jen zcela výjimečně.

Další možnosti stabilizace atomů prvků je vytváření konfigurace elektronové dvacítky.
s tzv. inertním elektronovým párem. Dochází k ni u prvků některých skupin B ležících ve 4., 5. a 6. periodě:

- Prvky skupiny 3B dosáhnou oxidačního čísla I.
- Prvky skupiny 4B dosáhnou oxidačního čísla II.
- Prvky skupiny 5B dosáhnou oxidačního čísla III.
- Prvky skupiny 6B dosáhnou oxidačního čísla IV.
- Prvky skupiny 7B dosáhnou oxidačního čísla V.

Výraznost, s jakou se stabilizace na konfiguraci inertního páru u jednotlivých prvků projevuje, vzrůstá ve sloupce tabulky směrem shora dolů a je tím větší, čím vyšší je číslo skupiny daného prvku. Proto např. ve skupině 4B u prvků Ge, Sn a Pb plati o stabilitě oxidačních stavů tyto vzťahy:

<table>
<thead>
<tr>
<th>Dvacátka</th>
<th>Osmnáctka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ge IV</td>
<td>Ge V</td>
</tr>
<tr>
<td>Sn IV</td>
<td>Sn V</td>
</tr>
<tr>
<td>Pb IV</td>
<td>Pb V</td>
</tr>
</tbody>
</table>

Pro přechodné prvky je charakteristická mimořádná proměnlivost oxidačních stavů. Stabilita oxidačních stavů je zde významně postrádala většinou, s nimiž se známé poznámky. Přesto lze formulovat hrubé pravidlo, že ve skupinách přechodných kovů vzrůstá stabilita relativně vyšších oxidačních stavů směrem shora dolů, kdežto u nižších oxidačních stavů je tomu právě naopak:

<table>
<thead>
<tr>
<th>Cr VI</th>
<th>vznikat</th>
<th>Cr III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo VI</td>
<td>stability</td>
<td>Mo III</td>
</tr>
<tr>
<td>W VI</td>
<td>oxidovaného</td>
<td>W III</td>
</tr>
<tr>
<td></td>
<td>stavu</td>
<td></td>
</tr>
</tbody>
</table>

V pravém horním rohu periodické tabulky ležící nekowy se řídí již uvedenými pravidly o stabilních oxidačních stavech. Vedle toho jsou u nich stále oxidační čísła odvozena postupnou změnou o jediníku nebo o dvojíku. Svědčí o tom tyto dvě řady sloučení:

| O jediníku | N²⁺O³⁻, N⁰²O⁵⁻, N⁰⁵O³⁻, N⁰⁴O⁵⁻, N⁰¹O³⁻ |
| O dvojíku | Cl⁰⁴O³⁻, Cl⁰²O⁵⁻, Cl⁰⁵O³⁻, Cl⁰⁴O⁵⁻ |

Nakonec se ještě musíme zmínit o tom, že ve sloupce periodicke tabulky se projevuje tzv. sekundární periodicit. Pozorujeme, že prvky periody (n + 2) jsou obdobou prvků periody n. Chemické vlastnosti prvků stojících ve sloupci ob jedno místo si jsou velmi blízké. Tak např. u trojice prvků Cl, Br a I získáváme, že běžné existují anionty Cl⁰⁴O⁵⁻ a Br²⁰O⁰⁴, ale velmi nestále je Br⁰⁵O³⁻. Obdobně jasu běžnými sloučeninami PCI₃ a SbCl₅, nikoli však NCl₃ a AsCl₅. Dusík N₂ má oxidační vlastnosti stejné jako arsen As₂, tyto vlastnosti však sečně chybí sloučeninám fosforu P₅ apod.

Proměnlivost negativních oxidačních čísel nacházíme jen u několika málo nekowych prvků. Běžné je pouze u kyslíku, dusíku a uhlíku. U sloučenin těchto prvků, pokud v nich přev. vytváří tetřecky alespoň trojčlenné (dusík, uhlík), dosud neexistují okamžik oxidace, ke zlomkovým hodnotám. Pojmen. oxidační číslo prvku v takovýchto látkách postačí ztrací svůj význam, a proto jej užíváme spíše formálně, např. při vyslovování chemických rovnic.

- **Kovový a nekovový charakter prvků**

Pevné většina prvků vykazuje vlastnosti kovů (83), menší je nekovových (17) a několik prvků (5) tvoří svými vlastnostmi přechod mezi uvedenými dvěma skupinami.

Prvky s velkou hodnotou ionizační energie a současně s poměrně velkou hodnotou elektronové affinitet se nám chemicky jeví jako nekovy. Velkou hodnotu elektronové affiniti a ionizační energii mají prvky, které se elektronovou konfigurací jen málo liší od nejbližší vyššího vzácného plynu a vyznačují se navíc malým objemem svých atomů. Typickými nekovy jsou proto halogeny, z nichž nejvíceze nejvíce nejvíce nejvíce nejvíce je fluor. Vzácné plyny řadíme pro jejich mimořádně velkou hodnotu ionizační energie mezi nekovy, ale současně si uvědomujeme, že pro svou značnou chemickou indiferentnost zdáleka nejsou jejich typickými představiteli.

<table>
<thead>
<tr>
<th>H</th>
<th>Be</th>
<th>Al</th>
<th>Li</th>
<th>Na</th>
<th>Mg</th>
<th>S</th>
<th>Cl</th>
<th>Ar</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>Cs</td>
<td>Fr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>Br</td>
<td>Kr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs</td>
<td>Ba</td>
<td>Ra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Obr. 8-6. Oblasť kovů a nekovů v periodické tabulce prvků

K posouzení, měli bychom prvek kovový, nebo nekovový charakter, mít mít posouzení empirické pravidlo:

Prvek je kovem, jestliže přev�tí elektronů jejho nejvyšších zaplněných orbitálí (vzhledem k dvojnásobně i vedlejš�ho kvantového čísla) je roven číslo periody, do níž prvek patří, nebo je menší. Prvky, které tuto podmínku nesplňují, jsou nekovy. Nekovy ležící v blízkosti uvedeným pravidlem formované hranice jeví se stejně některé kovové vlastnosti. Náznak prvek o polehách oblastí kovů a nekovů v periodické tabulce prvků podává obr. 8-6.

8.2 KLASSIFIKACE ČISTÝCH LÁTEK

Právě tak, jako je chemie jednotlivých prvků důsledkem a projevem struktury elektronového obalu jejich atomů, jsou specifické vlastnosti (zejména fyzikální) čistých látek odrážem struktury a uspořádání chemických vazeb mezi jejich stavebními jednotkami – atomy.

Pevnost vazeb, způsob jejich rozprostranění v systému atomů (tzv. topologie vazeb) a jejich charakter rozhoduje o vlastnostech látek, které jsou tímto sdružováním atomů vytvářeny. Při hledání se k těmto parametram, můžeme všechny známé číst chemické látky (prvky a sloučeniny) rozředit do čtyř základních tříd a označit je jako látky

1. nízkomolekulární,
2. iontové (solí),
3. kovové,
4. vysokomolekulární.

Povinností nyní podrobněji způsob uspořádání stavebních jednotek v těchto typech látek, poukážíme na jejich významně specifické vlastnosti a uvedeme si konkrétní příklady těchto látek.
Látky nízkomolekulární

Hlavní znaky:

1. Nízký bod tání i i bod vůdce. Za laboratorní teploty jsou nízkomolekulární látky plynové nebo přecházejí do plynného stavu za teploty od 300 až 400 °C. Mnohé z nich se při zvýšeném teplotě chemicky rozkládají. V těžem stavu (při nízkých teplotách) tvoří velmi měkčí krystaly (tvrdost 1 až 2, zřídka 3 1). V těžem a kapalném stavu jsou zejména silné, prášité nebo i zbarvené, avšak nemají kovový lesk. Nevelkou elektrický původ v těžem stavu ani v tavenině. Ne vůdce se jen málo rozpouštějí nebo jsou v ní nerozpustné. Mnohé z nízkomolekulárních látek se dobře rozpouštějí v několika rozpouštědlech.

2. Příklady nízkomolekulárních látek:
- Vazivně plyny, halogeny, sirum, kyslík, dusík, fosfor, voda, oxid uhličitý, fluorid sírový, oxid osmičelý, většina organických látek.

Látky iontové (soli)

Hlavní znaky:

2. Příklady iontových látek a jednoduchými ionty: Chlorid sodný, fluorid barnatý, bromid cesný, peroxid barnatý aj.

Látky kovové

Atomy těchto látek jsou spojeny tzv. kovovou vazbou. Podstatou a vlastnostmi kovové vazby je objasníme později. V krystalových mřížích kovů nejsou identifikovatelné jednotlivé molekuly, krystal kovu je souborem atomů vzájemně poutaných vysoko delokalizovanou vazbou. Spojení atomů je obvykle velmi pevné a kovové látky (překv. intermetallické sloučeniny, slitiny kovů) jsou proto většinou mělo těkavé (nejvyšší bod tání má wolfram, 3410 °C) a velmi pevné. Výjimečně je pojít spoj slabe a kov snadno taje (nejnižší bod tání mají Hg, –39,8 °C; Ca, 28,5 °C; a Ga, 29,8 °C).

1) Údaje o tvrdosti je uveden číšem Mohsovy stupnice:
1. Mastek (talc) Mg₃Si₂O₇(OH)₄
2. Síl kamenná (halit) NaCl
3. Vápence (kalcit) CaCO₃
4. Károvec (fluorit) CaF₂
5. Fluoroapatit Ca₅(PO₄)₃F
6. Živce draslý (orthoklas) KAlSi₃O₈
7. Křemen SiO₂
8. Topas Al₂SiO₄F₂
9. Kodrun Al₂O₃
10. Diamant C

164
Hlavní znaky:

Příklady kovových látek:
- Hořčík, hliník, železo, nikl, měď, draslík, cer, NaHg, NaTe, Cu₃Au aj.

- Látky vysokomolekulární

1. Prostorové polymery

Atomy těchto látek jsou propojeny systémem kovalentních vazeb a tvoří trojrozměrnou makromolekulu. Celý krystal je jedinou takovou makromolekulou. Typickým představitelem této skupiny je diamant.

Hlavní znaky:

Příklady prostorových polymerových makromolekulárních látek:
- Diamant, bor, korund, klemen, karbid křemíkatý, nitril hliníkatý aj.

2. Rovinné polymery

Systémem kovalentních vazeb je v makromolekule rozvinut v jedné rovině. Polymerní molekula vytváří dvoourozměrnou síť. Vazby mezi dvěma paralelními rovinami makromolekulami jsou tvořeny pouze van der Waalsovými síly a mohou být velmi snadno rozrušeny. Typickým představitelem skupiny je grafit.

Hlavní znaky:
- Mimořádně vysoký bod tání i bod varu. Mnohé z těchto látek sublimují. Krystaly mají typický šupíkovitý vzhled, jsou měkké a velmi dobře těžitelné ve směru podél makromolekulárních sítí.

Příklady rovinových polymerových makromolekulárních látek:
- Grafit, černý fosfor, nitril boritý, kyselina boritá aj.

3. Lineární polymery

Makromolekuly těchto látek mají tvar řetězců. Řetěze se mezi sobou vážou van der Waalsovými silami.

Hlavní znaky:

Příklady lineárních polymerových makromolekulárních látek:
- Amorfní síra a selen, oxid sírový, dichlorid-nitríd fosforečný, většina organických polymerových látek.

Ne všechny reálně chemické látky mohou být zařazeny do jedné ze čtyř uvedených skupin.
Poněvadž mezi iontovou, kovalentní a kovovou vazbou je spojitý přechod, nacházíme i látky, jejichž vlastnosti nejsou plně vyhraněné. Například některé sulfidy a oxidy mají smíšený iontové kovový charakter (PbS, MoS₂, Bi₂S₃, PbO₂, MnO₂ aj.), elementarní polokovy (str. 163) jsou přechodem mezi molekulovými a kovovými látkami apod. Velmi přehledně znázorňuje přechody mezi jednotlivými typy vazeb, a tím i mezi třídami reálných chemických látek, trojúhelník na obr. 8-7. V jeho rozích stojí látky se značně vyhraněným charakterem různé. Ve středu stran trojúhelníka jsou látky se smíšeným charakterem různé.

9 Chemické reakce

Z výkladu o chemické vazbě a o struktuře chemických látěk vyplynulo, že vazby mezi atomy v určité látce jsou uspořádány tak, aby soubor vazajících se atomů měl co nejmenší energii. Látky v důsledku toho vykazují určitou stabilitu atomové a elektronové konfigurace, tedy snaží zachovat si dosavadní strukturu. Stažené konfigurace látěk však zdaře není neomezené. Nechceme látka k reorganizaci vnitřního uspořádání, a tím i ke změně chemické kvality, lze většinou překonat bud víc či méně výraznou změnou vnějších fyzikálních podmínek, v nichž se látka vyskytuje, anebo zavedením jedné či několika dalších vhodných látěk do daného systému.

Oba způsoby mohou podtrhnout déj, při němž dochází ke změně identity zúčastněných látěk. Látky původně přítomné zamikají i nově se tvoří látky kvalitativně odlišné. Říkáme, že v systému probíhá chemická reakce.

Typickým příkladem vyvolání chemické reakce změnou fyzikálních podmínek je rozklad některých látek při zvýšení teploty. Krystal HgO, vystavený z atomů Hg\(^{10}\) a O\(^{-2}\) poutaných v míře vazbami přechodného iontového kovalentního charakteru, se zařádím rozpadá na elementární rtu a kyslík podle rovnice

\[2 \text{HgO} \rightarrow 2 \text{Hg} + \text{O}_2 \]

Atomy v kapalné rtu jsou poutány nově vzniklou kovovou vazbou. Molekuly kyslíku se vyzařují vazbou kovalentní.

Příkladem druhého způsobu vyvolání chemického déje může být experiment, při němž se k bromidu fosforitu přidá voda. Vzniklý systém je nestálý, látky v něm obsažené se kvalitativně mení a tvoří se látky nové. Bromid fosforitu PBr\(_3\) se vodou rozkládá (hydrolyzuje) za vzniku kyseliny fosforité a bromovodíku:

\[\text{PBr}_3 + 3 \text{H}_2\text{O} \rightarrow \text{H}_3\text{PO}_3 + 3 \text{HBr} \]

Reakce probíhá spontánně při laboratorní teplotě. V jejím průběhu jsou rušeny všechny kovalentní vazby P—Br (v molekulách PBr\(_3\)) a část vazeb O—H (v molekulách vody). Vytváří se naopak kovalentní vazby P—O, P—H 1) (v molekulách H\(_3\)PO\(_3\)) a H—Br (v molekulách HBr).

Je vidět, že pro proběh každé chemické reakce je charakteristický zánik některých (někdy i všech) vazeb mezi atomy, které existovaly v systému látěk před reakcí, a jejich nahrada novými chemickými vazbami. Tyto změny tvoří podstatu chemických déjů. Jejich vnějším projevem jsou změny vlastností systému a identity jeho složek.

Z mikroskopického hlediska můžeme označit jakoukoliv chemickou reakci za proces reorganizace dosavadního uspořádání vazeb, za přestavbu atomové a elektronové struktury látěk.

Z makroskopického hlediska je chemická reakce déjem, při němž určité látky — tzv. reaktanty (výchozi látky) — zanikají a jiné — tzv. produkty (reakční produkty) — se vytvářejí.

Cestu, kterou se chemická změna na atomární molekulární úrovni uskutečňuje, nazýváme reakční mechanismus daného procesu.

1) Elektronový struktury vzorce molekuly H\(_3\)PO\(_3\) je uveden na str. 365.
Jednotlivé vazebné změny probíhající v reagujícím systému jsou vždy spojeny se spotřebováním nebo uvolňováním určitých množství energie v jejich různých formách.

Souv souhlasu s popisem realizace, mechanizmem zániku a vzniku jednotlivých vazeb, konkrétními pohyby atomů při uskutečňování vazebných změn, kinetikou svého průběhu i svou energetickou bilancí jsou chemické reakce děje velmi složité a dosud zdaleka neplně poznávací. Elementární výklad chemických reakcí a bližší charakteristiku jejich průběhu podáme v této kapitole.

9.1 FORMÁLNÍ ZNÁZORNĚNÍ CHEMICKÉHO DĚJE

Při symbolickém znázornění chemických změn se řídíme poměrně jednoduchými principy. Sestavujeme chemické rovnice, které vyjadřují stechiometrii reakcí a přesně specifikují identitu reaktantů a produktů.

Vyčleněná chemická rovnice musí při tom splňovat podmínku, že každému druhu atomu uvedenému na její levé straně odpovídá týž počet atomů téhož druhu na straně pravé (tzv. podmínka „zachování druhu atomů“). Pokud v rovnici vystupují nabité částice, je třeba aby souběh nábojů na levé a pravé straně rovnice byl stejný (tzv. podmínka „zachování elektrického náboje“).

Splnění obou podmínek konkrétních rovnic ukazuje tyto příklady:

\[
PbO_2 + 4 HCl = PbCl_2 + Cl_2 + 2 H_2O
\]

bilance atomů
\[
1 Pb = 1 Pb \\
2 O = 2 O \\
4 H = 4 H \\
4 Cl = 2 Cl + 2 Cl
\]

\[
2 Cr^{3+} + 3 H_2O_2 + 10 OH^- = 2 CrO_4^{2-} + 8 H_2O
\]

bilance atomů
\[
2 Cr = 2 Cr \\
6 H + 10 H = 16 H \\
6 O + 10 O = 8 O + 8 O
\]

bilance nábojů
\[
2 \cdot (3+) + 10 \cdot (1-) = 2 \cdot (2-)
\]

Množství informací obsažených ve formulaci chemické rovnice lze zvýšit užitím další symboliky. Za jednotlivé složeniny je možné umístit do závorek symbol skupenského stavu, v němž při reakci jsou (s – solidus, tuhá látka, l – liquidus, kapalina, g – gasus, plynu). Často se tedy vyjadřuje symbolicky za vzorcem látky, zda je reakčním podstavcem plynným, který ze systému uniká (symbol \(\right\)), nebo zda se produkt vylučuje z reakčního systému jako tuhá fáze – sraženina (symbol \(l \)). K rovnitku nebo šipce zápisu reakce někdy připojíme údaj o teplotě, popř. tlaku, při nichž se reakce uskutečňuje, uvádí se katalyzátor, prostředí (rozpošťlano), v němž reakce probíhá, atd. Vedle rovnice vpravo se může uvést číselný údaj o množství tepla při reakci uvolněného nebo spotřebovaného.

Stále častěji se v odborné literatuře užívají k vyjadřování reaktivity a reakčních možností určité látky tzv. reakční schéma. Reaktant, jenž je předmětem naszego záměnu – říkáme mu pak substrát – stojí obvykle ve středu schématu a šipky, vzorce a další symboly znázorňují ostatní zúčastněné reaktanty (činitel), produkty reakce a podmínky, za kterých se děj uskutečňuje.
Příkladem může být schéma reakčních přeměn chloridu fosforitého:

\[
\begin{align*}
{\text{SO}_2} + {\text{POCl}_3} & \rightarrow {\text{SO}_3} + {\text{POCl}_3} + \text{HCl} \\
{\text{P}_2{\text{S}_5}} + {\text{BaCl}_2} & \rightarrow {\text{PCl}_3} + \text{BaS} \\
{\text{PCl}_3} & \rightarrow {\text{PCl}_3\text{Br}_3} \\
{\text{PCl}_3\text{Br}_3} & \rightarrow {\text{PCl}_3} + \text{HCl}
\end{align*}
\]

Reakční schéma se těž používá k přehlednému vyjádření určitého sledu chemických reakcí realizovaných uměle (např. schéma chemismu určité výroby). Právě tak jím může být znázorněn sled reakcí probíhajících samovolně v určitém systému buď v návaznosti za sebou (následné reakce), nebo vedle sebe (reakce boční).

Reakční schématy jsou sice velmi přehledné, ale na rozdił od rovnic vyjadřují chemické děje pouze kvalitativně.

Netřeba jít dělat, že jak běžné chemické rovnice, tak i reakční schémata zachycují jen makroskopickou stránku chemického děje. K vyjádření mikro mechanismu chemických reakcí se sice také užívají rovnice nebo schémata, avšak stičiometrické vzorce reaktantů i produktů se v nich nahrazují elektronovými strukturními vzorcemi, popř. vzorcemi geometrickými. Navíc se různými grafickými prostředky vyjadřují dělení kroků a pohyby atomových uskupení v průběhu děje. Tento postup poznamenáme v dalších částech této kapitoly.

9.2 TYPY CHEMICKÝCH REAKCIÍ

Rozvoj poznatků o průběhu a zákonitostech chemických reakcí postupoval v minulých deseti letech od čistě jevového popisu k odhalení a chápaní podstaty skryté v oblasti mikrosvetů – v pohybu atomů, ionií a molekul. Vývoj se to i ve vývoji kritérií sloužících k rozlišování typů chemických reakcí. Prvky klasifikace vycházejí z kritérií přihlţujících k vnějšímu projevům průběhu reakcí, kdežto dnes jí již velmi často všimáme jejích mikro mechanizmu.

Velká rozmaitost chemických dějů a postupný vývoj kritérií vyústily ve velmi složitý klasifikační aparátní, který je bohatý zejména nesoučasným zavedeným a používaným pojmům, ale současně je i Nesoučasný a postrádá obecnou platnost a jednoznačnost. Některá i třídění vycházející z fenomenologické charakteristiky reakcí se však v chemické nomenklaturě běžně užívají, jako je proto vhodné se s nimi seznámit.

1. Použije-li se jako klasifikační hledisko skupenský stav reaktantů, popř. reakčních produktů, lze dospět k tomuto dělení reakcí:
 a) Reakce probihá v homo genečním systému ve fázi
 plynů, např.:
 \[{\text{H}_2\text{(g)}} + {\text{Cl}_2\text{(g)}} \rightarrow 2 \text{HCl(g)} \]
 kapalin, např.:
 \[{\text{CH}_3\text{COCl(l)}} + {\text{C}_2\text{H}_5\text{OH(l)}} \rightarrow {\text{CH}_3\text{COOC}_2\text{H}_5\text{(l)}} + \text{HCl(l)} \]
 b) Reakce probihá v heterogenečním systému mezi těmito
 tuhými, např.:
 \[{\text{WO}_3\text{(s)}} + {\text{NiO(s)}} \rightarrow \text{NiWO}_4\text{(s)} \]
tuhou a plynou, např.:
\[\text{MoO}_3(s) + 3 \text{H}_2(g) = \text{Mo}(s) + 3 \text{H}_2\text{O}(g) \]
kapalnou a plynou, např.:
\[2 \text{NaOH}(aq) + \text{CO}_2(g) = \text{Na}_2\text{CO}_3(aq) + \text{H}_2\text{O}(l) \]

2. Považujeme-li za závažnou celkovou změnu, která nastává ve stochiometrii reaktantů, můžeme reakce rozčlenit na děje charakteru
a) skladného (syntetického, adičního), např.:
\[
\begin{align*}
\text{Fe} + \text{S} & = \text{FeS} \\
\text{ZnO} + \text{MoO}_3 & = \text{ZnMoO}_4
\end{align*}
\]
b) rozkladného (analytického, eliminačního), např.:
\[2\text{H}_2\text{O} = 2\text{H} + \text{O}_2 \]
\[(\text{NH}_4)_2\text{Cr}_2\text{O}_7 = \text{N}_2 + \text{Cr}_2\text{O}_3 + 4\text{H}_2\text{O} \]
c) redukčnoiničního (substitučního), např.:
\[\text{CuSO}_4 + \text{Fe} = \text{FeSO}_4 + \text{Cu} \]
\[2\text{NaBr} + \text{Cl}_2 = 2\text{NaCl} + \text{Br}_2 \]
d) podobné změny (metafaza, konverze), např.:
\[\text{NaNO}_3 + \text{KCl} = \text{NaCl} + \text{KNO}_3 \]
\[\text{PbCl}_2 + \text{K}_2\text{SO}_3 = \text{PbSO}_4 + 2\text{KCl} \]

3. Významně je rozlišení reakcí podle děje, kterému podléhá substrát, tj. reaktant, který je v daném ději (experimentu, technologického procesu atd.) předmětem našeho zájmu.
a) jistěže je substrát oxidován, hovoříme o reakci oxidací, např.:
\[
\begin{align*}
3\text{Cu}^0 + 8\text{HNO}_3 & = 3\text{Cu}^{(II)}\text{(NO}_3)_2 + 2\text{NO} + 4\text{H}_2\text{O} \\
\text{CH}_2\text{=CH} & \text{OH} + \text{O}_2 & = \text{CH}_2\text{=CH} & \text{OH} + \text{H}_2\text{O}
\end{align*}
\]
b) Redukce substrátu se v popisu děje vyznačí názvem redukční reakce, např.:
\[
\begin{align*}
\text{WO}_3 + 3\text{H}_2 & = \text{WO} + 3\text{H}_2\text{O} \\
\text{Ti}_2\text{Cl}_6 + 2\text{Mg} & = \text{Ti} + 2\text{MgCl}_2
\end{align*}
\]

1) Označení (aq) znamená zde a v dalších rovniciích vodný roztok uvedené látky.
4. K předchozí klasifikaci se přimyká ještě rozlišování podle typu, charakteru a účinku reaktantu původního chemické změny substrátu. Zavádí-li reaktant do substrátu např. chlor (halogen), nazývá se děj
chlorence (halogenace) a reaktant čidlem chlorořízním (halogenázním):

\[\text{substrať} + \text{halogen} \rightarrow \text{halogenace} \]

\[2 \text{P} + 5 \text{Cl}_2 = 2 \text{PCl}_5 \]

\[3 \text{C}_2\text{H}_5\text{OH} + \text{PBr}_3 = 3 \text{C}_2\text{H}_5\text{Br} + \text{H}_3\text{PO}_3 \]

Obdobně se zavádí z názvů

- SO\textsubscript{2}\text{H} \text{H}, \text{NO}_2, \text{CH}_3\text{CO}, \text{CH}_2\text{CH}_2 - nazývá

sulfonace,

nitroace,

esterace,

etylene. Zavádění atomů oxidu do substrátu označujeme názvem hydrogenace.

Děj, při němž do struktury substrátu pronikají celistvé molekuly vody (rozpouštědla), se nazývá hydratace (solutantace) atd.

5. Zvláštní názvy mají rozložité reakce substrátů s rozpouštědly.

a) Je-li reaktantem (rozpouštědlem) atakujícím substrát voda, nazývá se proces hydrolyza (hydrolytická reakce), např.:

\[\text{TiBr}_4 + 2 \text{H}_2\text{O} \rightarrow \text{TiO}_2 + 4 \text{HBr} \]

\[\text{MgS} + 2 \text{H}_2\text{O} \rightarrow \text{Mg(OH)}_2 + \text{Mg(HS)}_2 \]

b) Jestliže substrát reaguje s jakýmkoliv jiným rozpouštědlem, užívá se pro tento děj obecné označení solvolyza (solvolytická reakce), např.:

\[\text{HgCl}_2 + 2 \text{NH}_3 \rightarrow \text{HgNH}_2\text{Cl} + \text{NH}_4\text{Cl} \] (ammonolýza)

\[\text{SiCl}_4 + 4 \text{C}_2\text{H}_5\text{OH} \rightarrow \text{Si(OCH}_3\text{H}_3)_4 + 4 \text{HCl} \] (alkoholyza)

Tříďení a označování reakcí, které jsme doposud uvedli, má spíše nomenklaturní význam (s výjimkou rozlišení homogenních a heterogenních reakcí) a v podstatě neodráží skrytý mechanismus reakcí.

I když konkrétní mikromechanismus četných chemických reakcí ještě neznáme, přece jen v naprosté většině případů akce povazme jakéhokoliv částice, které v procesu vystupují, jako typ mikrocirkulace. Reakce probíhají na základě poměrně jednoduchých experimentálních důkazů dovedeme totiž obvykle odpovědět na dvě základní otázky:

1. Zda je skrytý reakční mechanismus procesem přesunutého važe mezi molekulami nebo zda při jeho realizaci dochází ke vzniku a interakci iontů, popř. vede-li přes vznik fragmentů molekul s nějakými elektronky - tzv. radikály.

2. Zda klíčovým dějem reakce je oxidačně-redukční změna (přenos elektronů), acidobazický proces (přenos protonů H+), nebo děj koordinační (přenos jednotlivých atomů a jejich skupin).

Podle toho rozlišujeme pak reakce:

1. - molekulové,
 - iontové,
 - radikálové,
2. - oxidačně-redukční,
 - acidobazické,
 - koordinační.

Poněkud složitější situace obvykle vzniká u reakcí heterogenních, takže naznačené třídění nelze vždy úspěšně použít. Ale i mechanismus homogenních reakcí může být natolik komplikovaný, že jeho zařazení je obtížné. Nyní se však seznámíme s několika příklady jednoduchých chemických dějů a na nich si ukážeme příslušnost reakcí k uvedeným typům.
• **Molekulové reakce**

Jen velmi málo anorganických reakcí má molekulový mechanismus. Uvedeme proto pouze jeden příklad.

Reakce chloru s dichlorsulfanem vede ke vzniku chloridu sířičitého. Uskutečňuje se podle rovnice

\[
\text{Cl}_2 + \text{Cl}_2 \rightarrow \text{Cl}_4
\]

Skutečný mechanismus reakce se pravděpodobně od formálního vyjádření touto rovnici prakticky neliší a je znázorněn na obr. 9.1. Lomená molekula \(\text{Cl}_2 \) se dvěma nevazebnými elektronovými páry na atomu síry (jejichž polohu v prostoru lze zdůvodnit představou hybridizace \(\text{SP}^3 \) na tomto atomu) se ve vhodné orientaci sráží s molekulou chloru \(\text{Cl}_2 \). Při tom zaniká vazba \(\text{Cl} - \text{Cl} \), místo ní i jeden z dvojice nevazebných elektronových pář na atomu S a místo toho se vytvářejí dvě nové vazby \(\text{S} - \text{Cl} \). Tvar molekuly \(\text{Cl}_4 \) odpovídá deformovanému tetraedru a může být odvozen od trvání trigonální bipyramidy s nově vzniklou hybridizací \(\text{SP}^3 \text{D} \) na středovém atomu síry.

![Obr. 9.1. Molekulový mechanismus reakce dichlorsulfanu s chlorem](image)

Celý proces probíhá v jediném kroku. Říkáme tedy, že se při něm součástí, tedy najednou uskutečňuje všechny přesuny vazeb. Reakce či jednotlivé reakční kroky takového druhu se velmi často označují jako součástní procesy. Mechanismus popsaného děje je očividně molekulový, jiné částice než neutrální molekuly v něm nevystupují.

Pro úplnost poznamenejme, že reakce je současné dějem oxidace-redukce, neboť při současném mechanismu jsou přeměněny elektrony. Lze se o tom formálně přesvědčit určením oxidace-redukčních čísel zúčastněných atomů a jejich změn při reakci.

• **Ionové reakce**

Ionový charakter má většina anorganických reakcí, obvykle těch, které se uskutečňují ve vodných roztocích nebo v roztocích jiných velmi polárních rozpouštědlech. Reaktanty bývají po rozpuštění ionizovány a v ionové formě spolu též reagují.

Mezi anorganické ionové reakce patří zejména tyto děje:

1. Vlákně častí rozpuštěných, to rozpuštění látek, např. cové, v kyselinách

\[
\begin{align*}
\text{Zn} + 2 \text{HCl} & = \text{Zn}^{2+} + 2 \text{Cl}^- + \text{H}_2 \\
\text{Cu} + 2 \text{H}_2\text{SO}_4 & = \text{Cu}^{2+} + 2 \text{SO}_4^{2-} + \text{SO}_2 + 2 \text{H}_2\text{O} \\
\text{As} + 5 \text{HNO}_3 & = \text{H}^+ + \text{H}_3\text{AsO}_4^+ + 5 \text{NO}_2 + 2 \text{H}_2\text{O}
\end{align*}
\]

rozpuštění látek v roztocích alkaliických hydroxidů

\[
\begin{align*}
\text{Zn} + 2 \text{NaOH} + 2 \text{H}_2\text{O} & = 2 \text{Na}^+ + [\text{Zn(OH)}_4]^{2-} + \text{H}_2 \\
2\text{Al} + 2 \text{NaOH} + 6 \text{H}_2\text{O} & = 2 \text{Na}^+ + 2[\text{Al(OH)}_4]^- + 3 \text{H}_2
\end{align*}
\]

172
rozpouštění sraženin za vzniku koordinačních sloučenin (komplexních iontů)

\[\text{AgCl} + 2 \text{NH}_3 = [\text{Ag(NH}_3)_2]^+ + \text{Cl}^- \]
\[\text{HgI}_2 + 2 \text{I}^- = [\text{HgI}_4]^{2-} \]

2. Tvorba koordinačních sloučenin v roztocích

\[\text{Fe}^{3+} + 4 \text{SCN}^- = [\text{Fe(SCN)}_4]^2- \]
\[\text{Sn}^{4+} + 6 \text{Cl}^- = [\text{SnCl}_6]^{2-} \]

3. Využívání malé rozpuštění látek (srážecí reakce)

\[\text{Ba}^{2+} + \text{SO}_4^{2-} = \text{BaSO}_4 \downarrow \]
\[\text{Hg}^{2+} + \text{S}_2^{2-} = \text{HgS}_2 \downarrow \]

nebo krystalizace rozpuštěných látek z roztoků atd.

4. Všechny reakce acidobazické (str. 177), např.
neutralizace

\[\text{H}_2\text{O}^+ + 1^- + \text{Na}^+ + \text{OH}^- = \text{Na}^+ + 1^- + 2 \text{H}_2\text{O} \]
\[\text{HI} + \text{H}_2\text{O} \rightarrow \text{NaOH} \rightarrow \text{NaI} \]

vytěsnění slabé kyseliny silnější kyselinou, např.

\[\text{CH}_3\text{COO}^- + \text{Na}^+ + \text{H}_2\text{O}^+ + \text{H}_2\text{PO}_4^- = \]
\[\text{CH}_3\text{COONa} + \text{H}_2\text{PO}_4^- + \text{H}_2\text{O} \]

\[\text{BaCO}_3 + 2 \text{H}_2\text{O}^+ + \text{SO}_4^{2-} = \text{BaSO}_4 + 3 \text{H}_2\text{O} + \text{CO}_2 \]
\[\text{H}_2\text{SO}_4 + 2 \text{H}_2\text{O} \]

reakce hydrolytické (jejich průběh si vyložíme později, str. 258) aj.

5. Reakce oxidace-redukce (str. 175) s převodem elektronů mezi ionty, např.

\[\text{V}^{3+} + \text{Fe}^{3+} = \text{V}^{4+} + \text{Fe}^{2+} \]
\[2 \text{Fe}^{3+} + 2 \text{I}^- = 2 \text{Fe}^{2+} + \text{I}_2 \]
\[\text{I}^- + \text{ClO}^- + \text{H}_2\text{O}^- = \text{HIO}^+ + \text{Cl}^- + \text{H}_2\text{O} \]

O iontovém mechanismu lze hovořit též u mnoha reakcí organických sloučenin. Jsou to především acidobazické reakce mezi organickými kyselinami a zásadami spojené s převodem iontů \(\text{H}^+ \) a mnoho další. Za všechny případy uvedeme pouze jediný příklad, hydrolyzu methylbromidu:

\[\text{H} \]
\[\text{Br}^--\text{H} + \text{OH}^- = \text{Br}^- + \text{H}^- \text{C-OH} \]
\[\text{H} \]

173
Radikálové reakce

Rozsáhlou skupinou chemických dějů tvoří reakce radikálové. Vyznačují se tím, že v jejich mechanismu má významnou úlohu intermédiární (přechodný) vznik nestálých uskupení atomů, které jsou buď elektronemtické, nebo i nabité a obsahují jeden nepárový elektron, výjimečně dva či více. Nejčastěji se tyto tzv. radikály vytvářejí *homolytickým štěpením vazeb* v molekulách následkem působení tepelné nebo světelné energie. Jestliže přijetí některé z těchto forem energie (srázkou molekul, absorbcí světelného kvanta vhodné vlnové délky apod.) do některé vazby v molekule nastane situaci, že se na jejich vazebných a protivazebných MO vyskytne stejný počet elektronů, nabyvá řád této vazby nulové hodnoty (str. 89) a vazba se homolytickým štěpí (str. 136).

Pokud je vazba jediným pojítkem mezi dvěma částmi molekuly, vzniká dvojice radikálů; existuje-li ještě další pojítko, vzniká biradikál (obr. 9-2). Vedle popsané tvorby radikálů se v některých systémech může uplatnit též jejich vznik chemickou cestou, tj. reakcí.

Vzniklé radikály jsou častice extrémně reaktivní, schopně atakovat jiné molekuly a způsobit jejich dalekosáhlé vazebné změny.

Valná část radikálových reakcí probíhá tzv. *řetězovým mechanismem*. Jeho podstatu nejlépe pochopíme na konkrétním příkladu. Reakce vodíku s břišem podle rovnice H₂ + Br₂ → 2 HBr je radikálovou reakcí. V první fázi reakce dochází k vytváření radikálů. Tepelná nebo světelná excitační molekul Br₂ vede k jejich štěpení na radikály (tj. atomy bromu) s jedním nepárovým elektronem:

\[\text{Br}_2 \rightarrow \text{Br}^+ + \cdot \text{Br} \]

Tomuto reakčnímu kroku se říká *iniciace* reakce.

Vzniklé radikály napadají molekuly vodíku, vznikají molekuly HBr a radikály H⁺ (tj. atomy vodíku), a ty opět mohou reagovat se zbývajícími nerozdělenými molekulami Br₂. Těmito dějemi říkáme *propagaci* reakce. Mají cyklický, řetězový charakter a převádějí stále další a další molekuly H₂ a Br₂ na molekuly HBr:

\[\text{Br}^+ + \text{H}_2 \rightarrow \text{HBr} + \text{H}⁺ \]
\[\text{H}⁺ + \text{Br}_2 \rightarrow \text{HBr} + \text{Br}^+ \]

Současně s propagací nastávají ovšem i vazebné změny, které průběh reakce obracejí opačným směrem:

\[\text{H}⁺ + \text{HBr} \rightarrow \text{H}_2 + \text{Br}⁺ \]
\[\text{Br}⁺ + \text{HBr} \rightarrow \text{Br}_2 + \text{H}⁺ \]

Používá se pro ně název *retardační děje*.

174
K zániku radikálů v průběhu reakce dochází tzv. *terminačními reakcemi*. V našem případě jsou to tyto děje:

\[
\begin{align*}
Br^* + Br^- &= Br_2 \\
H^* + Br^- &= HBr \\
H^* + H^* &= H_2
\end{align*}
\]

Iniciální fáze radikálových reakcí nemusí být vždy podmíněná přísným světelným nebo tepelným formou energie. Radikály vznikají těž působením oxidačních nebo redukčních činidel na některé (zejména organické) látky. Například alkylhydroperoxide poskytují vlivem redukčního působení železnaté soli alkoxyradikál podle formální rovnice

\[R-O-O-H + Fe^{3+} \rightarrow R-O^- + [O-H]^- + Fe^{2+}\]

Oxidaci anilinu soli ceričitou vzniká fenalamenoxydová radikalkation:

\[
\text{H}_2\text{N}-\text{N}=\text{N} + \text{Ce}^{4+} \rightarrow \left[\text{H}_2\text{N}-\text{N}=\text{N}^+\right] + \text{Ce}^{3+}
\]

Běžnými činidly, která mohou svým oxidačním či redukčním působením vytvářet radikály, jsou především sloučeniny s těmito oxidačními stavy uvedených prvků:

Fe^{II,III}, Cu^{I,II}, Co^{II,III}, Pb^{IV,II}, Ce^{III,IV}, Mo^{VI,IV} aj.

Reakce oxidačně-redukční

\[
\begin{array}{ccccccc}
-IV & -III & -II & -I & 0 & I & II & III & IV & V & VI & VII & VIII \\
\hline
\text{oxidační} & & & & & & & & & & & & \text{redukční}
\end{array}
\]

Oxidačně-redukční dějem je např. reakce

\[
\text{NaClO}_3 + 2 \text{KI}^- + \text{H}_2\text{O} \rightarrow \text{NaCl}^- + \text{I}_2 + 2 \text{KOH}
\]

nebo formálně složitější reakce

\[
2 \text{KMnO}_4 + 10 \text{Fe}^{II}\text{SO}_4 + 8 \text{H}_2\text{SO}_4 \rightarrow 2 \text{Mn}^{II}\text{SO}_4 + 5 \text{Fe}^{III}\text{(SO}_4)_3 + \\
+ K_2\text{SO}_4 + 8 \text{H}_2\text{O}
\]

1) Obě reakce probíhají ve vodním roztoku iontovým mechanismem. Zdůležité reaktanty i vznikající reaktanční produkty jsou přítomny v ionovitě čisté (s výjimkou molekul 1). Tato skutečnost není rovněž vyjadřena. (Těžiště platí i pro mnohé další rovnice, které uvedeme později.)
V každé oxidace-redukční rovnici nutně vystupuje jako látka oxidující (oxidovaná), tak i látka oxidovaná (tj. redukující, čili redukována). Je tomu tak proto, že elektrony jedné látky od-nímané musí jiná látku přijmout, a v rovnici musí tedy počet elektronů (nábojů) levé strany souhlasit s počtem elektronů (nábojů) na straně pravé. Na tom je založen známý postup při vyčislování oxidace-redukčních rovnic. Lze ovšem formulovat i rovnice tzv. poloreakcí, která znázorňuje jen samotný akt oxidace nebo samotný akt redukce. Jeji formulace má jen formální význam. Tyto déje nemohou v žádném reakčním systému nikdy probíhat samostatně, nýbrž jen společně, tj. nejméně jeden oxidace a jeden redukční proces v jednom redoxním chemickém déji. Poloreakce jsou ovšem dobrym vyjádřením elektrochemických reakcí, tj. reakcí probíhajících např. při elektrolýze na povrchu elektrody. Z dvojjí elektrody je vždy přijmem elektronů anoda (anoda tedy působí oxidace), a naopak zdrojem elektronů je katoda (působí redukční). I zde však platí, že oxidace a redukční déje probíhají současně, jeden na prvé a druhý na druhé elektrode. Příkladem poloreakcí mohou být redukční procesy

\[
\begin{align*}
Fe^{3+} + e^- &= Fe^{2+} \\
Ag^+ + e^- &= Ag^0 \\
Cu^{2+} + 2 e^- &= Cu^0
\end{align*}
\]

a procesy oxidace:

\[
\begin{align*}
2Cl^- &= Cl_2 + 2e^- \\
[\text{Pb}^{4+}(\text{OH})_2]^{2-} &= \text{Pb}^{4+}O_2 + 2H_2O + 2e^- \\
[\text{Fe}^{3+}(\text{CN})_6]^{3-} &= [\text{Fe}^{3+}(\text{CN})_6]^{3-} + e^-
\end{align*}
\]

Zcela běžně vzniká situace, kdy v určitém reaktantu je přítomno více prvků, které se oxidují jediným oxidaci činidlem. Takový déj ukazuje rovnice

\[
3\text{As}^{3+}S_3\text{H}^+ + 28\text{HN}_2\text{O}_3 + 4\text{H}_2\text{O} = 6\text{H}_2\text{As}^4\text{O}_4 + 9\text{H}_2\text{SO}_4 + 28\text{N}_2\text{O}
\]

Jindy se u některých reakcí uskuteční oxidace-redukční přeměna tak, že určitý prvek v reaktantu obsažený v části svých atomů zvětší a u druhé části zmenší původní oxidaci číslo. Látka je sama sobě oxidováním i redukováním. Takovýto typ reakce se nazývá disproporcace. Příkladem disproporcionace je rovnice

\[
\begin{align*}
\text{Cl}_2 + 2\text{KOH} &= \text{KCl}_2^- + \text{KClO} + \text{H}_2\text{O}
\end{align*}
\]

Opakem disproporcionací jsou reakce synproporcionační, při nichž procesem oxidace i procesem redukce vzniká týž oxidaci stav některého prvku v jednom z reakčních produktů. Příkladem tohoto typu déje je rovnice

\[
\begin{align*}
5(I^-)^2 + 1IO_3^- + 6H^+ &= 3I_2 + 3H_2O
\end{align*}
\]

Zdáráme se ještě, že v užším slova smyslu (zejména při zvažování i rozboru určitého reakčního mechanismu) bývá oxidace-redukční změna chápána též jen jako elementární proces.
(akt), při němž z jedné částice (atomu, skupiny atomů, molekuly, iontu) je přenesen jeden nebo více elektronů na druhou částici:

![částice 1 \(\rightarrow \) částice 2]

"redukovadlo" \(\rightarrow \) "oxidovadlo"

Částice 1, původně vlastní elektron (elektrony), je redukovadlem a přenosem elektronu se oxiduje. Částice 2, která elektron (elektrony) přijme, je oxidovadlem a uskutečněním přenosu elektronu se redukuje. Při tom je hlavně, jakým skutečným mechanismem (str. 193) je přenos elektronů realizován.

- **Reakce acidobazické**

V širším slova smyslu jsou to děje, při kterých se projevuje kyselost (acidita) a zásaditost (bazicita) zúčastněných látek. Nejčastěji se chemické pojmy kyselina a zásada definují podle Brønsted a Lowryho (str. 243):

Kyseliny jsou slouha odepřen na svému okolí poskytovat ionty \(H^+ \). Zásady naproti tomu mají tendenci ionty \(H^+ \) od okolí přijmout.

V souladu s těmito definicemi lze jako acidobazické označit všechny reakce, při nichž mezi reaktanty dochází k přesunu protonů.\(^1\)

Mezi acidobazické reakce se řadí klasické reakce neutralizaci:

\[
2\text{NaOH} + \text{H}_2\text{SO}_4 = \text{Na}_2\text{SO}_4 + 2\text{H}_2\text{O}
\]

vytěsnění slabší kyseliny silnější (resp. menší těžkou) kyselinou:

\[
\text{Ca}_3(\text{PO}_4)_2 + 3\text{H}_2\text{SO}_4 = 3\text{CaSO}_4 + 2\text{H}_3\text{PO}_4
\]

i obdobně vytěsnění mezi zásadami:

\[
\text{NH}_4\text{Cl} + \text{NaOH} = \text{NaCl} + \text{NH}_3 + \text{H}_2\text{O}
\]

hydrolytické rozklady látek:

\[
\text{TiCl}_4 + 2\text{H}_2\text{O} = \text{TiO}_2 + 4\text{HCl}
\]

\[
\text{CaC}_2 + 2\text{H}_2\text{O} = \text{C}_2\text{H}_2 + \text{Ca(OH)}_2
\]

a řada dalších. Stojí za povšimnutí, že u uvedených rovnic jsou všechny nebo alespoň část protonů \(H^+ \), figurovající v východních látkách, po skončení reakce koordinovaly na atomy jiného druhu. (Nastalé přesuny jsou v uvedených acidobazických reakcích znázorněny šipkami.) Řekli jsme již, že pro acidobazické reakce je charakteristický iontový mechanismus jejich průběhu.

Analogicky k reakcím oxidačně-redukčním bývá i u reakcí acidobazických zvykem chápát

\(^1\) Existují a užívají se i jiné definice kyselostí a zásaditosti (kap. 12). Vycházejí-li z těchto odsudnění definic, mění se pohled i náplň pojmu acidobazická reakce.
acidobazický děj v užším slova smyslu jako elementární akt přenosu protonu z jedné částice na druhou:

\[
\text{částice 1} \quad \text{H}^+ \quad \rightarrow \quad \text{částice 2}
\]

kyšelina \quad \text{zášada}

Z dalšího výkladu poznáme, že acidobazické reakce jsou jen zvláštním případem reakcí koordinačních.

- **Reakce koordinační**

 Reakce, při nichž mezi reaktanty dochází k přesunům atomů, atomových skupin, ionií a molekule, se nazývají reakce koordinační. Výsledkem těchto změn je vždy vytvoření nové situace, pokud jde o způsob vzájemného prostorového obklopení (koordinace) a vazebného spojení stavebních jednotek látek a jejich částí.

 Mezi koordinačními reakcemi jsou nejhojněji zastoupeny děje, při nichž dochází ke změnám koordinační sféry středového atomu. Mezi ně patří zejména tvorba či rozpad komplexních částic (molekule, ionií), např.

 \[
 \begin{align*}
 & \text{Fe}^{3+} + 6 \text{CN}^- = [\text{Fe(CN)}_6]^{3-} \\
 & \text{Cu}^{2+} + 4 \text{NH}_3 \cdot \text{H}_2\text{O}^+ = [\text{Cu(NH}_3)_4]^{2+} + 4 \text{H}_2\text{O} \\
 & \text{Fe}^{3+} + 3 \text{H}_2\text{O} + 3 \text{SCN}^- = [\text{Fe(H}_2\text{O})_3(\text{SCN})_3]^2-
 \end{align*}
 \]

 resp.

 \[
 \begin{align*}
 & [\text{PbI}_3]^+ = \text{PbI}_2 + \text{I}^- \\
 & [\text{Cd(CN)}_4]^2- = [\text{Cd(CN)}_4]^2- + \text{CN}^- \\
 & [\text{Cd(CN)}_4]^3- = \text{Cd(CN)}_4 + \text{CN}^-
 \end{align*}
 \]

 a těž výměny (substituce) ligandů, např.

 \[
 \begin{align*}
 & [\text{Pt(NH}_3)_3]^2+ + \text{Cl}^- = [\text{Pt(NH}_3)_3\text{Cl}]^+ + \text{NH}_3 \\
 & [\text{Fe(H}_2\text{O})_3(\text{SCN})_3]^2- + 6 \text{F}^- = [\text{FeF}_6]^{3-} + 3 \text{SCN}^- + 3 \text{H}_2\text{O}
 \end{align*}
 \]

 Při ponechání širšího chápání pojmu „koordinační reakce“ lze mezi tyto procesy zařadit i takové děje, jako jsou reakce srážení, při nichž se ioni z roztoku zabudovávají (koordinují) do vznikajících krystalových mířžky, nebo reakce rozpouštění, při nichž se vlivem rozpouštědla nebo látě ve něm rozpuštěných rozpadá krystalová mířžka a její stavební jednotky se nově koordinují ve vzniklém roztoku.

 I zde je třeba zdůraznit, že v užším slova smyslu se „koordinační“ rozumí elementární krok představovaný připojením jedné částice na druhou částici, nejčastěji za vzniku donor-akceptorové vazby (str. 137).

- **Složitější chemické reakce**

 Mnoho z reálných reakcí a reakčních kroků jsou složeny ze dvou nebo tří uvedených typů chemických dějů. Tak např. adice molekuly chloru na molekulu chloridu fosforitého je jak

\footnote{1) Tímto vzorcem se vyjadřuje složení jedné z částic přítomných v roztoku „hydroxidu amoníkové“ (str. 350).}
oxidačně-redukční reakci (oxidace P⁵⁺→P⁴⁺ a redukce Cl⁰⁺→Cl⁻⁻), tak i reakci koordinační (změna způsobu koordinace na atomu P).

\[
\begin{align*}
\text{Cl} \quad \xrightarrow{\text{P}} \quad \text{Cl} + \quad \text{Cl} \quad \xrightarrow{\text{Cl}} \quad \text{Cl} - \quad \text{Cl} - \quad \text{Cl} - \quad \text{Cl}
\end{align*}
\]

Obdobně při interakci dvou chromanových iónů dochází nejprve k acidobazické reakci tim, že ióny přijmou proton (jsou protonizovány):

\[
\left[\begin{array}{c}
\text{O} \\
\text{Cr} \\
\text{O}
\end{array} \right]^{2-} + \text{H}^+ = \left[\begin{array}{c}
\text{O} \\
\text{Cr} \\
\text{O}
\end{array} \right]^{-}
\]

Teprve potom nastane změna koordinace, při níž se uvolní molekula vody a vznikne dichromanová ion (čv. proces kondenzace):

\[
\left[\begin{array}{c}
\text{O} \\
\text{Cr} \\
\text{O}
\end{array} \right]^{-} + \left[\begin{array}{c}
\text{O} \\
\text{Cr} \\
\text{O}
\end{array} \right]^{-} = \left[\begin{array}{c}
\text{O} \\
\text{Cr} \\
\text{O}
\end{array} \right]^{2-} + \text{H}_2\text{O}
\]

V podobných situacích se vžilo označovat tyto složitější děje podle této hierarchie:

- acidobazický
- oxidačně-redukční
- koordinační

Znamená to, že děj, při kterém se třeba jen v jediném z několika kroků uplatňuje oxidačně-redukční změna, se obvykle označuje za děj oxidačně-redukční. V některých případech ovšem můžeme označení zpětně použít i k termínu redoxní koordinace, redoxní adice, redoxní děj s předřazenou protonizací apod. Děje současně acidobazické i koordinační označujeme obdobně se zdůrazněním toho reakčního kroku, který nás momentálně více zajímá a je předmětem našich úvah.

Hranice mezi acidobazickými a koordinačními reakcemi je navíc otázkou dohody. Stačí, abychom poznali definice acidity a bazity látek, tedy přesli o konceptu Brønstedovy k Lewisovi (str. 248), a vládnou část koordinačních dějů musí být chápána jako procesy acidobazické apod.

9.3 ENERGETICKÉ ZMĚNY PŘI PRŮBĚHU CHEMICKÝCH REAKcí

Zánik chemických vazeb a vznik vazeb nových, zvětšování nebo zkracování některých meziatomových vzdáleností, změny vazebních úhlů, vytváření nové elektronové konfigurace atomárních cyklov, změny skupenského stavu části nebo celé reagující soustavy i další děje jsou procesy nerozlišené spjaté s průběhem chemické reakce v každém systému. Všechny tyto děje jsou při tom spojeny s větší či menší spotřebou nebo naopak uvolněním energie. Rozlišení energetických příspěvků každého z dějů v reagující soustavě je silně principiálně možné, ale teoreticky i experimentálně velmi náročné a obtížné. Spokojujeme se proto nejčastěji pouze s globálním popisem energetických změn nastávajících při chemické reakci a používáme k tomu myšlenkový a pojmový aparát z oblasti chemické termodynamiky.
Reakční teplo

Energií určité uzavřené soustavy označíme symbolem U a nazveme ji "vnitřní energie" soustavy. Pod tímto pojmem se rozumí termodynamická funkce charakterizující stav dané soustavy, tedy tzv. stavová veličina, jejíž velikost v souladu se zákonom zachování energie je u izolovaných soustav neměnná a u soustav uzavřených se mění podle toho, jak přes hranice takové soustavy přechází energie v závěru ze svých forem. V uzavřené soustavě např. vnitřní energie stoupá úměrně s množstvím do soustavy předvedeného tepla. Naopak pokles vnitřní energie uzavřené soustavy je ekvivalentní práci, kterou soustava odevzdá do svého okolí. Aplikujeme-li tuto představu na reagující systém a označíme-li vnitřní energii určitého systému před započetím chemické reakce U' a po jejím skončení U'', představuje rozdíl $U'' - U' = \Delta U$ změnu vnitřní energie v průběhu reakce.

Platí pro ni vztah:

$$\Delta U = Q - \sum A \tag{9-1}$$

kde Q je teplo přijaté soustavou v průběhu dosažení a $\sum A$ - součet všech druhů práce (mechanické, elektrické atd.), kterou soustava odevzdala do okolí.

Další stavovou veličinou, kterou používá termodynamika k charakterizaci stavu soustavy, je tzv. entalpie, která se označuje symbolem H. Je definována rovnicí:

$$H = U + pV \tag{9-2}$$

kde p je tlak vnitřní soustavy a V - její objem. Opět nás může zajímat vyjádření změny entalpie, která nastane v reagující soustavě. Uskuteční-li se reakce při konstantním tlaku $\Delta p = 0$ a většina reakcí, i průmyslově realizovaných, je bez tlakových změn, tzn. pro změnu entalpie ΔH platí:

$$\Delta H = \Delta U + p \Delta V \tag{9-3}$$

Přitom veličina ΔV vyjadřuje objemovou změnu soustavy, k níž v důsledku průběhu reakce dojde.

Součin $p \Delta V$ je tzv. objemová práce. Tato práce je kladná ($p \Delta V > 0$) pro situaci, kdy soustava svým objemem zvětšuje ($\Delta V > 0$), záporná ($p \Delta V < 0$) pro všechny případy, kdy se objem soustavy zmenšuje ($\Delta V < 0$) a nulová ($p \Delta V = 0$) pro případ, že při reakci nedochází k objemové změně ($\Delta V = 0$).

Objemová práce je u většiny reakcí jedinou formou práce odevzdávané soustavou do okolí, resp. přijaté soustavou od okolí. Pro tyto reakce tedy platí ($\sum A = A_{in}$):

$$A_{in} = p \Delta V \tag{9-4}$$

Dosadíme-li z (9-4) do (9-1) a upravíme-li vztah, získáme:

$$Q = \Delta U + p \Delta V \tag{9-5}$$

Porovnáním vztahů (9-3) a (9-5) zjistíme, že musí platit:

$$\Delta H = Q \tag{9-6}$$

1) Samozřejmě těž platí, že k snížení vnitřní energie soustavy dochází při odvodu tepla z ní (teplo soustavou přijaté je kladné), a naopak vzniknuté energie soustavy vzrostá, přijme-li soustava práci od okolí (práce odevzdávaná souladová do okolí je záporná).

2) Matematické vyjádření první věty termodynamiky je $\Delta U = Q + A$, to znamená, že změna vnitřní energie soustavy při jejím přechodu z výchozího stavu do stavu konečného je rovna součtu tepla a práce při tomto přechodu soustavou přijatých. Jestliže za A dosadíme výraz $-\sum A$ (kde záporné znaménko vyjadřuje, že jde o práci soustavou odevzdávanou do okolí), dostaneme rovnici (9-1).

3) Takovýto děj nazýváme izobarancký.
Znamená to, že změna entalpie, která nastává při reakci uskutečněné za konstantního tlaku, je rovna množství tepla, jež soustava během reakce vyměnila se svým okolím. Veličinu ΔH se říká reakční teplo a je definována jako teplo, které soustava přijme (resp. oddechá), jestliže se v ní za konstantního tlaku uskuteční daná chemická reakce v celkovém rozsahu jednoho molu základních reakčních plemen.2) Veličiny připojenou chemickou rovnicí, a to za předpokladu, že teplota soustavy je před reakcí i po reakci stejná a že výchozí látky i produkty jsou ve stavech udaných v chemické rovnici.

Reakce, jejichž ΔH má zápornou hodnotu (ΔH < 0), což znamená, že reagující soustava teplotu odevzdává do okolí, se nazývají reakce exothermické. Reakce s kladnou hodnotou reakčního tlaku (ΔH > 0), při nichž soustava teploto spotřebovává (přijímá od okolí), mají název endothermické.

Pojem exothermické a endothermické reakce lze dobře znázornit a objasnit graficky (obr. 9.3).

Entalpie soustavy je extenzivní stavová veličina, jež absolutní hodnota není zmeněna ani vypočítána (stejně jako nelze určit absolutní hodnotu vnitřní energie), lze však určit její relativní hodnotu vztázenou k určitému dosud stanovenému standardnímu stavu soustavy. Tato relativní hodnota entalpie soustavy je definována jako rozdíl absolutních hodnot entalpie soustavy v daném stavu a v stavu standardním, lze ji tedy určit jako změnu entalpie soustavy odpovídající přechodu soustavy ze standardního stavu do stavu daného.

Jako vhodný standardní stav látky se volí takový její stav, ve kterém je stála při teplotě 298,15 K a při tlaku 101,325 kPa — např. kyslík jako O₂(g), střa jako S(s, kosočtvr.), rtuť jako Hg(l). Chemickým prvky, jež jsou právě v těchto standardních stavech, se podle koncepce píspisuje nulová hodnota entalpie.

Standardní reakční teplo se označuje symbolem ΔH°

Lze-li součet entalpí všech složek i soustavy, které vystupují jako výchozí látky, je větší než součet entalpí všech složek j soustavy, jež reakci vznikly, uvolňuje se teplo odpovídající této diferenci z reakční soustavy a reakce je exothermická. Opatrná relace entalpí výchozích látek a produktů známena naopak endothermický děj.

Je nutné si zapamatovat, že při stanovení reakčního tlaku vypočtem i experimentálním měřením srovnáváme stav soustavy před reakcí a stav soustavy po reakci za týchž podmínek (teploty a tlaku) a navíc přesně specifikujeme skupenský stav zůstavěnlých látek (symbolika s, l, g — str. 168a) a u tutých látek jejich modifikace. Činíme tak proto, aby zjištění reakčního tepla bylo přesné, aby se např. čast tepla uvolněného reakce nespoutěbovala na ohřát soustavy a aby bylo

1) Jde o reakční teplo za konstantního tlaku (tzv. izobarické reakční teplo). Existuje také reakční teplo za konstantního objemu (tzv. izovolumické reakční teplo) které je rovno změně vnitřní energie soustavy: ΔU = Q.

2) Chemické rovnice svými stochiometrickými koeficienty udávají jaká látková množství výchozích látek by se za vhodných podmínek soustavně plemnina (tj. zreagovala by spolu) a jaká látková množství produktů by přitknou reakci vznikla. Je tedy možné pohlédet na chemickou rovnici buď jako na symbolický zápis základní reakční přeměny (stochiometrické koeficienty udávají počet molekul), nebo jako na zápis N-násobku této základní reakční přeměny (kde N je Avogadrova konstanta a stochiometrické koeficienty udávají počet molů látek). N-násobek základní reakční přeměny lze označit jako jeden mol základních reakčních přeměn a považovat jej za jednotku celkového rozsahu, v němž se reakce v soustavě uskutečnila.
přesně známo, které dlouhé změny entalpie (teplo skupenské přeměny, teplo přeměny modifikace atd.) se podílejí na celkové změně entalpie při reakci.

Oblast chemie zabývající se měřením a zjišťováním reakčních tepel se nazývá termochemie.

- Termochemické zákony

Poněvadž entalpia \(H \) je stavová veličina, nezávisí její změna na cestě, kterou soustava přešla z výchozího do konečného stavu, nýbrž pouze na rozdíl entalpia výchozího a konečného stavu. Z této skutečností plyne aditivní charakter reakčních tepel (resp. zdroje obecně aditivita jakýchkoliv změn entalpie). To je vyjádřeno formulací tzv. Hessova zákona (1840), (druhý termochemický zákon).

Podle tohoto zákona je součet reakčních tepel dvou reakcí roven reakčnímu teplu celkové reakce.

Platnost zákona si můžeme doložit praktickým příkladem:

Spalováním grafitu v plynném kyslíku vzniká plynný oxid uhličitý. Reakční teplo této reakce, označme ji „reakce 1″, je \(\Delta H_{298}^{\circ} = -393,5 \text{ kJ} \cdot \text{mol}^{-1} \). Děj se ovšem může uskutečnit ve dvou krocích:

1) Například se spálí grafit na oxid uhelnatý („reakce 2″) s reakčním teplem \(\Delta H_{298}^{\circ} = -110,1 \text{ kJ} \cdot \text{mol}^{-1} \).

2) Přepne další krok, spalení CO na CO₂ („reakce 3″), (reakční teplo \(\Delta H_{298}^{\circ} = -283,6 \text{ kJ} \cdot \text{mol}^{-1} \)) vede ke konečnému produktu. Lze se snadno přesvědčit, že reakční teplo \(\Delta H_{298}^{\circ} = -393,5 \text{ kJ} \cdot \text{mol}^{-1} \) je součtem reakčních tepel \(\Delta H_{298}^{\circ} = -110,1 \text{ kJ} \cdot \text{mol}^{-1} \) a \(\Delta H_{298}^{\circ} = -283,6 \text{ kJ} \cdot \text{mol}^{-1} \), stejně jako je „reakce 1″ součtem „reakcí 2″ a „reakce 3″ (obr. 9-4).

Hessův zákon lze s výhodou využít při určování reakčního tepla obtížně uskutečnitelných reakcí. Nahradí-li se obtížný reakční krok dvěma či více reakcemi, jež nakonec vedou k požadovaným produktům, a změsil-li se jejich reakční tepla, lze určit reakční teplo nerealizovaného kroku jednoduchým součtem.

V popsaném případě spalování grafitu je obtížně realizovatelná „reakce 2″ (spalování grafitu na CO). Je totiž nesnadné provést ji tak, aby se zreagoval všechn grafit, ale aby při tom spalování vedlo jen ke vzniku CO a nikoli též CO₂. Naproti tomu „reakce 1″, kdy se spálí grafit na CO₂ přehýbem kyslíku, stejně jako „reakce 3″, spalování CO na CO₂, jsou experimentálně dobře proveditelné a jejich reakční teplo se snadno zjišťuje. V praxi bývá proto reakční teplo \(\Delta H_{298}^{\circ} = -110,1 \text{ kJ} \cdot \text{mol}^{-1} \) vypočítává z jednoduché rovnice \(\Delta H_{298}^{\circ} = \Delta H_{298}^{\circ} + \Delta H_{298}^{\circ} \) dosazením experimentálně určených hodnot \(\Delta H_{298}^{\circ} = -283,6 \text{ kJ} \cdot \text{mol}^{-1} \).

Zvláštním případem platnosti Hessova zákona je zákon Laplace–Lavoisierů (1780), podle něhož reakční teplo dané reakce je až na znaménko stejné jako reakční teplo opačné (první termochemický zákon).

Například reakce teplo boření vodíku

\[
2 \text{H}_2(g) + \text{O}_2(g) \rightarrow 2 \text{H}_2\text{O}(g)
\]

je \(\Delta H_{298}^{\circ} = -242,0 \text{ kJ} \cdot \text{mol}^{-1} \) (reakce je exothermická).

\[^1\) Z definice plynu, že reakční teplo je veličina látkového množství, je proto nutné udávat reakční tepla v jednotkách kJ mol\(^{-1}\).

182
Opačně probíhající reakce, štěpení vody na vodík a kyslík

\[2 \text{H}_2\text{O}(g) = 2 \text{H}_2(g) + \text{O}_2(g) \]

má \(\Delta H_{f}^{\circ} = 242.0 \text{kJ mol}^{-1} \) (reakce je endothermická).

Značně využití při termochemických výpočtech mají tzv. standardní slučovací a spalná tepla složeniny.

Standardní slučovací teplo složeniny – označuje se \(\Delta H_{f}^{\circ} \) – je reakční teplo takové reakce, jíž by jeden mol této složeniny vznikl přímým složením z prvků, a to za podmínek, že by znesnadňující složení a reagující prvky byly v standardních stavech.

Standardní spalné teplo složeniny – označuje se \(\Delta H_{s}^{\circ} \) – je reakční teplo takové reakce, při níž se jeden mol dané složeniny splnil v nadbytku kyslíku\(^1\), a to za předpokladu, že výchozí látky i produkty dané reakce jsou ve svých standardních stavech.

Standardní slučovací a spalná tepla prakticky všech známých složenin byla experimentálně nálezena a uvádějí se v termochemických tabulkách. Lze je využít k početnímu určení reakčního tepla libovolné reakce na základě platnosti obou termochemických zákonů.

Způsob jejich použití si opět ukážeme na jednoduchém konkrétním příkladu.

Předpokládejme, že nás zajímá experimentálně špatně zjisťováno reakční teplo tvorby benzenu z acetylenu podle rovnice

\[\text{CH} + \text{CH} = \text{HC} \equiv \text{CH} \]

Vyhledáme-li standardní slučovací nebo spalná tepla výchozích látek (v našem případě acetylenu a produktů (benzenu), můžeme si sled reakčních změn zobrazen za šématem, které uvádíme na obr. 9.5. V jeho střední části je znázorněna reakční přeměna, jejíž reakční teplo chceme zjistit. Ze šématu je vidět, že primé uskutečnění této reakce lze formálně obět dvěma náhradními cestami. První možností je, že si představíme nejdlouhší rozklad všech výchozích látek (v našem jednoduchém případě pouze acetylenu) na prvky (toto situaci zobrazuje horní část šématu) a pak je znovu složíme, avšak tentokrát na reakční produkty zkoumané

\[3 \text{HC} = \text{CH} \]

Obr. 9.5. Schematické vyjádření výpočtu neznámého reakčního tepla pomocí standardních slučovacích tepel nebo standardních spalných tepel výchozích látek a produktů

\(^1\) Spalování v nadbytku kyslíku vede ke vzniku konečných produktů, které se již dále s kyslíkem neslučují.
reakce. Celý postup je ve schématu označen jako „náhradní cesta 1“. Reakční teplo „náhradní cesty 1“ musí být shodné s reakčním teplem plnění reakční cesty, pokud je koncová teplota obou dejší stejný:

\[\Delta H_{\text{2ox}}(1) = \Delta H_{\text{2ox}}(3) \text{C}_3\text{H}_2 \rightarrow \text{C}_6\text{H}_{14} \]

(9-7)

Přitom reakční teplo „náhradní cesty 1“ se bude skládat ze změn entalpie dvou reakčních kroků: z reakčního tepla rozpadu výchozích látek na prvky, jež se až na znaménko rovné součtu sloučených teplů výchozích látek, a z reakčního tepla tvorby produktů z prvků, které je rovněž součtu sloučených teplů produktů. V našem velmi jednoduchém případě bude tedy platit:

\[\Delta H_{\text{2ox}}(1) = \Delta H_{\text{2ox}}(3) \text{C}_3\text{H}_2 \rightarrow \text{C}_6\text{H}_{14} = \]

\[= 3(\Delta H_{\text{2ox}}(\text{C}_3\text{H}_2)) + (\Delta H_{\text{2ox}}(\text{C}_6\text{H}_{14})) = \]

\[= 3(-34 \text{ kJ mol}^{-1}) + (54 \text{ kJ mol}^{-1}) = \]

\[= 648 \text{ kJ mol}^{-1} \]

(9-8)

Tento vzorec může být zohledněn pro jakoukoli chemickou reakci, vyjádřenou vyčleněnou chemickou rovnicí, v níž stochiometrické koeficienty výchozích látek označme \(n_i \) a stochiometrické koeficienty produktů \(m_i \):

\[\Delta H_{\text{2ox}} = \sum_{i} n_i \Delta H_{\text{2ox}}(\text{vých. látek}) - \sum_{i} m_i \Delta H_{\text{2ox}}(\text{produkty}) \]

(9-9)

Zcela analogicky může být bilancováno reakční teplo tvorby benzenu z acetylenu použitím „náhradní cesty 2“. Ze schématu na obr. 9-5 se lze snadno přesvědčit, že v našem případě jsou oprávněné vztahy:

\[\Delta H_{\text{2ox}}(2) = \Delta H_{\text{2ox}}(3) \text{C}_3\text{H}_2 \rightarrow \text{C}_6\text{H}_{14} = \]

\[= 3(\Delta H_{\text{2ox}}(\text{C}_3\text{H}_2)) - (\Delta H_{\text{2ox}}(\text{C}_6\text{H}_{14})) = \]

\[= 3(-1306 \text{ kJ mol}^{-1}) - (-3270 \text{ kJ mol}^{-1}) = \]

\[= -648 \text{ kJ mol}^{-1} \]

(9-10)

a že obecně pro libovolnou chemickou reakci (její rovnice je vyčleněná stochiometrickými koeficienty \(n_i \) a \(m_i \)) musí platit vzorec:

\[\Delta H_{\text{2ox}} = \sum_{i} n_i \Delta H_{\text{2ox}}(\text{vých. látek}) - \sum_{i} m_i \Delta H_{\text{2ox}}(\text{produkty}) \]

(9-11)

Horní sila chemických reakcí

Při posuzování pravděpodobnosti, že se vytvoří určité vnútřní nebo vnější uspořádání atomů, jsme až dovede vycházet z představy maximální výhodnosti takových stavů, jež se ve srovnání s ostatními možnými stavů vyražují minimálním obsahem energie. Aplikace této jednoduché představy v oblasti chemických reakcí nás může dovést k názoru, že možné, výhodné a spontánně probíhající jsou pouze chemické deje, při nichž se snižuje entalpia systému, tedy reakce exothermické. Naprosto toho endothermické reakce by měly podle této představy postrádat jakoukoli hrací sílu a produkty by měly představovat krajně nevýhodný, energeticky bohatý stav, jehož výraznou tendencí je zpětné reakční změna.

Srovnáním tyto předpoklady s skutečností, zjišťujeme, že jsou splňovány jen částečně. Tak v souhrom všech známých spontánně probíhajících reakcí je skutečně většina reakcí exothermických, ale jsou známy i spontánně endothermické deje. Silně exothermické reakce obvykle mají velmi razantní a rychlé průběh a vzniklé produkty byvají stálé. Průběh endothermických reakcí naproti tomu bývá spíše pomalý a produkty mohou být labilní. Některé z látek vznikajících exothermickým procesem však jsou poměrně stabilní.

Tato jen částečně shoda předpovědí a skutečnosti je podmíněna existencí dalších velmi závažných faktorů, které při pouhé představě minimalizace energie zanedbáváme. Tak především
v mnohočásticových systémech, majících variabilní vnitřní strukturu a řídících se pravděpodobnost-ními zákony, se vedle spontánních snah o dosažení minimu energie setkáváme s tím, že systém je schopen spontánně ději směřovat k co nejnížšímu (nejmenší symetrickému) uspořádání své vnitřní struktury. Termodynamika definuje stavovou veličinu, zvanou *entropie S*, která je mírou neuspořádanosti systému čistic. Entropie S může být definována tzv. *Boltzmannovým vzorcem*

\[S = k \ln w \]

(9.12)

kde \(k \) je Boltzmannova konstanta \((k = 1,380662 \cdot 10^{-23} \text{ J K}^{-1}) \) a \(w \) = počet nezávislých uspořádání, jimž může být daný stav soustavy realizován. Čím je stav soustavy méně uspořádaný, tím více lze nalézt způsobů, jak jej realizovat. Entropie proto vzrůstá se vzrůstem neuspořádanosti soustavy.

Pomocí entropie je možné definovat stavovou veličinu zvanou *Gibbsova energie* (pomp. také *volná entalpie*), která nám umožňuje charakterizovat reálné systémy. Gibbsova energie \(G \) je definována rovnici

\[G = H - TS \]

(9.13)

kde \(T \) je thermodynamická (absolutní) teplota vyjádřená v kelvinách.

Je zřejmé, že změna Gibbsovy energie \(\Delta G \) při uvolnění izotermického děje \((T = \text{konst}) \) v systému, tedy i v případě chemické reakce v soustavě (která má před reakcí i po reakci stejnou teplotu), bude dán vzorcem

\[\Delta G = \Delta H - T \Delta S \]

(9.14)

Vidíme, že \(\Delta G \) zahrnuje jak snahu o minimalizaci energie scoustavy, vyjadřenou změnou entalpie \((\Delta H) \), tak i snahu o maximální neuspořádanost soustavy, vyjadřenou změnou entropie \((\Delta S) \); obě tyto snahy jsou přičinou samovolných změn v soustavě. Gibbsova energie \(G \) je proto stavovou veličinou, která svou změnou charakterizuje tendenci systému k spontánním procesům. Názorně tuto skutečnost podává obr. 9.6.

![Obr. 9.6. Změna Gibbsova energie](image)

Procesy, při nichž nastává změna \(\Delta G < 0 \), tj. při nichž se Gibbsova energie systému snižuje, se uskutečňují samovolně. Děje charakterizované změnou \(\Delta G > 0 \) mají z termodynamického hlediska podstatně menší naději na uskutečnění. Jsou vlastně vždy jen opakem reakce, jejíž \(\Delta G \) je záporné (viz odtudace o chemické rovnováze, str. 204).

Ze vzoru (9.14) je těž zřejmé, proč některé dobré mohou probíhat některé endothermické \((\Delta H > 0) \) reakce. Je tomu tak tehdy, když entropický člen \(T \Delta S \) reakční změny Gibbsovy energie je kladný \((T \Delta S > 0) \) a větší než \(\Delta H \) \((T \Delta S > \Delta H) \). Pak vzhledem k zápornému znamenku ve vzoru (9.14) je výsledný \(\Delta G < 0 \) a reakce může samovolně probíhat. Platí, že nežadoucí zvýšení entalpie \(H \) je u takovýchto reakcí vyváženo žádoucím zvýšením entropie \(S \).

Z termodynamického hlediska je hodnota \(\Delta G \) reakce, zjistitelná poměrně jednoduše výpočtem z tabulovaných termodynamických údajů, velmi důležitou informací, umožňující rozhodnutí o uskutečnitelnosti daného chemického děje.
Další faktor, který může ovlivnit realizovatelnost reakce a zahrnout např. takové reakce, jejíž ΔG < 0, souvisí s mikrochemismem dané reakce. Tímto faktorem je tzv. aktivační Gibbsova energie reakce.

- Aktivační Gibbsova energie (aktivační energie) reakcí

Ne každý chemický systém reaguje ihned po svém vzniku. Mnohdy teprve dodávání energie v určité její formě zaháji průběh chemických změn.

Je např. všeobecně známo, že směs vodíku a kyslíku nebo vodíku a chloru i řada dalších reakčních směsí setrvává v podstatě bez změny do té doby, než podnítíme průběh reakce dodáním vhodné energie. Například krátkovlnné světlo, měsíční přehřátí, elektrická jiskra a ovšem i styk s plamenem vždy zahájí (iniciují) neobvykle rychlou reakci.

Mnohé jiné chemické systémy sice začnou reagovat již v průběhu měsíčního složku, avšak výrazným snížením teploty reakční směsi musíme i u nich dosáhnout zpomalení až zastavení chemické reakce.

V převím případě, který je typický pro radikálové reakce, se iniciální energie spotřebovává na vytvoření určitého množství radikálů. V druhém případě pak vidíme, že i když se např. při reakci nemusí tvořit radikály, je k trvalému chodu reakce bezpodmínečně nutná přítomnost určité míry tepelného pohybu v reagujícím systému. Obu jevy mají společnou příčinu. Jsou podmíněny tím, že k uskutečnění každého reakčního kroku je zřejmě nutné vynaložit jisté množství energie na překonání energetické baréře, oddělující počáteční stav (stav před začátkem reakce) od konečného stavu (stav po skončení reakce). Množství energie, jež musí být přehodnoceno, aby proběhla elementární reakční změna, se nazývá aktivační Gibbsova energie reakce.

Obr. 9-7. Grafické vyjádření změny Gibbsovy energie dvojice molekul SCI₃ a Cl₂ v průběhu jejich interakce vedoucí ke vzniku molekuly SCI₄

Abychom si tento pojem elementárně objasnili, vrátíme se k příkladu reakce mezi SCI₂ a Cl₂ mající molekulový mechanismus (str. 172). Jediný reakční krok, v němž se tento děj pravděpodobně uskutečňuje, je znázorněn na obr. 9-7. Vidíme, že po řádné přiblížení molekul k sobě (a) a po jejich srazce se přehodně vytváří útvar (b), v němž vazba C—I je založena a prodlužena a současně jsou již částečně vytvořeny nové vazby S—I. Posléze v samém závěru reakčního kroku vzniká konečný stav (c) odpovídající rovnovážné konfiguraci molekuly SCI₄. Obrázek vyjadřuje též změny Gibbsovy energie, které provázejí průběh uvedeného procesu. Gibbsova energie se mění při pokračující realizaci reakčního aktu. Na obrázku je znázorňena její zvislost na souřadnicí zvané reakční koordináta. V podstatě jde o souřadnicí, podél níž se zjišťuje částice při reakčním kroku "posunuje". Má ovšem též význam míry (procenta) uskutečnění daného elementárního děje. Z obrázku vidíme, že největší hodnotu Gibbsovy energie dosahuje daná soustava atomů v přechodovém stavu (b), tedy v okamžiku, kdy je reakce uskutečněna asi z poloviny. Rozdíl mezi
Gibbsovou energii dvoucice molekul SCI₄ a Cl₂ před interakcí a maximální Gibbsovou energii v přechodovém stavu se nazývá aktiváční Gibbsova energie dané reakční změny (označuje se G⁺).

Rozdíl mezi Gibbsovou energií produktu (SCI₄) a největší hodnotou Gibbsovy energie v přechodovém stavu se považuje za aktiváční Gibbsovu energii opačného (protisměrného) déje SCI₄ = SCI₂ + Cl₂ (označovanou G⁺).

V praxi se při úvahách o výsledném reakčním bariéře oddělují oba okrajové stavy (a, c) zjednodušeně hovoří o aktiváčních energiích E⁺ a E⁺ (pro změnu probíhající zleva doprava a zprava doleva).

Z uvedeného je zřejmé, že na uskutečnění reakčních kroků, u nichž je výchozí a konečný stav oddělen vysokou energetickou bariérou, je třeba vyaložit poměrně velké množství práce, jež musí být vykonnána na úkor energie tepelného pohybu srážejících se molekul východních látek, tedy na úkor energie jejich translaciálního, vibračního a rotačního pohybu. Je-li výška bariéry, tj. aktiváční energie, velká, nemůže energie tepelného pohybu kolidujících molekul stačit k jejímu překonání a elementární reakční krok se neuskuteční. Pokud aktiváční energie reakce vysoce převyšuje průměrnou energii tepelného pohybu molekul, nedochází (prakticky) při žádné srážce molekul v systému k reakci. Říkáme, že výchozi systém reaktantů je kineticky státní, vysoká energetická bariéra na dané reakční koordinátě brání uskutečnění reakční změny.

Po tomto objasnění je pochopitelně, proč lze většinu reakcí zpomalit nebo až zastavit snižováním teploty. Pokles teploty znamená zvýšení průměrné energie tepelného pohybu molekul, a tím menší pravděpodobnost, že při srážkách molekul bude docházet k překonávání — byť i relativně nízké — energetické bariéry a ke vzniku produktů.

Vše, co jsme v závěru tohoto oddílu uvedli, znázorňují schématy na obr. 9-8 a až d a je shrnuto v komentáři k nim.

Obr. 9-8. Příklady vztahu aktiváční energie a střední hodnoty tepelné energie molekul. Ovlivnění situace změnou teploty.

a) Aktiváční energie určitě zleva doprava probíhající reakční změny E⁺ je zřetelně větší než průměrná energie tepelného pohybu získaných molekul Eᵣ. Reakce proto prakticky neprobíhá; b) zvýšením teploty v systému se schémata a se zvětšila průměrná energie tepelného pohybu molekul na Eᵣ. Reakce probíhá; c) aktiváční energie jiné reakční změny je relativně malá. Při dané hodnotě tepelné energie molekul je energetická bariéra molekulami překonávána a reakce probíhá; d) snížením teploty v systému se schémata u klíče energie tepelného pohybu molekul natolik, že se reakce prakticky zastavila.
9.4 REAKČNÍ KINETIKA

Reakční kinetika je jednín z odvětví fyzikální chemie a zabývá se studiem časového průběhu chemických reakcí. Zde si povímeme jejich dvou části - formální reakční kinetiku a nauky o reakčních mechnismech.

Formální reakční kinetika popisuje časový průběh reakcí z vnějšího makroskopického hlediska. Zavádí a přesně specifikuje pojem rychlosti reakce. Podíváme obraz o tom, jak závisí rychlost reakce na koncentracích zúčastněných komponent, a formuluje matematické vzorce, které přesně vyjadřují, jak během reakce ubývá v reakční směsi východních látek a jak naopak přibývá produktů.

Poněvadž formální kinetika každé reakce je odražení (i když nikoli jednoznačným) jejího mikromechanismu, umožňuje někdy nalezení formálních kinetických popisů reakcí odhalit tyto skryté a příznaky často nedostupné mechanizmy a formulovat jejich pravděpodobnou schémata.

Nauka o reakčních mechnismech si všimá vztahů mezi formální reakční kinetikou a mikromechanismem reakce. Hledá souvislosti mezi strukturou (elektronovou a atomovou konfigurací) zúčastněných částic a mechanismem využitých změn. Podívá se též klasifikací poznatok mikromechanismu, a to nejčastěji jejich rozložení na dílčí elementární kroky.

- Formální reakční kinetika

Rychlosti chemické reakce se rozumí změna látkového množství jedné z reakčních komponent v homogenní reakci soustavě v průběhu velmi krátkého časového intervalu dělená příslušným stoichiometrickým koeficientem dané komponenty ve vyčleněné reakční rovnici (takto je definována okamžitá reakční rychlost \(J \)). Rychlost chemické reakce chápeme vždy jako veličinu kladnou, a proto výraz pro tuto rychlost opatřujeme záporným znaménkem, jestliže obsahuje diferenciál látkového množství východí látky, a znaménkem kladným, jestliže rychlost vyjadřena pomocí diferenciálu látkového množství produktu.

Jestliže tedy v systému dochází např. k reakci znázorněné obecně rovnici

\[
a A + b B \rightarrow c C + d D
\]

kde A, B jsou reaktanty a C, D - produkty reakční změny probíhající zleva doprava a a, b, c, d jsou stoichiometrické koeficienty, lze pro rychlost této reakce psát

\[
J = -\frac{1}{a} \frac{dn_A}{dt} - \frac{1}{b} \frac{dn_B}{dt} + \frac{1}{c} \frac{dn_C}{dt} + \frac{1}{d} \frac{dn_D}{dt}
\]

(9-15)

Přitom výrazy \(dn_A/dt, dn_B/dt, dn_C/dt, dn_D/dt \) vyjadřují diferenciální změny látkových množství komponent za diferenciál času \(dt \), tj. udávají rychlost ubývání východí látky (resp. rychlost tvorby produktu).

Takto definovaná rychlost reakce se dobře uplatňuje při některých chemicko-inženýrských výpočtech. Je to také vlivná extenzivní, t.j. závislá na velikosti reakčního systému, což je nevyhodné při odvozování některých rychlostí a vztahů formální reakční kinetiky. Proto se - jmenovitě v této oblasti - běžně používá jinak definovaná rychlost, známá reakční rychlost v jednotkovém objemu. Je to veličina intenzivní. Obvykle se značí písmenem \(c \). Rychlost \(c \) je v daném reakčním systému definována vztahem

\[
c = -\frac{1}{V} \frac{1}{a} \frac{dn_A}{dt} - \frac{1}{V} \frac{1}{b} \frac{dn_B}{dt} + \frac{1}{V} \frac{1}{c} \frac{dn_C}{dt} + \frac{1}{V} \frac{1}{d} \frac{dn_D}{dt}
\]

(9-16)

kde \(V \) je objem celého homogenního reakčního systému. Poněvadž \(n/V \) je látková koncentrace (str. 231) těto komponenty reakční směsi, je \(dn/V \) změnu této koncentrace. Označíme-li látkové

188
koncentrace (mol dm\(^{-3}\)) komponent A, B, C, D symboly \([A]\), \([B]\), \([C]\) a \([D]\) můžeme vztah (9-16) upravit na
\[
v = \frac{1}{a} \frac{d[A]}{dt} - \frac{1}{b} \frac{d[B]}{dt} + \frac{1}{c} \frac{d[C]}{dt} + \frac{1}{d} \frac{d[D]}{dt}
\]
(9-17)

Slovní formulace takto definované reakční rychlosti zní:
Reakčnost chemické reakce v jednotkovém objemu je časová změna látkové koncentrace kterékoliv komponenty reakce (reaktantu i produkta), dělená stochiometrickým koeficientem téhož komponentu v reakční rovnici a opačně záporným známekem, je-li komponenta výchozí látkou, nebo znaménkem kladným, je-li komponenta produktem reakce.

Nadále budeme v této kapitole hovořit výhradně o reakční rychlosti v jednotkovém objemu, a to i tehdy, když k jehož označení použijeme zkrácený název „reakční rychlost v“.

Zkousnáním rychlosti průběhu chemických reakcí v reálných systémech zjišťujeme, že rychlost reakce bývá nejčastěji značně závislá na koncentraci výchozích látek a že se v průběhu reakce mírně uměrně změní těchto koncentrací.

Obvykle experimentálně prokazáváme, že závislost reakční rychlosti \(v\) na koncentraci výchozích látek je typu (vyjádřeno pro uvedenou obecnou rovnici):
\[
v = \frac{d[A]^a}{dt} \cdot \frac{d[B]^b}{dt} ...
\]
(9-18)

Konstanta k je tzv. rychlostní konstanta reakce; exponent a se nazývá reakční řad komponenty A a exponent b je reakční řad komponenty B. Součet a + b + ... označuje jako celkový řad reakce.
Reakční řad určuje komponenty může mít i nulovou hodnotu. V takovém případě rychlost reakce \(v\) na koncentraci této komponenty nezávisí.

Uvedený typ závislosti reakční rychlosti \(v\) na koncentraci jednotlivých komponent reakčního systému většinou zjistíme jen u nekomplikovaných chemických dějů, vyznačujících se jednoduchým mikromechanismem, který odpovídá prosté reakční rovnici. Pro pojmenování takovýchto elementárních chemických procesů, uskutečňujících se navíc obvykle v jednom jediném reakčním kroku, užíváme termín izolovaná reakce.

Proč je závislost reakční rychlosti \(v\) na koncentraci výchozích látek právě tohoto typu, pochopíme, když si uvědomíme, že rychlost reakce \(v\) musí záviset na četnosti srážek molekul A a B (popř. dalších), tedy na počtu srážek, které v systému mezi těmito molekulami nastávají. Z elementární pravděpodobnosti úvahy je zjevné, že počet těchto srážek je tím větší, čím větší je koncentrace obou látek, a tedy je uměrným součinem mocnin těchto koncentrací.

Exponenty a a b v rovnici (9-18) mohou, ale nemusí být (a u komplikovaných reakcí velmi často nebývají) totožné se stochiometrickými koeficienty a a b reakční rovnice. Případ, že řada typ mikromechanismu a jeho složitost se v hodnotách exponentů projevují nejvýrazněji. U jednoduchých izolovaných reakcí je shoda řádu reakce se stochiometrickými koeficienty reakční rovnice dosti běžná.

Rychlostní konstanta reakce k vykazuje obvykle závislost na teplotě. Bylo zjištěno, že tato závislost je nejčastěji typu
\[
k = Z e^{-E^*/RT}
\]
(9-19)

Ve vztahu (9-19), který bývá nazýván Arrheniusova rovnice, \(E^*\) značí aktivační energii (aktivační Gibrassové energii) reakční změny, \(R\) je univerzální plynová konstanta, \(T\) - termodynamická teplota a \(Z\) - tzv. frekvenční faktor, tj. konstanta vyjadřující složenou pravděpodobnost srážky molekul za takové jejich vzájemné orientace, aby srážka byla efektivní a aby došlo k reakční změně. Rovnice (9-19) je v plném souladu s představou překotování energetické hranice (aktivace Gibbssové energie) v průběhu reakce a objasňuje pozorovanou závislost reakčních rychlostí na teplotě.
Experimentalní reakční kinetika vychází ze všech právě uvedených elementárních vztahů a pojmů, platných pro jednoduchý mechanismus izolované reakce, aplikuje tyto představy na složitější reakční systémy a tyto systémy experimentálně řeší. Určuje vztahy pro reakční rychlost, zjišťuje řád reakcí, rychlostní konstanty a závislost rychlostních konstant na teplotě i aktivační energii reakcí. Získané výsledky využívá k odhadnutí reakčních schémát mikroskopických dějů, které v těchto systémech probíhají.

Reakční mechanismy

Mikrokomponenta každé reakce může být prakticky vždy zařazen do některé ze tří skupin - molekulových, iontových nebo radikálových procesů.

Nebývá obvykle obtížné na základě experimentu rozhodnout, který z těchto mechanismů se v dané reakci uplatňuje. Výklad molekulových, iontových a radikálových reakcí z jejich příklady jsme již uvedli na str. 172 a dalších.

Další charakteristikou určitého mechanismu, resp. určitého procesu charakteristiku jeho dílčích kroků, umožňuje určení tzv. *molekularity reakce*. Molekularita je celočíselný údaj o počtu částic, které se musí srážet, aby došlo k uskutečnění děje. Podle tohoto kritéria rozdělujeme děje

a) *molekulární* (molekularita = 1), např. rozpad částice na její fragmenty:

\[
A = \text{produkty}
\]

b) *binukulární* (molekularita = 2), jež spočívají ve srážce dvou částic:

\[
A + B = \text{produkty}
\]
\[
2A = \text{produkty}
\]

c) *trimukulární* (molekularita = 3), u nichž je reakční změna zahájena kolizi tří částic:

\[
A + B + C = \text{produkty}
\]
\[
2A + B = \text{produkty}
\]
\[
3A = \text{produkty}
\]

Děje o ještě vyšší molekularitě (molekularita > 3) se neuplatňují, neboť pravděpodobnost současné srážky více než tři částic je nesmírně mála a dochází k ní i v molrhokázičovém systému tak zřídka, že tento děj nemůže mít nikdy závažného výrazu při realizaci chemické změny. Dokonce i počet reakcí, o kterých se domníváme, že probíhají trimukulárním mechanismem, je velmi malý.

Většina chemických dějů má charakter bimukulární.

Zabyváme-li se blíže popisem a rozborom určitého reakčního mechanismu, můžeme obvykle v jeho průběhu rozceznat určité *elementární kroky*:

1. koordinací nebo koligativním vytvoření vazby,
2. heterolytický nebo homolytický zánik vazby,
3. přenosu atomů, atomových skupin, substituce,
4. molekulární plesmy,
5. přenosu elektronů.

Těchto procesů si nyní podrobněji povšimneme, seznamueme se s nimi a zapamatujeme si, že běžné reakční mechanismy se skládají z uvedených elementárních kroků.

1. Do prvé skupiny elementárních kroků řadíme děje spočívající ve spojení dvou samostatných atomových skupin kovalentní vazbou. Patří sem např. spojení dvou atomů vodíku k百合

\[
H + H = H-H
\]
koordináční připojení protonu na molekulu amoniaku

\[\text{H}^+ + \text{NH}_3 = \text{NH}_3^+ \]

nebo koordinace iontu F\(^-\) na ion Fe\(^{3+}\)

\[\text{Fe}^{3+} + \text{F}^- = \text{FeF}^{2+} \]

2. Opačným dějem jsou fragmentace (štěpení) atomových skupin, spočívající v homolytickém nebo heterolytickém rozštěpení vazeb a vytvoření nejméně dvou samostatných a třeba jen krátkodobé existence schopných částí původního atomového skeleta. Za fragmentaci lze např. označit homolytické rozštěpení molekuly Cl\(_2\):

\[\text{Cl} - \text{Cl} = \text{Cl}^- + \text{Cl}^- \]

heterolytické odštěpení protonu z octové kyseliny ve vodném roztoku:

\[
\begin{array}{c}
\text{CH}_3\text{C} = \text{O} \\
\text{OH}
\end{array}
\rightarrow
\begin{array}{c}
\text{CH}_3\text{C} \qquad \text{O}^- \\
\text{O}
\end{array} + \text{H}^+
\]

nebo odštěpení ligandu \(I^- \) z aniontu tetrajodotetranatanového:

\[[\text{HgI}_4]^{2-} = [\text{HgI}_3]^+ + I^- \]

Některé elementární děje spočívají v současné (tj. současné) zániku určitých vazeb a vzniku vazeb jiných. Tak např. nekatalyzovaná hydrogenace dvojné vazby v alkenu molekulu vodíku probíhá za současnéhoštěpení vazby \(\text{H}--\text{H} \) a vazby \(\pi \) mezi atomy uhličí a za vzniku dvou nových vazeb \(\text{C}--\text{H} \):

3. Přenos atomů a atomových skupin je třetím druhem elementárních reakcí kroků. Je třeba poznamenat, že se vždy skládá z obou prvců uvedených kroků zániku a zániku kovalentní vazby. Například u acidobazické reakce mezi vodou a chlorovodíkem dochází k přenosu protonu:

\[
\begin{array}{c}
\text{H} \qquad \text{O} \\
\text{H}
\end{array} + \begin{array}{c}
\text{Cl}^-
\end{array} = \begin{array}{c}
\text{Cl}^-
\end{array} + \begin{array}{c}
\text{O} \qquad \text{H}^+
\end{array}
\]

Obdobně mohou být přenášeny i další atomy a skupiny atomů. Tak třeba ion \(\text{OH}^- \) reaguje s molekulou \(\text{Br}_2 \) podle rovnice

\[[\text{H}--\text{O}]^- + \begin{array}{c}
\text{Br}^- \quad \text{Br}^-
\end{array} = \begin{array}{c}
\text{H}--\text{O}^\cdot + \text{Br}^- \quad \text{Br}^-
\end{array} \]

Je přenásen atom \(\text{Br} \), zánik vazby \(\text{Br}--\text{Br} \) a vznik vazby \(\text{O}--\text{Br} \).
Tyto děje lze ovšem též chápat jako vazebné změny, při nichž jsou určité atomy (skupiny atomů) v molekule substrátu nahrazovány (substituovány) jinými atomy (skupinami atomů). V předchozím příkladu nahrazuje vlastně ion OH⁻ atom bromu v molekule Br₂ a uvolňuje jej ve formě bromidového iontu. Jinou typickou substituční reakcí je děj, při němž molekula amoniaku NH₃ vytváří s komplexním iontu tetrachloroplatanatového chloridový ion za vzniku iontu ammin-trichloroplatanatového:

\[
\begin{align*}
\text{H} & \quad \text{[Cl-Pt-Cl]}^2^- \\
\text{H-Ni} & \quad \text{[Cl-Pt-Cl]} + \text{NH}_3 \quad \text{Cl} \\
\text{Cl} & \quad \text{Cl} \\
\text{Cl} & \quad \text{Cl} \\
\text{Cl} & \quad \text{Cl} \\
\end{align*}
\]

Ať již uvedené procesy chápeeme jako přenose atomů a skupin atomů, nebo jako substituční děj, musíme vždy předpokládat, že mají určitý mikromechanismus. Ten se obvykle bliží jedné ze dvou možných posloupností vazebných změn:

a) Substituovacia částice S napadá substrát A-B a interaguje s částicí A až po přerušení vazby mezi A a B. Tedy po prvním disociačním kroku

\[
A - B = A + B \quad \text{(krok 1)}
\]

se vytváří přínivá situace pro uskutečnění kroku 2 - zachycení částice S skupinou A:

\[
A + S = A - S \quad \text{(krok 2)}
\]

Krok 1 má charakter monomolekulárního děje a je většinou ve srovnání s bimolekulárním krokem 2 velmi pomalý. Proto se celá substituce probíhající tímto mechanismem jeví jako monomolekulární. Uvedený mechanismus se často označuje symbolem S₁ (S₁ substituce, 1... monomolekulární).

b) Substituující částice S může napadnout substrát A-B ještě před rozpadem vazby mezi A a B. Takovýto atak je bimolekulárním dějem a vede k vytvoření nestálého aduktu S-A-B:

\[
S + A - B = S - A - B \quad \text{(krok 1)}
\]

V další fázi se adukt monomolekulárně rozpadá:

\[
S - A - B = S - A + B \quad \text{(krok 2)}
\]

Případ je eliminována částice B. Ponevadž pomalejším z obou kroků je v tomto případě krok 1 o molekulárně rovné dvěma, nabývá substituce probíhající tímto mechanismem bimolekulární povahy. Substituce označujeme symbolem S₂.

Experimentem lze zkoumaného systému rozhodnout, kterým z obou mechanismů substituce probíhá. Reakční mechanismus však nemusí být vždy jednoznačný, může být „směšen“ obou možnosti, popř. může být dále komplikován jinými nezanedbatelnými efekty. Od jejich popisu však pro zjednodušení výkladu upustíme.

Pro lepší představu obou mezních mechanismů uvedeme ještě dva konkrétní příklady. Mechanismem S₁ probíhá s největší pravděpodobností substituce iontu Br⁻ v komplexním iontu [Co(NH₃)₆Br]³⁺ molekulou vody:

\[
\begin{align*}
\text{Br}^- & \quad \text{[NH}_3\text{H}_2\text{O]}^2^- \quad \text{pomalu} \quad \text{[NH}_3\text{H}_2\text{O]}^3^- \\
\text{NH}_3 & \quad \text{NH}_3 \\
\end{align*}
\]

192
Po oddísociování iontu Br⁻, a tím i snížení koordinačního čísla atomu Co⁶⁺ z šesti na pět, následuje rychlé připojení molekuly H₂O donor-akceptorovou vazbou ke středovému atomu a opětne dosažení koordinačního čísla 6.

Mechanismus S2 předpokládáme u substitučních reakcí komplexů Pt¹¹⁺. Příkladem může být hydrolytická substituce chloridového iontu v komplexním iontu triammin-chloroplastatném [Pt(NH₃)₃Cl]⁺:

![Chemická reakce](image)

Vstup molekuly vody do koordinační sféry atomu Pt¹¹⁺ přechodně zvyšuje jeho koordinační číslo ze čtyř na pět. Vzniklý adukt se rychle rozpadá, je eliminován ion Cl⁻ a atom Pt¹¹⁺ opět dosahuje své stabilní planární koordinace s koordinačním číslem čtyř.

4. Jako čtvrtou skupinu elementárních reakčních kroků lze označit všechny *intramolekulární* (unimolekulární) *vazebné změny*. Označujeme se tak všechny přesmyky vazeb, které nastávají uvnitř molekul (iontů, radikálů) a nemění se při nich počet a kvalita atomů přítomných v molekule. Intramolekulární přesmyky opět tedy spočívají v zániku některých a vzniku jiných vazeb a probíhají někdy v jediném, jindy ve dvou i více následných krocích. Intramolekulární přesmyky se dosti často vyskytují u molekul organických slitinků.

5. Velmi významnou skupinu elementárních reakčních kroků tvoří *přenos elektronů* mezi zúčastněnými molekuly (ionty, radikály). Uvedli jsme již, že tyto číje jsou podstatou tzv. oxi-ina-čních redukčních změn. Mechanismy přenosu elektronů jsou velmi složité a dosud ne zcela prozkoumané. V zásadě však lze rozlišit pět základních typů přenosu elektronu:
 a) První spočívá ve vzniku solvantovaného (hydratovaného) *elektronu* interakcí rozpouštědla s redukčním prostředkem. Například při rozpouštědle sodíku v kapalinám amoniaku nastává děj

 \[\text{Na} + x \text{NH}_3 = \text{Na}^+ + x^- (\text{NH}_3)_a \]

 Jindy může vznikat solvantovaný elektron interakcí rozpouštědla se zářením β nebo γ. U vody lze tento děj znázornit rovnici

 \[(x + 1)\text{H}_2\text{O} = \text{H}^+ + \text{OH}^- + \text{e}^- (\text{H}_2\text{O})_a \]

Vzniklé solvantované elektrony mohou pak být zachycovány jinými skupinami atomů, a tím se může uskutečňovat vlastní redukční změna.

b) Druhý mechanismus spočívá v přenosu elektronu tzv. *tunelovým efektem*. Tunelový efekt je vypovídaný a vysvětlený kvantovovou mechanikou. Spočívá v tom, že některé elementární částice mohou procházet potenciálovým valnem (energetickou bariérou), aniž by měly energii potřebnou k jeho překonání. Jednou z těchto částic je elektron. Jev si objasníme na příkladě:

Při setkání hexakyanomanganitového iontu [Mn(CN)₆]⁴⁻ s iontem hexakyanomanganitovým [Mn(CN)₆]³⁻ ve vodním roztoku přechází elektron z Mn⁴⁺ na Mn³⁺ právě tunelovým

c) Tímto způsobem přenosu elektronu je mechanismus můstkový. Molekuly reaktantů se setkávají a přechodně vytvoří vzájemně je spojující vazbu. Po vzbou je pak přenesen elektron. Příkladem může být redoxní změna probíhající při setkání pentaammin-chlorokobaltitového iontu \([\text{Co(NH}_3)_5\text{Cl}]^{\text{3+}}\) a hexaaquachromatového iontu \([\text{Cr(H}_2\text{O})_6]^{\text{3+}}\). Nahrazením molekuly vody v iontu \([\text{Cr(H}_2\text{O})_6]^{\text{3+}}\) chloridovým aniontem se vytvoří adukt o struktuře znázorněné na obr. 9-10.

![Diagram](image)

Elektron z \(\text{Cr}^{\text{III}}\) přeje přes můstkový atom chloru na \(\text{Co}^{\text{II}}\), čímž nastane redoxní změny \(\text{Cr}^{\text{III}}\rightarrow\text{Cr}^{\text{II}}\) a \(\text{Co}^{\text{III}}\rightarrow\text{Co}^{\text{II}}\). Vzniklý adukt se pak opět rozpadne na dva jednoatomové komplexy ionty.

d) Čtvrtý mechanismus přenosu elektronu se nazývá srážkový. Dostatečně prudká srážka dvou molekul reaktantů vede k jejich vzájemnému prostorovému proniknutí, jež může být i tak hluboké, že se výrazně sníží energetická bariéra oddělující potenciálové jámy, jimž jsou obě zúčastněné molekuly. Elektron či elektrony z MO jedné částce mohou v okamžiku největšího průniku přejít prakticky bez další aktivační energie do MO druhé částice. Geometrii a energetické usporádání srážkového mechanismu přenosu elektronů ukazuje obr. 9-11.

![Diagram](image)

e) Posledním, pátým typem elektronového přenosu je přenos pomocí radikálu, atomu nebo iontu. Podstatou mechanismu si opět vyložíme na jednoduchých příkladech.

Železnatý ion se ve vodném roztoku snadno oxiduje peroxidem vodíku na \(\text{Fe}^{\text{III}}\). V první fázi této redoxní změny ion \(\text{Fe}^{\text{II}}\) atakuje molekulu \(\text{H}_2\text{O}_2\) a homolytický jí štěpí na dva radikály \(\text{OH}^+\) a \(\text{Fe}^{\text{III}}\):

\[
\text{Fe}^{\text{II}} + \text{H}_2\text{O}_2 = [\text{Fe}^{\text{III}}(\text{OH})]^{\text{3+}} + \text{OH}^+\
\]

194
Z uvedené rovnice je vidět, že prvý z radikálů zůstává použitý na atom železa, přijímá jeden jeho elektron a přechází na ion OH⁻. Atom železa současně mění oxidaci stav z Fe⁰ na Fe³⁺. Druhý vzniklý radikál reaguje s dalším Fe³⁺ zcela obdobně:

$$Fe^{3+} + OH^- = [Fe(OH)]^{2+}$$

Molekula H₂O₂ tak po svém rozpadu oxiduje dva atomy Fe⁰ na Fe³⁺ tím, že její fragmenty (radikály OH⁻) přijmou po jednom elektronu od obou těchto atomů.

Jiným příkladem lihořezu přenosu elektronu je již uvedená molekulová reakce $SCl_2 + Cl_2 = SCl_4$, jež vlastně redoxní adici dvou atomů Cl na molekulu SCl_2. Atom S^0 se v průběhu této adice oxiduje na S^4. Oba atomy Cl^- se současně redukují na Cl^-.

$$Cl^- + S^0 \rightarrow Cl^- + S^4$$

Až na poslední dva uváděné příklady jsou při objasňování mechanismů přenosu elektronu předpokládá vždy pouze délky, jinž se přenáší jediný elektron. Nemusí tomu tak být vždy a počet přenesených elektronů může být větší. Hovoříme pak často o dvouelektronových a víceelektronových redoxních změnách (přenosech).

- Principe zachování spinu a principe zachování orbitalové symetrie při chemických reakcích

V odstavci o energetických změnách při chemických reakcích jsme uvedli, že hlavní sílou každé chemické reakce je velikost molekulového multikomplexu a velikost molekulového multikomplexu. Mají aktivaci energii obvykle větší malou. Kdysi však jedna z těchto podmínek nebo obě dvě nejsou splněny, je aktivací energie reakce zpravidla tak vysoká, že tepelný pobyt v závažných látkách nastává k překonání energického zbarvení, a tím k uvedení reakce do chodu. Říkáme, že reakce je „spínost“ nebo „symetricky“ zákazná. Je ovšem třeba pozmazat, že spinovou nebo symetrickou zákaznost děje je překonávat excesí valenčních elektronů v závažných částech (fontextrusci apod.), popř. že reakční systém může samovolně realizovat reakci jiným mechanismem (napt. ionotvorným nebo radikálovým).

Princip zachování spinu v průběhu chemické reakce formulovali Wigner a Wittner (1928). Jeho podstatu si vyložíme na konkrétním příkladu.

Předpokládejme rozpad molekuly oxidu dusných $N₂O$ na prvky jednoduchým mechanismem, při němž se rozloží vazba $N=O$ a vznikne molekula dusíku N_2 a atom kyslíku O. Děl je znázorněno v horní části na obr. 9-12. Jak $N₂O$, tak i N_2 jsou látky diamagnetické (str. 52), a neobsahují tedy neparné elektrony. Dva neparné elektrony však obsahuje vzniklý atom kyslíku. Na obr. 9-12 je zjednodušeně znázorněno uspořádání systému MO (pro $N₂O$ a N_2) a AO (pro O). Jejich obsazení elektronovy patří správně na naši představy o počtu závažných neparných elektronů. Je zřejmé, že součet celkových spinů molekul $N₂O$ a N_2 označený S, je roven nule. U atomu kyslíku je $S = \frac{1}{2} + \frac{1}{2} = 1$ nebo $S = \{ -1 \} + \{ -1 \} = 1$. Suma spinů částic podstupujících reakcí (v našem případě jde jen o jedinou částicí) není rovna sumě spinů částic reakcí tvořených

$$0 + 0 = 1$$

1) Za běžné teploty obvykle považuji teploty v rozmezí 300 až 700 K.
Reakce je tedy spinově zakázána. Oxid dusný se nerozpadá ani jiným mechanismem, je velmi stálý, jeho rozpad na prvky začíná až za teplot kolem 900 °C.\(^1\)

\[
\begin{array}{c}
N_{\frac{e}{2}} + N_{\frac{e}{2}} + O
\rightarrow
\begin{cases}
N_{\frac{e}{2}} + N \\
\end{cases}
\end{array}
\]

Obr. 9.12: Rozpad \(N_2O\) na \(N_2\) a \(O\). Diagram MO a celkový elektronový spin zúčastněných částic

\[
\left[N_{\frac{e}{2}} + N_{\frac{e}{2}} + O \right]^{-}
\rightarrow
\begin{cases}
N_{\frac{e}{2}} + N \\
\end{cases}
\]

Obr. 9.13: Rozpad \(N_2O^-\) na \(N_2\) a \(O^-\). Diagram MO zúčastněných částic

\(^1\) Analogickou úvahou lze prověřit možnost rozpadu \(N_2O\) podle rovnice \(N_2O = N + NO\). I ta je spinově zakázána, neboť při žádné kombinaci znamének není splněna podmínka \(S = \pm \frac{1}{2} \pm \frac{1}{2}\) (N má 3, molekula NO má 1 nejednávý elektron).
Zcela jinak se chová ion N₂O⁻, který vzniká, když molekula N₂O zachyti jediný elektron. Experimentálně byl zjištěn jeho rychlý rozpad na molekulu N₂ a O⁻. Rozpad i uspořádání MO a AO zúčastněných častic znázorňuje obr. 9.13. Z obrázku je vidět, že pro dvě ze čtyř možných kombinací znaménok je správná rovnice

\[\pm \frac{1}{2} = 0 \pm \frac{1}{2} \]

Děj je proto spinově dovolený a tato skutečnost je přišněj nové zdačné lability častice N₂O⁻. ²)

Druhy z uvedených principů, princip zachování orbitalové symetrie v průběhu chemické změny, byl formulován např. v roce 1965. Nicméně od té doby, kdy Woodward a Hoffmann (1965) prokázali jeho platnost, nalezl již velké uplatnění. Osudilo se při zkoumání a prověřování některých spekulativně navrhovaných mechanismů, zejména v organické chemii a chemické katalýze. ¹) To tento princip s objasněním na jednoduchém konkrétním případě, a to na adici molekuly vodíku na ethylen za vzniku etanu:

\[\text{CH}_2=\text{CH}_2 + \text{H}_2 \rightarrow \text{CH}_3\text{CH}_3 \]

Předvím si ověřte, zda je děj spinově dovolený. Nesporně je, neboť žádné z učastníků jeho nemá nepárové elektrony (vazba v H₂ - str. 83, v CH₃CH₂ - str. 107, v C₂H₄ - str. 108), takže je splněna podmínka

\[0 \pm 0 - 0 \]

Blíže prozkoumáme způsob, kterým se může uskutečnit připojení molekuly vodíku na ethylen, zejména s přihlédnutím ke geometrii a symetrii tohoto setkání, zjistíme, že za předpokladu součinného molekulového mechanismu děje se známé dvě alternativy (obr. 9.14). V právě zdeušánačemém případě se molekula

vodíku přiblíží k molekule ethylenu, pohybující se v rovině, kde se naobráť shromažďuje C a je kolmá na rovinu molekuly ethylenu. Když se molekuly k sobě přiblíží, zralí se současné (tj. současné) vazby mezi atomy uhlíku a vazba s mezi atomy H a vytvoří se nově dvě vazby C=H typu σ. Přitom je podstatné, že připojení molekuly H₂ nastane z jedné strany (například je suprafacialní) a že se v každém okamžiku vzájemného přiblížování molekula má sklet jejich atomů roviny symetrie σ, která podél původní vazby H=H a C=C a je na ně kolmá. Situaci popisuje obr. 9.14a.

Odhadný je druhý způsob interakce, kdy vzájemná orientace molekul je taková, jak to vyjadřuje obr. 9.14b. Molekule vodíku se k molekule ethylenu přiblíží tak, že její těžiště leží neustále v rovině molekuly ethylenu a atomy vodíku jsou poněkud vychýleny nad tuto rovinu a pod ní. Výsledněm takového způsobu přiblížení je, že se jeden z atomů H připojí na atom uhlíku a nad rovinou molekuly ethylenu (na orbital π)

¹) Postačuje i splnění rovnice pro jedinou kombinaci znaménok.
²) Proces je dovolený i symetrický, ale důkaz není přítulněznámý. Proto si princip symetrické dovolenosti reakční změny objasníme na jiném příkladu.
vzniklým zrušením vazby σ) a druhý pod touto rovinou (na orbital ψ, dalšího atomu C, opět uvolněný zánikem vazby σ). Je zřejmé, že v tomto případě se soubor všech zúčastněných atomů v průběhu vzájemného přiblížování obou molekul vyzačuje přítomností dvojčetné osy symetrie C₂, procházející středy vaze C—H, H—H (antarafaciální připojení).

Pro oba rporobná adice molekul jsme tak nalezeny prvky symetrie, které charakterizují jejich vůči-jennou orientaci. Rovinu Σ' (v prvním případě) a dvojčetnou osu C₂ (v druhém případě) použijeme k vy-šetření symetrické dovedenosti či zakázanosti obou znázorněných dějů). O tom, zda reakce je symetricky dovolená, nebo zakázaná, rozhodneme na základě konstrukce tzv. korelačního diagramu (obr. 9-15 a 9-16). De levé části diagramu zakreslíme lokalizované vazebné i protivazebné MO (kreslíme ovlé pro náznost pouze tvaru AO, jejíž překryvem MO vzniká) těch vazeb, které v posuzovaném reakčním kroku zaniknou. Do pravé části diagramu naproti tomu zakreslíme lokalizované vazebné i protivazebné MO vazeb, které se současným reakčním krokom vytvoří. Vazebné MO v levé i pravé části diagramu umísťujeme přímo do dolní a protivazebné MO do horní poloviny diagramu (pod a nad vodorovnou čírou). Kritickými silňovními vodorovnými úsekymi vyjadříme přítomnost energické relace všech zúčastněných orbitálů. Do znázorněních geometrických tvarů orbitalů vyznačte i aktuální prvek symetrie a graficky vyjádříme znaménko vlnové

Obr. 9-15. Korelační diagram suprafační adice molekuly vodiču na molekulu etylenu. Děj je symetricky zakázaný

1) Někdy bývá zkoumaná geometrie vzájemného přiblížení molekul charakterizována několika prvky symetrie. Je tomu tak i v našem případě u orientace suprafační, která je kromě rovinu Σ charakterizována těž rovinou Σ' (obr. 9-14a) a osou C₂ procházející průsečníkem rovin Σ a Σ'. O tom, které z tovýchto prvků symetrie je třeba použít při dalším zkoumání, rozhoduje pravidla formulovaná Woodwardem a Hoffmannem. Tímto výběrem prvků symetrie se v našich úvahách nebudeme zabývat. Můžeme si však zapamatovat, že hlavní podmínkou, již musí aktuální prvek symetrie splňovat, je, aby půlil alespoň jednu ze zanikajících nebo vzrůstajících vazeb.
funce ve všech jejich zakreslených „lalocích“ (+ šrafováno, — bez vyznačení). Na vzniklém korelačním diagramu si povíme neme symetrie všech vznačených orbitalů k aktivnímu prvku symetrie. S přiblížením ke znázornění vlnové funkce v „lalocích“ orbitalů rozhodneme, zda daný MO je k aktivnímu prvku symetrie symetrický, nebo antisymetrický, a vyznačíme to symbole „SYM“ a „ASYM“ u každého z orbitalů. V případě, že některé MO jsou k prvku symetrie indifferenční, je třeba vytvořit z dvojice MO, majících takovou vlastnost, jejich součtové a rozdílové kombinace1) a vyšetřit symetrické chování těchto kombinací (tjyo

Obr. 9-16. Korelační diagram antarafaciální adice molekuly vodíku na molekulu ethylenu. Děj je symetricky dovolený

úpravy jsou v našem případě nutné u obou korelačních diagramů interakce molekuly vodíku s molekulou ethylenu). Dalším úkolem při konstrukci korelačního diagramu je rozmístění elektronů na jednotlivé MO. V daném případě je v reaktantech jeden elektronový pár přičleněn na orbitální σ+ ve vazbě H—H a druhý na orbitální τ+6, u reaktančních produktů jsou dva elektronové páry umístěny ve dvojici orbitalů σ*6, ve dvou vazbách C—H. Nyní již vyhoví pouze rozhodnout o korelace symetrie orbitalů u levé a pravé části diagramu. Spojíme hladině těž symetrie (oby orbitaly symetrie SYM s orbitaly SYM a obdobně ASYM s ASYM) a představíme si, že pouze po těchto spojnici mohou být při reakci přemýšleny zůstávající elektronové páry z orbitalů východních látek (vodík, ethylen) na orbitaly produktů (etan). Závěrečné vyhodnocení diagramu je velmi jednoduché. Jestliže je třeba jen jeden elektronový pár přenesen z některého MO* východních látek do MO* produktů, tzn. je-li vyvraždění do oblasti o vyšší energii, pak je reakce symetricky zakázána a nemůže se za běžných podmínek (viz poznámka na str. 195) touto cestou uskutečnit. Přitom se „zákaz“ nevztahuje na srážku a interakci zůstávajících částí v jiné orientaci ani na uskutečnění této reakce principiálně odlišným mechanismem.

1) K takovému kroku jsme plně oprávněni principem superpozice stavů. Navic je v plném souladu s představou delokalizovaného charakteru vazeb v molekulách.
Korelační diagram suprafakcionalní adice vodíku na etylen je uveden na obr. 9-15. Je zjevná korelace vazebného orbitalu σ^* s kombinací protivazebných orbitálů σ^*_p, σ^*_p. To ovšem znamená, že suprafakcionalní adice je symetricky zakázána.

Antarafakcionalní způsob adice je vyjádřen korelačním diagramem na obr. 9-16. Z tohoto diagramu je vidět, že nevzniká žádná korelace mezi vazebnými a protivazebnými orbitaly, koreluji spolu pouze vazebné orbitaly obou výchozích molekul a vazebné orbitaly molekuly produktu. Soudí se příčinou vazby π v molekule vodíku a vazby π v molekule etylenu a vznik vazeb C-H typu σ vytvářející se molekule nemá tedy velkou hodnotu aktivací energie (tato aktivací energie je termicky dostupná).

Zdá se, že není splněna podmínka rychlosti orbitalové symetrie v daném ději, lež vykletá pro každý souběžný proces, přeměňuje často pro každou orientaci molekul, která je možná při realizaci tohoto děje. Provedený rozbor však někdy bývá mnohem složitější než v uvedených elementárních případech.

Jak „spinové“, tak i „symetrické“ kritérium se dnes velmi často používá k ověřování pravděpodobnosti jednotlivých kroků vykonávaných reakčních mechanismů. Oba uvedené principy jsou základem dnešního teoretického přístupu k podrobnému zkoumání pohybů molekul při jejich vznikových reakcích. Studium tzv. interních chování molekul se velmi intenzivně rozvíjí.

- **Katalýza**

Reakce, které mají přiznivou změnu Gibbssové energie ($\Delta G < 0$), ale které se samovolně neuskutečňují, protože jejich aktivační Gibbssova energie G^* je velká, mohou být mnohdy realizovány náhradní cestou — jiným mechanismem, jehož aktivační energie je podstatně menší.

Obr. 9-17. Aktivační Gibbssova energie katalyzované a nekatalyzované reakce

Postačuje, aby do děje vstoupil určitý další reaktant, který na konci elementárního kroku reakce opět vystoupil v původní, nezměněné formě či konfiguraci. Takový reaktant se nazývá katalyzátor. Funkci katalyzátoru nejlépe pochopíme z nákresu na obr. 9-17. Výchozí látky A a B tvoří soustavu, jejíž Gibbssova energie je určena polohou úsečky ve střední části grafu. Uskutečnění reakce

$$A + B = C + D$$

Látka K, kterou můžeme vnitř do reakční směsi látek A a B, je naproti tomu schopna např. reakci

$$A + K = AK$$ (aktivací energie G_1^*)

$$AK + B = C + D + K$$ (aktivací energie G_2^*)

200
Jestliže obě tyto reakce mají aktivační energie, jež splňují podmínky

\[G_1^* \leq G^* \]
\[G_2^* \leq G^* \] (9.20)

může se reakce uskutečnit tímto složitějším, avšak z hlediska aktivačních energii výhodnějším, a proto rychlejším dějem. Lítku K lze označit za katalyzátor uvedené reakce; její působení v reakčním systému se nazývá katalýza. Za povšimnutí stojí, že celkové změny Gibbsovy energie \(\Delta G \) při obou reakčních cestách, katalyzované i nekatalyzované, jsou stejné. V souladu s požadavky termodynamiky nezávisí tyto změny stavové veličiny na tom, jakou cestou byly uskutečněny.

S jeho katalytického působení souvisí řada pojmů zavedených a používaných v této oblasti chemie.

Běžně se používají pojmy specifický a nespecifický katalyzátor. Specifický katalyzátor ovlivňuje rychlost zcela určité reakce, popř. několika reakcí přesně specifikovaného druhu. Katalyzátor nespecifický je naproti tomu účinný pro celou rozsáhlou skupinu reakcí.

Dušším běžným pojmem je selektivita katalyzátorů. Jestliže určitý systém reaguje např. třemi současně probíhajícími bočními reakcemi

\[A + B \rightarrow C + D \]
\[A + B \rightarrow E + F \]
\[A + B \rightarrow L + M \]

pak zavedení katalyzátoru může podstatně zrychlit průběh jedné z nich, např.

\[A + B \underset{k}{\rightarrow} E + F \]

O takovémto katalyzátoru říkáme, že působí v dané skupině dějů selektivně, a nazýváme jej selektivní katalyzátor. Příkladem toho, jak různorodé mohou být reakce jedné látky při užití specifických či selektivních katalyzátorů, je reakční schéma katalyzovaných reakčních přeměn ethanolu

\[\text{CH}_3\text{CHO} + \text{H}_2 \xrightarrow{\text{Cu, 200°C}} \text{CH}_3\text{CH}=\text{CH}_2 + \text{H}_2\text{O} + \text{H}_2 \]

\[\text{CH}_3\text{COOH} \xrightarrow{\text{práškový Cu, 250°C}} \text{CH}_2=\text{CH}_2 + \text{H}_2\text{O} \]

\[\text{CH}_3\text{CHOH} \xrightarrow{\text{Al}_2\text{O}_3, 350°C} \text{C}_2\text{H}_5\text{OH} \]

\[\text{C}_2\text{H}_5\text{OH} \xrightarrow{\text{ZnO, CO}_2\text{O}_3, 400°C} \text{C}_2\text{H}_4\text{O} + \text{H}_2\text{O} \]

\[\text{CH}_2=\text{CH}=\text{CH}_2 \xrightarrow{1,3-\text{bunadlo}} \text{CH}_2=\text{CH} \]

Jiným příkladem může být oxidace thiosianu sodného peroxidem vodíku, která ve slabě kyselém prostředí za přítomnosti stop jodu vede ke vzniku tetrahionanu sodného:

\[2\text{S}_2\text{O}_3^{2-} + \text{H}_2\text{O}_2 + 2\text{H}_3\text{O}^+ \xrightarrow{\text{J}^-} \text{S}_4\text{O}_6^{2-} + 4\text{H}_2\text{O} \]
kdežto za přítomnosti kyseliny molybdenové vzniká sran sodný:

\[
\text{S}_2\text{O}_5^{2-} + 4 \text{H}_2\text{O}_2 \xrightarrow{\text{Mn}^{2+}} 2 \text{SO}_4^{2-} + 2 \text{H}_3\text{O}^+ + \text{H}_2\text{O}
\]

Zajímavým jevem je autokatalytické ovlivnění rychlosti reakce, kdy katalyzátorem je jeden z reakčních produktů

\[
\text{A} + \text{B} \xrightarrow{k_{\text{cat}}} \text{C} + \text{D}
\]

Autokatalyzované reakce mají nezvyklý časový průběh. Zpočátku reaktanty A a B spolu reagují téměř neznatelnou rychlostí, zvolna se vytváří nepatrná koncentrace produktu C. Jakmile je dosaženo jeho katalyticky účinné koncentrace, reakce se mnohonásobně zrychlí. Úměrným případem autokatalyzujících produktů do reakční směsi se uvedené pomáhá počáteční etapa reakce samořežně zcela odstranit. Příkladem autokatalyzovaného deje může být oxidace šťavelové kyseliny mangánnistánem v kyselém prostředí:

\[
5(\text{COOH})_2 + 2 \text{MnO}_4^- + 6 \text{H}_2\text{O}^+ = 10 \text{CO}_2 + 14 \text{H}_2\text{O} + 2 \text{Mn}^{2+}
\]

Reakce je katalyzována ionty Mn^{2+}.

Zcela zásadní význam má rozdělení katalytických dějů podle toho, zda probíhají v homogen-ním, nebo v heterogenním prostředí, přesněji řečeno podle toho, zda katalyzátor a substrát jsou složkami téže fáze, nebo zda jsou obsaženy ve fázích rozdílných. V souladu s tímto dělením se rozlišují homogenně a heterogenně katalyzované procesy a hovoří se o homogenní a heterogenní kata-
lýze. Příkladem homogenně katalyzované reakce probíhající v plynné fázi je proces tvorby methanu a oxidu uhelnatého rozkladem par acetaldehydu:

\[
\text{CH}_2\text{CHO} = \text{CH}_4 + \text{CO}
\]

Bez katalyzátoru může reakce velkou aktivační energií. Přítomnost par jodu reakci výrazně zrychluje. Probíhají reakce

\[
\text{CH}_2\text{CHO} + \text{I}_2 = \text{CH}_3\text{I} + \text{HI} + \text{CO}
\]

Technicky velmi významná redoxní reakce

\[
2\text{SO}_2 + \text{O}_2 = 2\text{SO}_3
\]

probíhá trimolekulárním mechanismem a přes přijatelnou hodnotu aktivační energie je v důsledku snížené pravděpodobnosti současně srazky tří molekul pomalá. Zavede-li se do tohoto systému oxid dusnatý, působí katalyticky a oxidaci SO₂ na SO₃ podstatně urychli. Je velmi pravděpodobné, že probíhají tyto děje:

\[
2\text{NO} = \text{N}_2\text{O}_2
\]

\[
\text{N}_2\text{O}_2 + \text{O}_2 = 2\text{NO}_2
\]

\[
\text{NO}_2 + \text{SO}_2 = \text{NO} + \text{SO}_3
\]

Všechny jsou bimolekulární a mají malou aktivační energii.

U chemických reakcí probíhajících v roztocích (zejm. vodných) je velmi častým jevem acidobázická homogení katalýza. Kyselina obecného vzorce HA (viz str. 243) předá ve vodném roztoku molekule H₂O proton H⁺ [protonizuje ji]:

\[
\text{H}_2\text{O} + \text{HA} = \text{H}_3\text{O}^+ + \text{A}^-
\]

202
Posléze může být protonizován vzniklým iontem H₃O⁺ i reaktant:

\[R + H₃O⁺ = RH⁺ + H₂O \]

Protonizovaná částice RH⁺ se pak buď sama monomolekulárně rozpadá, nebo reaguje s dalším reaktantem za vzniku produktů. Proton H⁺ se po splnění úkolu váže na některý z přítomných iontů A⁻, OH⁻ nebo na molekulu vody.

Konkrétním příkladem takového děje může být kysel katalyzovaný rozklad amidu nitrifu (nitrami)：
\[NO₂NH₂ + H₃O⁺ = NO₂NH₃⁺ + H₂O \]
\[NO₂NH₃⁺ = N₂O + H₂O⁻ \]
Jako katalyzátor u acidobazických katalyzovaných reakcí může vystupovat i zásada (označme ji B). Tím, že zprostředkovává příjme od reaktantu RH proton H⁺, dojde k ději:
\[RH + B = R⁻ + HB⁺ \]
Je-li opět anion R⁻ méně stálý než molekula RH, popř. podlehlí R⁻ snadno reakci s dalším reaktantem, splňuje v tomto případě zásada B funkce acidobazického katalyzátoru. Snadou okolnosti může být příkladem takovéto změny opět rozklad amidu nitrifu, tentokrát však v důsledku katalytického působení zásady OH⁻:
\[NO₂NH₂ + OH⁻ = NO₂NH⁻⁻ + H₂O \]
\[NO₂NH⁻⁻ = N₂O + OH⁻ \]
Heterogenně katalyzované reakce mají nejrozšířenější uplatnění v technické praxi. Jejich mechanismy se však zkonstruují velmi obtížně a ani zdaleka nejsou dosud plně známy. V dosti závažném zjednodušení můžeme říci, že aktivita katalyzátoru je podmíněna vznikem aktivench center o určité atomové a elektronové konfiguraci.

Závit nebo porušení aktivních center na povrchu katalyzátoru je obvykle příčinou snížení nebo vymizení aktivity katalyzátoru. Látka, která takovéto nevratné změny vyvolávají, se říká katalytické jedy. Jejich přítomnost v systému reaktantů je významně spojena, a musí být proto pečlivě řízeny prostředky odstraňovány.

Příkladem heterogenně katalyzovaného procesu je průmyslově významná reakce syntézy amoniaku
\[3 \text{H}_2 + \text{N}_2 \rightarrow 2 \text{NH}_3 \]
katalyzovaná elementárním železem, jehož aktivita je zvýšena přidávkem Al₂O₃.

Obdobně se heterogenní katalýza využívá v procesu výroby kyseliny sírové při oxidaci SO₂ na SO₃. Na povrchu katalyzátoru V₂O₅ probíhá chemická změna
\[\text{V}_2\text{O}_5 + \text{SO}_2 \rightarrow 2 \text{VO}_2 + \text{SO}_3 \]
a vzniklé VO₂ se opět vzdušným kyslíkem oxiduje, a tím generuje původní V₂O₅:
\[4 \text{VO}_2 + \text{O}_2 \rightarrow 2 \text{V}_2\text{O}_5 \]
Oxidaci oxidu sířitého kyslíkem lze katalyzovat i elementární platínou.

Katalyzované reakce, ať již heterogenní, nebo homogenní, jsou velmi časté v živě i neživě přírodě. Při podrobném studiu mnohých běžných chemických reakcí, ještě jsme doposud vědec nepovažovali za katalyzované procesy, zjistujeme, že jsou ve skutečnosti rovněž katalyzovány přítomností stopových látkových nečistot (nejčastěji např. těžkých kovů). Po dokončeném vyčištění reaktantů probíhají tyto reakce buď velmi zvolně, nebo je vůbec nelze uskutečnit.
9.5 ROVNOVÁHA CHEMICKÝCH REAKcí

Představme si reakci typu

\[A + B = X + Y \]

Její průběh je spojen s určitými změnami Gibbsovy energie. Změnu Gibbsovy energie při uskutečnění děje zvětšuje kladná
\(\Delta G \) a změnu Gibbsovy energie opačného děje zvětšuje záporná
\(-\Delta G \). Poněvadž je děje závisející na stavově veličinách, musí platu být tyto dvě změny Gibbsovy energie vždy vztahem

\[\Delta G = -\Delta G \]

(9-21)

Změny Gibbsovy energie provázející protisměrné chemické děje jsou svými absolutními hodnotami shodné, liší se však znaménkem. Je-li jedna hodnota kladná, musí být druhá nutně záporná.

V souladu s tím, co jsme uvedli o hybné sile chemických reakcí (str. 184), je ten z dějů, který je charakterizován zápornou změnou Gibbsovy energie, termodynamicky pravděpodobný. Pravděpodobnost opačného děje, vyzaženého kladnou změnou Gibbsovy energie, je malá, ale se získáváním k přítomnosti tepelného pohybu a ke statistickému charakteru daných dějů není nulová. V systému bude proto probíhat oba protisměrná děje a jejich výsledkem bude po určité době ustanovení trvání chémické rovnováhy. Může to podstatně ovlivnit, jaké urychlení bude v oblasti větší a nižší Gibbsovy energie. Protisměrná reakce (A + B = X + Y) probíhá v systému převážně děje zvětšení

Obr. 9-18. Polohy chemické rovnováhy při třech možných relacích hodnot Gibbsovy energie reaktantů a produktů.

V souvislosti s tím, co jsme uvedli o hybné síle chemických reakcí (str. 184), je ten z dějů, který je charakterizován zápornou změnou Gibbsovy energie, termodynamicky pravděpodobný. Pravděpodobnost opačného děje, vyzaženého kladnou změnou Gibbsovy energie, je malá, ale se získáním k přítomnosti tepelného pohybu a ke statistickému charakteru daných dějů není nulová. V systému bude proto probíhat oba protisměrná děje a jejich výsledkem bude po určité době ustanovení trvání chémické rovnováhy. Může to podstatně ovlivnit, jaké urychlení bude v oblasti větší a nižší Gibbsovy energie. Protisměrná reakce (A + B = X + Y) probíhá v systému převážně děje zvětšení

Obr. 9-18. Polohy chemické rovnováhy při třech možných relacích hodnot Gibbsovy energie reaktantů a produktů.

V souladu s tím, co jsme uvedli o hybné sile chemických reakcí (str. 184), je ten z dějů, který je charakterizován zápornou změnou Gibbsovy energie, termodynamicky pravděpodobný. Pravděpodobnost opačného děje, vyzaženého kladnou změnou Gibbsovy energie, je malá, ale se získáním k přítomnosti tepelného pohybu a ke statistickému charakteru daných dějů není nulová. V systému bude proto probíhat oba protisměrná děje a jejich výsledkem bude po určité době ustanovení trvání chémické rovnováhy. Může to podstatně ovlivnit, jaké urychlení bude v oblasti větší a nižší Gibbsovy energie. Protisměrná reakce (A + B = X + Y) probíhá v systému převážně děje zvětšení

Obr. 9-18. Polohy chemické rovnováhy při třech možných relacích hodnot Gibbsovy energie reaktantů a produktů.

V souladu s tím, co jsme uvedli o hybné sile chemických reakcí (str. 184), je ten z dějů, který je charakterizován zápornou změnou Gibbsovy energie, termodynamicky pravděpodobný. Pravděpodobnost opačného děje, vyzaženého kladnou změnou Gibbsovy energie, je malá, ale se získáním k přítomnosti tepelného pohybu a ke statistickému charakteru daných dějů není nulová. V systému bude proto probíhat oba protisměrná děje a jejich výsledkem bude po určité době ustanovení trvání chémické rovnováhy. Může to podstatně ovlivnit, jaké urychlení bude v oblasti větší a nižší Gibbsovy energie. Protisměrná reakce (A + B = X + Y) probíhá v systému převážně děje zvětšení

Obr. 9-18. Polohy chemické rovnováhy při třech možných relacích hodnot Gibbsovy energie reaktantů a produktů.

V souladu s tím, co jsme uvedli o hybné sile chemických reakcí (str. 184), je ten z dějů, který je charakterizován zápornou změnou Gibbsovy energie, termodynamicky pravděpodobný. Pravděpodobnost opačného děje, vyzaženého kladnou změnou Gibbsovy energie, je malá, ale se získáním k přítomnosti tepelného pohybu a ke statistickému charakteru daných dějů není nulová. V systému bude proto probíhat oba protisměrná děje a jejich výsledkem bude po určité době ustanovení trvání chémické rovnováhy. Může to podstatně ovlivnit, jaké urychlení bude v oblasti větší a nižší Gibbsovy energie. Protisměrná reakce (A + B = X + Y) probíhá v systému převážně děje zvětšení

Obr. 9-18. Polohy chemické rovnováhy při třech možných relacích hodnot Gibbsovy energie reaktantů a produktů.

V souladu s tím, co jsme uvedli o hybné sile chemických reakcí (str. 184), je ten z dějů, který je charakterizován zápornou změnou Gibbsovy energie, termodynamicky pravděpodobný. Pravděpodobnost opačného děje, vyzaženého kladnou změnou Gibbsovy energie, je malá, ale se získáním k přítomnosti tepelného pohybu a ke statistickému charakteru daných dějů není nulová. V systému bude proto probíhat oba protisměrná děje a jejich výsledkem bude po určité době ustanovení trvání chémické rovnováhy. Může to podstatně ovlivnit, jaké urychlení bude v oblasti větší a nižší Gibbsovy energie. Protisměrná reakce (A + B = X + Y) probíhá v systému převážně děje zvětšení

Obr. 9-18. Polohy chemické rovnováhy při třech možných relacích hodnot Gibbsovy energie reaktantů a produktů.
Valná část chemických reakcí má rovnovážný charakter a proces ustavování chemické rovnováhy, byť i výrazně posunuté ve výsledkách výchozích látek nebo konečných produktů, je charakteristický pro většinu chemických dějů.

Rovnovážná konstanta, rovnovážné koncentrace

Ke kvantitativnímu vyjádření polohy, v níž se ustaví chemická rovnováha, používáme představu tzv. rovnovážné konstanty a vzniknou rovnovážný stav charakterizujeme tzv. rovnovážnými koncentracemi všech složek soustavy, které se účastní reakce, tedy koncentracemi reaktantů a produktů.

Abychom si vyvodili zjednodušenou formulaci vztahu mezi rovnovážnou konstantou a ustanovenými rovnovážnými koncentracemi reaktantů a produktů, budeme předpokládat, že vznik rovnovážného stavu je výsledkem dvou protisměrých dějů — reakce probíhající ve smyslu reakční rovnice zleva doprava a reakce právě opačné. Výjeme ze představy reakční rovnice typu

\[aA + bB + \ldots \rightleftharpoons xX + yY + \ldots \]

v níž A, B, ... a X, Y, ... značí zůstane ne reaktanty a produkty, symboly a, b, ... a x, y, ... jsou stochiometrych koeficienty vyčíslené rovnice. Tečkou níž v levé i pravé části rovnice je znázorněna možnost líčovací rozklad počet reaktantů a produktů. Znaménko \(\rightleftharpoons \) se běžně používá ke zdůraznění rovnovážného charakteru reakce. Z analogie ke vztahu (9-18), který jsme uvedli ve výkladu o rychlosti chemických reakcí, můžeme pro rychlost \(\vec{v} \) reakce \(aA + bB + \ldots \rightarrow xX + yY + \ldots \) psát

\[\vec{v} = \vec{v}(A)^a \vec{v}(B)^b \ldots \] \((9-22)\)

a pro rychlost \(\vec{v} \) opačné reakce \(aA + bB + \ldots \leftarrow xX + yY + \ldots \)

\[\vec{v} = \vec{v}(X)^x \vec{v}(Y)^y \ldots \] \((9-23)\)

V rovnicech (9-22) a (9-23) jsou \(a \) i \(b \) rychlostní konstanty naznačených reakcí, hranaté závorky vyjadřují koncentraci látek v závorkách uvedených.

Posoudme nyní, jak se obě rychlosti, \(\vec{v} \) i \(\vec{v} \), mění v průběhu reakce. Jelikož jsme vytvořili reakční systém smícháním komponent A, B, ..., pak rychlost \(\vec{v} \) bude mít největší hodnotu v okamžiku zahájení reakce a v dalším jejím průběhu bude klesat, protože zleva doprava probíhající reakční změna postupně snížuje koncentraci složek A, B, ... Rychlost \(\vec{v} \) zpět do reakce na samém začátku bude naopak nulová, neboť složky X, Y, ... nebudou v systému vůbec přítomny, a bude postupně varovat úměrně se zvyšováním koncentrace tvořících složek X, Y, ... Rychlosti obou protisměrých dějů se budou sblížovat, až nakonec dojde k jejich vyrovnání. V tomto okamžiku nastane v systému dynamická rovnováha. Obě reakce budou probíhat i nadále, avšak stejnou rychlostí. Kolik reaktantů se reakci probíhající zleva doprava přemění na produkty, tolik produktů se zpětnou

![Obr. 9-19. Změny rychlosti \(\vec{v} \) a \(\vec{v} \) s časem. Reakční systém byl vytvořen smícháním složek stojících na levé straně reakční rovnice](image-url)
reakci probabilující zprava doleva zasne přeměni na východí reaktanty. Popsanou časovou závislost obou reakčních rychlostí vyjadřuje obr. 9-19.
V rovnováze tedy bude platit
$$\tilde{v} = \tilde{r}$$ \hspace{1cm} (9-24)

Po dosazení ze vztahů (9-22) a (9-23) musí být splněna rovnost
$$k[A]^p[B]^q ... = k[X]^r[Y]^s ...$$ \hspace{1cm} (9-25)

v níž indexy r u všech koncentrací zúčastněných látek vyjadřují, že jde o koncentrace rovnovážně. Jednoduchou úpravou vztahu (9-25) dostaneme
$$\frac{k}{k} = \left[\frac{[X]^r}{[A]^p\cdots}\right] = K_r$$ \hspace{1cm} (9-26)

Podíl dvou rychlostních konstant jsme označili jako konstantu K_r zvanou koncentrační rovnovážná konstanta. Rovnice (9-26) se nazývá vztah Guldbergova-Waagova. Slovní formulace uvedeného vztahu zní:
Součin koncentrací reakčních produktů umocněných stehiometrickými koeficienty, dělený součinem koncentrací východících látek umocněných stehiometrickými koeficienty, je v rovnovážném stavu reakce konstantou veličinou.

Homogenní a heterogenní chemická rovnováha

Vztah (9-26), spojující hodnotu rovnovážné koncentrace konstanty s rovnovažnými koncentracemi komponentu, je použitelný a pravdivé popisuje situaci pouze tehdy, kdy je tento systém homogenní a když všechny složky, které se účastní reakce, jsou plynové a/nebo jsou rozpuštěny v indifferenčním rozpouštědle a vytvářejí jedinou fázi. Jak jsme již dříve uvedli, hovoří se v těchto případech o homogenní reakci a po ustání rovnovážného stavu se říká, že se ustavila homogenní rovnováha. Příkladem mohou být díje

$$\begin{align*}
H_2(g) + I_2(g) &\rightleftharpoons 2 HI(g)
\end{align*}$$

$$\begin{align*}
PCl_3(g) + Cl_2(g) &\rightleftharpoons PCl_5(g)
\end{align*}$$

probíhající v plynové fázi, popř. procesy uskutečňované v roztoce:

$$V^{2+}(aq) + Cr^{3+}(aq) \rightleftharpoons V^{2+}(aq) + Cr^{3+}(aq)$$

$$\begin{align*}
2 C_2H_5OH(aq) + H_2SO_4(aq) &\rightleftharpoons (C_2H_5O)_2SO_4(aq) + 2 H_2O
\end{align*}$$

Také v heterogenním systému reaktantů se ustavuje chemická rovnováha. Formulace Guldbergova-Waagova zákona pro heterogenní rovnováhu je však porádně oddělena. Ze vztahu

\begin{align*}
\frac{p_{X}^r}{p_{Y}^s} &= K_r
\end{align*}

kde p_1, p_2, \ldots a p_X a p_Y jsou rovnovážné parciální tlaky složek zúčastněných v reakci a K_r – tzv. tlaková rovnovážná konstanta. U plynových reakčních systémů je konstanta K_p spojena s konstantou K_r vztahem

$$K_r = K_p(RT)^n$$

kde R je univerzální plynová konstanta, T – absolutní teplota a ΔQ – rozdíl mezi součtem stehiometrických koeficientů východících látek a součtem stehiometrických koeficientů produktů, tedy

$$\Delta Q = a + b + \ldots - (x + y + \ldots)$$

\hspace{1cm} (9-29)

\[\begin{align*}
2 \text{KNO}_3(l) & \rightarrow 2 \text{KNO}_2(l) + \text{O}_2(g) & K_r = \left[\text{O}_2 \right] \\
\text{Mg}_3\text{N}_2\text{O}_4(s) + 6 \text{H}_2\text{O}(g) & \rightarrow 3 \text{Mg(OH)}_2(s) + 2 \text{NH}_3(g) & K_r = \frac{\left[\text{NH}_3 \right]^2}{\left[\text{H}_2\text{O} \right]^6}
\end{align*} \]

Koncentrace všech kapalných (roztavených) složek - KNO\textsubscript{3}, KNO\textsubscript{2} - i koncentrace všech těch reakčních komponent - Mg\textsubscript{3}N\textsubscript{2}O\textsubscript{4}, Mg(OH)\textsubscript{2} - ve vztazích pro rovnovážnou konstantu reakce nevytupují.

Tato skutečnost a uvedený způsob formulace \(K_r \) pro heterogenní reakce plync z toho, že Guildbergová-Waagóv vztah, jak jsme jej formulováli v rovnici (9-26), je jen vztahem přibližným. Rovnice by byla přesně splněna pouze tehdy, kdybychom v ní koncentrace zúčastněných látek nahradili jejich tzv. aktivitami.

Aktivita látky je termodynamická veličina charakterizující látku v daném stavu. Podrobnejší výklad tohoto pojmů nebudeme uvádět, zapamatujeme si však, že aktivita plynův a rozpuštěných látek je úměrná koncentraci těchto látek. Při nízkých parciálních tlacích nebo ve zředěných roztocích se aktivity látek dokonce velmi přibližují jejich koncentracím. Právě proto mohou být v některých případech, např. při formulaci vztahu (9-26), aktivity nahrazeny koncentracemi látek. Aktivita těžkých a kapalných látek je v některých fyzikálních podmínkách konstantní veličinou, nezávislou na množství (koncentraci) látky přítomné v systému. Při formulaci vztahu pro \(K_r \) heterogenní reakce jsou konstantní aktivity látek v kondenzovaných stavech zahrnuty do \(K_r \), a koncentrace těchto látek se proto v samotném vztahu již nevykreslí.

Posun chemické rovnováhy

Každá chemická reakce, která dospěla do stavu dynamické rovnováhy, může být některými rušivými zásahy z této rovnováhy vyvedena. Říkáme, že dochází k **porušení rovnováhy a jejímu novému ustanovení**, čili k jejímu posunu.

Prvým z možných rušivých zásahů do ustanovení chemické rovnováhy je umělá změna koncentrace jednoho (nebo několika) ze zúčastněných reaktantů nebo produktů (nikoli však složky v kondenzovaném stavu). Guildbergová-Waagóv vztah formulovaný pro homogenní rovnovážnou reakci obecného typu \(aA + bB = xX + yY \) nám umožňuje odhadnout chování takového systému při umělé změně koncentrace některé ze složek. Představme si, že např. zvýšíme za rovnovážného stavu uvedené reakce přidáním komponenty A její koncentraci v systému. Ve vztahu pro \(K_r \) se tedy zvýší jeden ze součinidel ve jmenovateli zlomku (\([A]\)^\(a\)). Má-li systém opět nabýt rovnováhy, musí dojít k poklesu druhého ze součinidel ve jmenovateli (\([B]\)^\(b\)) nebo ke zvýšení hodnoty součinu koncentrací v čítatele zlomku (\([X]\)^\(x\) \([Y]\)^\(y\)):
Z chemického hlediska je možné pouze současně uplatnění obou těchto koncentračních změn tím, že se zrychlí reakce probíhající zleva doprava. Přitom klesá koncentrace \([B]\), ale i koncentrace \([A]\), a zvyšují se koncentrace \([X]\) a \([Y]\). Rovnováha se posouvá doprava:

\[
a A + b B \rightleftharpoons x X + y Y
\]

Zvyšme-li naopak náhle koncentraci některého z produktů reakce (např. \([X]\)), dojde k opačnému posunu rovnováhy:

\[
a A + b B \rightleftharpoons x X + y Y
\]

Jev se využívá i v technické praxi. Chceme-li, aby zreagoval jeden z reaktantů prakticky úplně (např. proto, že je drahý, že by se ze systému špatně odděloval atd.), použijme druhý reaktant (lacný, dobře oddělitelný apod.) ve velkém přebytku.

Procesu umělého zvýšení koncentrace jedné ze složek může být ekvivalentní snížení koncentrace jiné složky. Například při heterogenní rovnovážné reakci tepelného rozkladu uhličitanu vápenatého na oxid vápenatý a oxid uhličitý (pálení vápna) podle rovnice

\[
CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)
\]

se rovnováha ustáli teprve tehdy, když koncentrace CO\(_2\) nabude hodnoty rovnovážné konstanty \(K_c = [CO_2]\). Zabránime-li vytvoření rovnovážné koncentrace oxidu uhličitého tím, že jej z reakčního prostoru odvádíme, posouvá se rovnováha trvale doprava, až se veškerý CaCO\(_3\) přemění na CaO.

U reakcí probíhajících v homogenním nebo heterogenním systému s alespoň jednou plynovou složkou lze někdy dosáhnout posunu rovnováhy těž záměrem celkového tlaku systému. Zvolme jako názorný příklad průmyslovou významnou syntézu amoniaku z dusíku a vodíku podle rovnice

\[
N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)
\]

Na každý mol zreagovaného dusíku se spotřebují tři moly vodíku a vytvoří se dva moly amoniaku.
Znamená to, že při reakci dochází k poklesu celkového počtu molů v soustavě, a tím i ke zmenšování objemu soustavy (při neměnném tlaku) \(^1\), neboť z každých čtyř molů výchozích látek vzniknou pouze dva moly produktů. Říkáme, že reakce je spojena s objemovou kontrakcí. Reakční štěrk s objemovou kontrakcí zúčastněných plynůch složek posouvají svou rovnováhu zvýšením tlaku směrem k menším počtu molů.

Snižení tlaku má opačný účinek. Rovnováhu systému bez objemové kontrakce změny tlaku neovlivňuje.

Pro oba uvedené způsoby posunu rovnováhy změnami koncentrací a změnami tlaku je charakteristické, že se při nich nemění rovnovážná konstanta \(K_r \).

Principiálně odlišná situace vzniká, méním-li rovnováhu reakce změnami teploty. Změnou teploty se mění především hodnota rovnovážné konstanty dané reakce. Nebudeme se zde zabývat termodynamickým rozborom tohoto jevu a pouze uvedeme, že jeho zjištění, ale vcelku uspokojivě, lze vyjádřit použitím rovnováhy při změnách teploty touto jednoduchou formulací:

Zvýšení teploty potlačuje exothermické děje (zmenšuje předpokladnost jejích realizací) a podporuje děje endothermické. Snižení teploty má opačný účinek.

Poměradně každá chemická reakce o daném reakčním teple může probíhat zpětně (pak má reakční teplota opačné znaménko), posouvá se zvýšením teploty rovnováha v prospěch endothermického děje a snížením teploty ve prospěch děje exothermického.

Posun rovnováhy změnami teploty reagujícího systému lze schematicky vyjádřit takto:
Chemická rovnováha a katalyza

Velmi charakteristickým a jednoznačným je vztah mezi polohou ustanovení chemické rovnováhy a katalytickými jevy. V podstatě platí tvrzení, že oba děje se vzájemně navzájemí.

Jestliže do systému, v němž se ustanovila rovnováha určitého chemického děje, vneseme katalyzátor této reakce, nedojde k pozorovatelným změnám. Ani když vneseme katalyzátor do systému hned na počátku reakce, nebude tím výsledná rovnováha ovlivněna, pouze se zkrátí čas potřebný k jejímu dosažení. Je tomu tak proto, že rovnovážný stav reakce je udržován rozdílem Gibbsovy energie ΔG výchozích látek a produktů reakce, a tento rozdíl, jak ukazuje obr. 9-20, není působením katalyzátoru ovlivňován. Přítomnost katalyzátoru pouze nastavuje možnost jiné reakční cesty (cesty podél jiné reakční koordináty), vyzařující se menší aktivační Gibbsovou energií. Nelze tedy působením katalyzátoru posouvat chemickou rovnováhu a měnit složení systému, které dosáhly do rovnovážného stavu.

Poněkud jiná je situace, když se katalyzátor využívá kineticky. Jestliže nenecháváme dobit reakci až do rovnováhy, za stejný čas a při stejném uspořádání procesu reakce pokročí za přítomnosti katalyzátoru dale, tj. bliže ke konečnému (katalyzátorem neovlivnitelnému) rovnovážnému složení.

Obr. 9-20. Působením katalyzátoru v reakčním systému není ovlivněna hodnota změny Gibbsovy energie ΔG provázející reakcí, klesá však hodnota aktivační Gibbsovy energie této reakce v obou směrech jejího průběhu.

Elektrody

Každý kov poněmý do vody se poněkud rozpouští a ionizuje. I když jeho rozpouštění není chemickou analýzou postačující, přece jen se projeví tím, že kov se proti roztoku nabije záporně. Je tomu tak proto, že atomy kovu pH přemění na kationty uvolnění elektrony podle obecné rovnice

$$\text{Me} \rightarrow \text{Me}^{n+} + n\text{e}^-$$

Elektrony zůstávají použity kovem – kovovou elektrodou – a udělují ji záporný elektrický potenciál, kationty kovu přecházejí do kapaliny odlučující elektrodu (obr. 9-21). Tento proces pokračuje tak dlouho, až vzniklý potenciálový rozdíl mezi kovem a roztokem s jeho ionty zabraňuje dalšímu přecházení kationtů do roztoku, jinak řečeno, až se ustaví dynamická rovnováha, při níž rychlost přecházení kationtů do roztoku a rychlost jejich návratu a zachycování nabitym povrchem kovu se vyrovnají.
Velmi obdobná situace nastává, když se kov místu do čisté vody ponoru do roztoku své soli, tedy ponoru-li se např. mědě do vodného roztoku šíranu měďnatého. Zde však již nemusí být potenciál kovu proti roztoku záporný. Je-li koncentrace iontů Mo⁺⁻ v roztoku dostatečně velká, převládá po ponoru kovu do roztoku děj zachycování iontů povrchu kovu a elektroda se nabijí kladně.

\[E = E^\circ + \frac{0.059}{n} \log [Me^{n+}] \]

kde \(E^\circ \) je tzv. standardní elektrodový potenciál kovu (specifický pro každý kov), \(n \) – počet pře-
váděných elektronů při ionizaci kovu a \([Me^{n+}]\) – aktuální koncentrace iontů Mo⁺⁻ v roztoku obklopujícím elektrodu.

Z rovnice je zřejmě, že potenciál elektrody se rovná standardnímu elektrodovému potenciálu kovu, z něhož je elektroda vyrobena (tedy \(E = E^\circ \)) jen tehdy, když koncentrace iontů Mo⁺⁻ je jednotková (tedy při \([Me^{n+}] = 1\).

I když není experimentálně možné určovat absolutní hodnoty potenciálového rozdílu mezi elektrodeou a roztokem, lze z dvojice takovýchto elektrod vytvářet elektrochemické články a sta-

<table>
<thead>
<tr>
<th>Systém</th>
<th>(E^\circ) V</th>
<th>Systém</th>
<th>(E^\circ) V</th>
<th>Systém</th>
<th>(E^\circ) V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs⁺⁺/Cs⁺⁺</td>
<td>3,08</td>
<td>Al⁺⁺⁺/Al⁺⁺</td>
<td>1,66</td>
<td>Ni⁺⁺⁺/Ni⁺⁺⁺</td>
<td>0,25</td>
</tr>
<tr>
<td>Li⁺⁺/Li⁺⁺</td>
<td>3,05</td>
<td>Zr⁺⁺⁺/Zr⁺⁺⁺</td>
<td>1,54</td>
<td>Sn⁺⁺⁺/Sn⁺⁺⁺</td>
<td>0,14</td>
</tr>
<tr>
<td>K⁺⁺⁺/K⁺⁺⁺</td>
<td>2,92</td>
<td>Mn⁺⁺⁺/Mn⁺⁺⁺</td>
<td>1,19</td>
<td>Pb⁺⁺⁺/Pb⁺⁺⁺</td>
<td>0,13</td>
</tr>
<tr>
<td>Ba⁺⁺⁺/Ba⁺⁺⁺</td>
<td>2,80</td>
<td>Cr⁺⁺⁺'/Cr⁺⁺⁺'</td>
<td>0,91</td>
<td>W⁺⁺⁺'/W⁺⁺⁺'</td>
<td>0,11</td>
</tr>
<tr>
<td>Sr⁺⁺⁺'/Sr⁺⁺⁺'</td>
<td>2,89</td>
<td>Zn⁺⁺⁺'/Zn⁺⁺⁺'</td>
<td>0,76</td>
<td>H⁺⁺⁺'/H⁺⁺⁺'</td>
<td>0,00</td>
</tr>
<tr>
<td>Ca⁺⁺⁺'/Ca⁺⁺⁺</td>
<td>2,87</td>
<td>Cr⁺⁺⁺'/Cr⁺⁺⁺'</td>
<td>0,74</td>
<td>Cu⁺⁺⁺'/Cu⁺⁺⁺'</td>
<td>0,34</td>
</tr>
<tr>
<td>Na⁺⁺⁺'/Na⁺⁺⁺'</td>
<td>2,71</td>
<td>Fe⁺⁺⁺'/Fe⁺⁺⁺'</td>
<td>0,44</td>
<td>Ag⁺⁺⁺'/Ag⁺⁺⁺'</td>
<td>0,80</td>
</tr>
<tr>
<td>La⁺⁺⁺'/La⁺⁺⁺'</td>
<td>2,52</td>
<td>Cd⁺⁺⁺'/Cd⁺⁺⁺'</td>
<td>0,40</td>
<td>Hg⁺⁺⁺'/Hg⁺⁺⁺'</td>
<td>0,85</td>
</tr>
<tr>
<td>Mg⁺⁺⁺'/Mg⁺⁺⁺'</td>
<td>2,37</td>
<td>Ti⁺⁺⁺'/Ti⁺⁺⁺'</td>
<td>0,34</td>
<td>Pd⁺⁺⁺'/Pd⁺⁺⁺'</td>
<td>0,99</td>
</tr>
<tr>
<td>Be⁺⁺⁺'/Be⁺⁺⁺'</td>
<td>1,83</td>
<td>Co⁺⁺⁺'/Co⁺⁺⁺'</td>
<td>0,28</td>
<td>Au⁺⁺⁺'/Au⁺⁺⁺'</td>
<td>1,50</td>
</tr>
</tbody>
</table>

1) V přesnější formulaci Nernatovy rovnice se místo koncentrace používá aktivita iontů Mo⁺⁻ v roztoku.
novovat potenciálův rozdíl mezi jejich kovovými elektrodami. Zvolíme-li jeden ze standardních elektrodových potenciálů za základ, můžeme seřadit kovy podle hodnot jejich standardního elektrodového potenciálu vztáhnutého k tomuto základu. Tímto základem byl zvolen potenciál standardní vodíkové elektrody, kterému byla konvenční přisouzena hodnota \(E^0 = 0 \). Standardní vodíková elektroda je realizována platinnou elektrodou, pokrytou platinnovou čerstvou, která je zčásti ponořena do roztoku o jednotkové aktivitě vodíkových iontů a zčásti vyčnívá nad roztok do prostoru vyplněného plynným vodíkem o tlaku 101,325 kPa. Standardní elektrodové potenciály některých běžných kovů jsou uvedeny v tab. 9-1.

Z tabulky 9-1 je vidět, že některé z kovů se při kontaktu s roztokem o jednotkové aktivitě svých iontů nabijejí proti standardní vodíkové elektrodě záporně (mají větší sklon uvolňovat do roztoku kationty), jiné se naopak nabijejí kladně. Kovy se záporným standardním elektrodovým potenciálem se nazývají neúlechtile; patří k nim kovy velmi elektropozitivní, s malou hodnotou ionizační energie, ochotně přecházet do vodného roztoku ve formě svých iontů. Kovy s kladným standardním elektrodovým potenciálem říkáme úlechtile; hodnota jejich ionizační energie je velká a jejich sklon k ionizaci malý.

Znalost standardních elektrodových potenciálů kovů lze velmi dobře využít k posuzování polohy chemické rovnováhy některých oxidačně-redukčních změn. Méně úlechtíkový kov (s negativnějším standardním elektrodovým potenciálem) je schopen redukovat v roztoku ionty kovů úlechtilejších (s pozitivnějším standardním elektrodovým potenciálem). Dokladem mohou být reakce (tzv. cementace)

\[
\begin{align*}
\text{Cu}^{2+} + \text{Fe} &\rightarrow \text{Cu} + \text{Fe}^{3+} \\
\text{Hg}^{2+} + \text{Zn} &\rightarrow \text{Hg} + \text{Zn}^{2+}
\end{align*}
\]

které probíhají výrazně zleva doprava. Právě tak je spontánně probíhající reakce rozpouštění neúlechtilejších kovů ve vodě, např.

\[
2\text{Li} + 2\text{H}^+ (\text{aq}) = 2\text{Li}^+ (\text{aq}) + \text{H}_2 \quad (1)
\]

Platí, že spontánnost takovýchto oxidačně-redukčních dějů je vždy tím větší, čím větší je rozdíl standardních elektrodových potenciálů zúčastněných systémů.

Častěji než redoxní děje s účastí elementárního kovu jsou v chemické praxi redoxní děje probíhající mezi sloučeninami. Indifferenční elektrody (např. platinnová) mohou snímat elektrický potenciál ustavující se v roztoku s oxidovanou i redukovanou formou (sloučeninou) určitého prvku. Tento tzv. oxidačné-redukční potenciál \(E \) je vyjádřen Nerstovou–Peterssovou rovnicí, která má pro teplotu 25°C tvar

\[
E = E^0 + \frac{0.059}{n} \log \left(\frac{[\text{OX}]}{[\text{RED}]} \right)
\]

kde \(E^0 \) je tzv. standardní oxidačno-redukční potenciál systému, \([\text{OX}]\) – koncentrace oxidované formy, \([\text{RED}]\) – koncentrace redukované a \(n \) – počet elektronů, které jsou přenášeny při přeměně \(\text{OX} \rightarrow \text{RED} \) podle rovnice

\[
[\text{OX}] + n\text{e}^- \rightarrow [\text{RED}]
\]

\(1\) Rovnice je formulována tak, aby byla analogická uvedeným rovnicím cementace úlechtilejších kovů. Její správnější a přesnější zápis je

\[
2\text{Li} + 2\text{H}_2\text{O} = 2\text{Li}^+ + 2\text{OH}^- + \text{H}_2
\]

\(2\) V přesnéjší formulaci Nerstovy–Petersovy rovnice se opět místo koncentrace používá aktivita oxidované, resp. redukované formy.

212
Tabulka 9.2. Standardní elektrodové potenciály některých oxidačně-redukčních dějů (hodnoty jsou udány ve voltch)

<table>
<thead>
<tr>
<th>Děje probíhající v kyselém prostředí</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr^{3+} \rightarrow Cr^{2+}</td>
</tr>
<tr>
<td>V^{3+} \rightarrow V^{2+}</td>
</tr>
<tr>
<td>$\text{Cr}_2\text{O}_7^{4-}$ \rightarrow 1.33 \rightarrow Cr^{3+} \rightarrow 1.70 \rightarrow Cr^{2+}</td>
</tr>
<tr>
<td>MnO_4^- \rightarrow 0.56 \rightarrow MnO_4^{2-} \rightarrow 2.29 \rightarrow MnO_2 \rightarrow 0.95 \rightarrow Mn^{3+} \rightarrow 1.51 \rightarrow Mn^{2+} \rightarrow 1.19 \rightarrow Mn</td>
</tr>
<tr>
<td>$[\text{Fe(CN)}_6]^{3-}$ \rightarrow 0.36 \rightarrow $[\text{Fe(CN)}_6]^{2+}$ \rightarrow 1.5 \rightarrow Fe \rightarrow 0.41 \rightarrow Fe^{2+} \rightarrow 0.77 \rightarrow Fe^{3+} \rightarrow 1.9 \rightarrow FeO_4^{2-}</td>
</tr>
<tr>
<td>Cu^{2+} \rightarrow 0.15 \rightarrow Cu^{+}</td>
</tr>
<tr>
<td>Hg^{2+} \rightarrow 0.02 \rightarrow Hg^{2+}</td>
</tr>
<tr>
<td>Tl^{2+} \rightarrow 1.28 \rightarrow Tl^+ \rightarrow 0.24 \rightarrow Tl</td>
</tr>
<tr>
<td>Sn^{4+} \rightarrow 0.15 \rightarrow Sn^{2+}</td>
</tr>
<tr>
<td>PbO_2 \rightarrow 1.46 \rightarrow Pb^{2+} \rightarrow 0.13 \rightarrow Pb</td>
</tr>
<tr>
<td>NO_3^- \rightarrow 0.96 \rightarrow HNO_3 \rightarrow 1.45 \rightarrow N_2 \rightarrow 0.37 \rightarrow NH_4^+</td>
</tr>
<tr>
<td>H_3PO_4 \rightarrow -0.28 \rightarrow H_3PO_4 \rightarrow -0.50 \rightarrow P \rightarrow -0.06 \rightarrow PH_3</td>
</tr>
<tr>
<td>H_2O_2 \rightarrow 1.77 \rightarrow H_2O</td>
</tr>
<tr>
<td>SO_4^{2-} \rightarrow 0.17 \rightarrow H_2SO_4 \rightarrow 0.45 \rightarrow S \rightarrow 0.14 \rightarrow H_2S</td>
</tr>
<tr>
<td>F_2 \rightarrow 2.87 \rightarrow F^-</td>
</tr>
<tr>
<td>ClO_4^- \rightarrow 1.19 \rightarrow ClO_4^- \rightarrow 1.21 \rightarrow HClO_2 \rightarrow 1.65 \rightarrow HClO \rightarrow 1.85 \rightarrow Cl_2 \rightarrow 1.26 \rightarrow Cl^-</td>
</tr>
<tr>
<td>BrO_3^- \rightarrow 1.45 \rightarrow HBrO \rightarrow 1.50 \rightarrow Br_2 \rightarrow 1.07 \rightarrow Br^-</td>
</tr>
<tr>
<td>H_3IO_6 \rightarrow 1.70 \rightarrow IO_3^- \rightarrow 1.14 \rightarrow HIO \rightarrow 1.45 \rightarrow I_2 \rightarrow 0.54 \rightarrow I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Děje probíhající v zásaditém prostředí</th>
</tr>
</thead>
<tbody>
<tr>
<td>CrO_4^{2-} \rightarrow 0.12 \rightarrow Cr(OH)_3 \rightarrow 1.1 \rightarrow Cr(OH)_2 \rightarrow 1.4 \rightarrow Cr</td>
</tr>
<tr>
<td>Fe(OH)_3 \rightarrow -0.56 \rightarrow Fe(OH)_2</td>
</tr>
<tr>
<td>Cu(OH)_2 \rightarrow -0.68 \rightarrow Cu_2O \rightarrow -0.39 \rightarrow Cu</td>
</tr>
<tr>
<td>Ti(OH)_3 \rightarrow -0.05 \rightarrow TiOH \rightarrow -0.34 \rightarrow Ti</td>
</tr>
</tbody>
</table>
Tabulka 9.2: Pokračování

<table>
<thead>
<tr>
<th>Děje probíhající v zásaditém prostředí</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO_4^{2-} \rightarrow SO_4^{2-} \rightarrow S^{2-}</td>
</tr>
<tr>
<td>BrO_3^{-} \rightarrow BrO^{-} \rightarrow Br_2 \rightarrow Br^{-}</td>
</tr>
</tbody>
</table>

Tedy např.

$\text{Ti}^{3+} + 2 \text{e}^- \rightarrow \text{Ti}^{+}$

Indikační elektroda poněvadž do oxidace-redukčního systému se redukceho děje sama neúčastní, pouze zpřístupňovává výměnu elektronů a snížená oxidace-redukční potenciál ostanoven v roztoku. Pri splnění podmínek $[\text{OX}] = [\text{RED}]$ je potenciál indikační elektrody E roven standardnímu redukčnímu potenciálu E° daného děje. Standardní redoxni potenciál je specifický pro každý redukční systém a charakterizuje tendencí k přenavení v fotochemickém směru. Také v tomto případě jsou všechny zjištěné redoxni potenciály vztahovány k standardnímu elektrodovému potenciálu vodíkové elektrody.

Tabulka 9.2 podává přehled standardních redoxních potenciálů některých systémů. Jsou rozlišeny děje probíhající v kyselém prostředí a děje probíhající v prostředí alkalickém.

Znalost standardních redoxních potenciálů jednotlivých systémů lze využívat k posouzení oxidace-redukčních rovnováh v soustavách tvořených dvojicemi těchto systémů.

U systémů s největšími pozitivními hodnotami standardních redoxních potenciálů je oxidovaná forma OX silným oxidovadlem. Naopak u systémů s velkou negativní hodnotou standardního redoxního potenciálu je velmi silným redukcelem forma RED.

Z tab. 9.2 lze vyhledat, že největším oxidovadlem vůbec je elementární fluor $E^\circ(\text{F}_2/\text{F}^-) = 2.87 \text{ V}$, dalšími silnými oxidovadly jsou např. manganistan v kyselém prostředí – $E^\circ(\text{MnO}_4^-/\text{Mn}^{2+}) = 1.51 \text{ V}$, peroxid vodíku v kyselém prostředí – $E^\circ(\text{H}_2\text{O}_2/\text{H}_2\text{O}) = 1.77 \text{ V}$ a chroman v kyselém prostředí – $E^\circ(\text{CrO}_4^{2-}/\text{Cr}^{3+}) = 1.33 \text{ V}$.

Naproti tomu z tabulky také vyplývá, že velmi silnými redukcelem jsou soli chromátu, vanadaté, kyselina fosforitá aj. – $E^\circ(\text{Cr}^{2+}/\text{Cr}^{3+}) = -0.41 \text{ V}$, $E^\circ(\text{V}^{3+}/\text{V}^{2+}) = -0.25 \text{ V}$, $E^\circ(\text{H}_3\text{PO}_4/\text{H}_2\text{PO}_4^-) = -0.28 \text{ V}$.

Hodnoty standardních oxidace-redukčních potenciálů umožňují posoudit směr a rovnováhu redoxního děje probíhajícího mezi dvěma systémy. Například manganistan v kyselém prostředí bude směrně oxidovat jedidy na jode a do koncem i na jodečan, dusíkan na dusičnan atd. To proto, že platí

$E^\circ(\text{I}_2/\text{I}^-) = 0.54 \text{ V}$

$E^\circ(\text{MnO}_4^-/\text{Mn}^{2+}) = 1.51 \text{ V} > E^\circ(\text{IO}_3^-/\text{I}^-) = 1.08 \text{ V}$

$E^\circ(\text{NO}_3^-/\text{NO}_2^-) = 0.94 \text{ V}$

Manganistan však neoxiduje spontánně např. sůl ceriu na ceriátovou:

$E^\circ(\text{MnO}_4^-/\text{Mn}^{2+}) = 1.51 \text{ V} < E^\circ(\text{Ce}^{4+}/\text{Ce}^{3+}) = 1.61 \text{ V}$

214
Redukční schopnost soli železnaté bude postačovat např. k redukci bromu na bromidy a soli thalilité na thalinitou:

\[E'(\text{Fe}^{3+}/\text{Fe}^{2+}) = 0,77 \text{ V} \quad < \quad E'(\text{Br}_2/\text{Br}^-) = 1,07 \text{ V} \]
\[E'(\text{Tl}^{3+}/\text{Tl}^-) = 1,28 \text{ V} \]

avšak nepostačí např. k redukci síranu na oxid sírčitého nebo sírčitan:

\[E'(\text{Fe}^{3+}/\text{Fe}^{2+}) = 0,77 \text{ V} \quad > \quad E'(\text{SO}_4^{2-}/\text{SO}_3^-) = 0,17 \text{ V} \]

Při všech těchto úvahách je ovšem nutné mít na paměti, že vyslovené závěry platí jen tehdy, jsou-li rozdíly mezi standardními oxidačně-redukčními potenciály srovnávaných systémů dostatečně velké (asi 0,4 V). Nutnou podmínkou, která musí být splněna, je, aby všechny zúčastněné systémy byly v reakci soustavě přítomny v řádově stejných koncentracich.
10 Vodík a voda

10.1 VODÍK

Vodík je prvním členem přirozené řady prvků. Jeho atomové jádro tvoří jen jediný proton\(^{1}\) a v elektroновém obalu atomu vodíku je jediný elektron. Tato jednoduchá stavba atomu, stejně jako skutečnost, že elektronovou konfiguraci 1s\(^1\) je atom vodíku přibuzný alkalicím kovům (mají elektronovou konfiguraci ns\(^1\)) i halogenům (neboť mu stejně jako jim chybí jen jediný elektron do konfigurace nejbližšího vzácného plynu), uděluje vodík výlučné chemické vlastnosti. Do jeho chemického chování se promítají protikladné vlastnosti elektropozitivních i elektronegativních prvků a jeho chemie má osobitý charakter.

Nevyhraněnost skupinové příslušnosti vodíku vyjadřujieme někdy v „krátké“ periodické tabulce i graficky:

<table>
<thead>
<tr>
<th>H</th>
<th>He</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>Be</td>
</tr>
<tr>
<td>Na</td>
<td>Mg</td>
</tr>
</tbody>
</table>

V „dlouhé“ periodické tabulce se pak nejčastěji přikláňíme k zařazení vodíku do skupiny 1A, nebo (a to zřídka) do skupiny 7B.

- **Způsob vazby atomu vodíku ve sloučeninách**

Nejčastějším způsobem vazby atomu vodíku je tvorba kovalentní vazby typu \(\sigma\). Orbital 1s atomu vodíku se přitom překryje s orbitalem vazebného partnera, majícím vhodnou symetrii:

![vazebný orbital](image)

Překryvem vzniklý vazebný orbital je obsazen elektronovým párem, vytvořený protivazebný orbital zůstane neobsazen.

Tento případ jsem poznal a objasnil při výkladu vazby v molekule H\(_2\), HF, u vazeb C—H v uhlovodících aj. (Zvláštní případ, kdy vzniklý vazebný orbital je obsazen jen jediným elektronem.

\(^{1}\) Vedle nuklidu \(^{1}\)H (protio) se v přírodě vyskytuje (ve velmi malém zastoupení) ještě další dva izotopické nuklidy, \(^{2}\)H (deuterium, označované též vlastním symbolem D) a \(^{3}\)H (tritium, označované symbolem T).
jsme si ukázali u částice H+. Situaci, kdy je plně obsazen vazebný orbital a jeden elektron je dokonce v protivazebném orbitalu, jsme viděli u částice H2+.

Vznikl kovalentní vazba mezi atomem H a jeho vazebným partnerem (označme jej A) má více či méně polární charakter podle toho, zda a jak se atomy H a A od sebe liší svou elektro-negativitou.

Platí-li pro elektro-negativity podmínka X\textsubscript{H} > X\textsubscript{A}, a to v takové míře, že u vzniklé vazby převáží její iontový charakter, dospíváme k druhému možnému způsobu vazby atomu vodíku:

\[A^- + H^+ \rightarrow H^+ A^- \]

Atom vodíku vystupuje jako hydridový anion a je převážně iontově poután k vazebnému partneru (kationtu A+) elektrostatickými silami. Podmínka X\textsubscript{H} > X\textsubscript{A} je v dostatečné míře splněna prakticky pouze tehdy, kdy je A alkalický kov nebo kov alkalických zemí. Vzniklé sloučeniny se nazývají iontové hydridy (str. 220).

Očekávali bychom, že třetím způsobem vazby vodíku na jiný atom může být vazba, kdy výrazně elektro-negativnější atom fluoru nevytváří interakci s vodíkem iontovou vazbu, nýbrž vazbu kovalentní, i když velmi polární:

\[H^+ + F^- \rightarrow H+F^- \]

Přesun elektronového páru od atomu vodíku k atomu fluoru a vytvoření kladného parciálního náboje \(\delta^+\) na vodíku nezůstává u této a obdobných sloučenin vodíku bez následků. Značně odhalené jádro atomu vodíku může přijmout část elektronové hustoty nevazebného elektronového páru atomu sousední molekuly a může se tak vytvářet vodíkový můstek. Jeho podrobný výklad a objasnění jsme již podali v kap. 7.

Méně běžnými způsoby vazby atomů vodíku jsou kovalentní, polycentrické a přítom elektronové deficitní vazby ve sloučeninách typu boranů (str. 405) a vysoce dekomponované kovalentní kovové vazby v některých nestetichemických hydridech přechodných kovů. S oběma těmito způsoby vazby se seznámíme později.

Chemické vlastnosti vodíku

Elementární vodík je reaktivní látkou. Slučuje se přímo s některými prvky. Lehké halogeny (F\textsubscript{2} a Cl\textsubscript{2}) se s vodíkem sloučí explozivně radikálovou reakcí (str. 174):

\[H_2 + F_2 \rightarrow 2HF \]
\[H_2 + Cl_2 \rightarrow 2HCl \]

Br\textsubscript{2} a I\textsubscript{2} reagují mnohem pomaleji a reakce jsou zhruba:

\[H_2 + Br_2 \rightarrow 2HBr \]
\[H_2 + I_2 \rightarrow 2HI \]

Stejně rychle jako u lehkých halogenů je sloučování vodíku s kyslíkem. Směsi vodíku a kyslíku (vzduchu) vhodná koncentrace jsou zdánlivě stálé, ale po iniciaci (plamenem, zahříváním, elektrickou jiskrou) explodují (tlakový plyn):

\[2H_2 + O_2 \rightarrow 2H_2O \]
Vodík se slačuje i s dalšími nekovy. K uskutečnění těchto reakcí dochází při vyšších teplotách, popř. tlacích. Zásadní technologický význam má katalyzovaná reakce slučování vodíku s dusíkem:

\[\text{3 H}_2 + \text{N}_2 = 2 \text{NH}_3 \]

Využívá se při průmyslové syntéze amoniku (str. 368).

Roztavené vysoké elektropozitivní kovy (Li, Na, K, Rb, Cs, Ca, Sr, Ba) poskytují s vodíkem iontové hydry:

\[2 \text{Me} + \text{H}_2 = 2 \text{MeH}^- \cdot \text{H}^+ \]
\[\text{Me} + \text{H}_2 = \text{MeH}_2^+ \]

Tyto reakce jsou vlastně jedinými případy oxidačního působení elementárního vodíku:

\[\text{H}_2 + 2e^- = 2 \text{H}^- \]

Většinou ostatní známé děje (tedy i dříve popsané slučování vodíku s nekovy) jsou procesy, při nichž elementární vodík působí redukčně:

\[\text{H}_2 = 2 \text{H}^+ + 2e^- \]

Elementární vodík lze proto považovat za výrazné redukční čidlo. Dokazuje to redukce oxidů kovů na elementární kovy působením vodíku podle rovnic

\[\text{WO}_3 + 3 \text{H}_2 = \text{W} + 3 \text{H}_2\text{O} \]
\[\text{MoO}_3 + 3 \text{H}_2 = \text{Mo} + 3 \text{H}_2\text{O} \]

a obdobné redukce některých solí kovů:

\[\text{PbS} + \text{H}_2 = \text{Pb} + \text{H}_2\text{S} \]

V organické chemii a technologii je významné tzv. hydrogenuační působení elementárního vodíku. Hydrogenace dvojného vazeb alkenu

\[
\begin{array}{c}
\text{C}=	ext{C} \\
\text{H}
\end{array}
\]

i hydrogenace oxidu uhelnatého na methanol

\[\text{CO} + 2 \text{H}_2 = \text{CH}_3\text{OH} \]

jsou průmyslově významnými příklady těchto procesů.

Z technického hlediska a závažných fyzikálně chemických vlastností vodíku je třeba jmenovat především to, že jeho velmi malé molekuly snadno difundují nejen porovitými stěnami a nepatrnými netěsnostmi, ale i tenkými vrstvami některých zdánlivě kompaktních a pro jiné plyny neprostupných materiálů. Vodík se těž dobře rozpuští v kovech a často vyvolává v jejich struktuře změny, které vedou ke zhoršení mechanických vlastností kovů.

- Atomární vodík

Homolytické roztržení molekuly vodíku na dva atomy

\[\text{H}_2 = 2 \text{H} ; \quad \Delta H = +24,6 \text{kJ mol}^{-1} \]
je endotermická reakce. K rozpadu molekul na atomy dochází v plyněm vodíku až při extrémně vysokých teplotách (při 3000 °C je rozpadlý 10 % molekul). Atomární vodík se ovšem těž působením ultrafalového záření nebo elektrického výboje za nízkého tlaku na plyně H₂. Rozměřene atomizační reakce je posunuta zcela ve prospěch nerozstažených molekul, a proto pomíjí více vysoké teploty nebo jiného faktoru vysvětlovacího Štěpení molekul, dochází rychle k zpětně rekombinační reakci (tj. ke spojování atomů na molekuly) za uvolnění původně dodané energie.

Teplo uvolněné při rekombinaci atomů vodíku se může technicky využít např. při saření těžkotavitelných kovů a slitin.

Chemické vlastnosti atomárního vodíku jsou zintenzivněnými vlastnostmi vodíku molekulárního. Jeho reaktivita, redukční působení a exotermická povaha jeho reakcí jsou podstatně zesílené. Za laboratorní teploty podléhá mnohým reakcím, kterým molekulární vodík podléhá až při teplotách značně vyšších, a dokonce i reakcím, jež s molekulárním vodíkem prakticky vůbec neprobíhají. V chemii se traduje představa, že atomární vodík se tvoří též v roztocích při redukci

\[\text{H}^+ + e^- = \text{H} \]

tedy např. při rozpouštění kovového zinku v kyselině chlorovodíkové:

\[\text{Zn} + 2 \text{HCl} = \text{ZnCl}_2 + 2 \text{H} \]

Předpokládá se, že přechodně vzniklý atomární vodík, nazývaný „vodík ve stave zrodu“\(^1\), je přičinou známého mohutného redukčního působení takovýchto systémů. Novější výzkumy tomu však nenávštěvují. Spíše se zdá, že silně redukujícím čidlem je povrch rozpouštěného kovu. Atomární vodík se sice reakcí tvoří, ale rychle se rekombinuje a ke zvyšenému redukčním vlastnostem takovéhoto systému přispívá jen málo.

10.2 HYDRIDY A HYDRIDOVÉ KOMPLEXY

Název „hydridy“ se používá v širším slova smyslu k označení binárních sloučenin vodíku se všemi ostatními prvky. Mnohé z hydridů mají značný průmyslový význam.

Je účelné seznámit se s klasifikací hydridů podle charakteru jejich vazby. Takovéto třídění nám umožní porozumět hlavním rysům chemického chování těchto látek a pochopit je jako následek způsobu vazby v nich se uplatňující. Základní rozdělení hydridů podává formou periodické tabulky

\[\text{He} \quad \text{Li} \quad \text{B} \quad \text{C} \quad \text{N} \quad \text{O} \quad \text{F} \quad \text{Ne} \]

\[\text{He} \quad \text{Ne} \]

\[\text{Be} \quad \text{Mg} \quad \text{Al} \quad \text{Si} \quad \text{P} \quad \text{S} \quad \text{Cl} \quad \text{Ar} \]

\[\text{Na} \quad \text{K} \quad \text{Ca} \quad \text{Sc} \quad \text{Ti} \quad \text{V} \quad \text{Cr} \quad \text{Mn} \quad \text{Fe} \quad \text{Co} \quad \text{Ni} \quad \text{Cu} \quad \text{Zn} \quad \text{Ga} \quad \text{Ge} \quad \text{As} \quad \text{Se} \quad \text{Br} \quad \text{Kr} \]

\[\text{Rb} \quad \text{Sr} \quad \text{Y} \quad \text{Zr} \quad \text{Nb} \quad \text{Mo} \quad \text{Ta} \quad \text{Re} \quad \text{Os} \quad \text{Ir} \quad \text{Pt} \quad \text{Au} \quad \text{Hg} \quad \text{Pb} \quad \text{Bi} \quad \text{Po} \quad \text{At} \quad \text{Xe} \]

\[\text{Cs} \quad \text{Ba} \quad \text{La} \quad \text{Hf} \quad \text{Ta} \quad \text{W} \quad \text{Re} \quad \text{Os} \quad \text{Ir} \quad \text{Pt} \quad \text{Au} \quad \text{Hg} \quad \text{Tl} \quad \text{Rn} \]

\[\text{Fr} \quad \text{Ra} \quad \text{Ac} \quad \text{Obr. 10.1. Základní rozdělení hydridů prvků podle charakteru vazby} \]

\[^1 \text{ Latinsky „in statu nascendi“, proto těž označení „nascennti vodík“}. \]

219
tabulky obr. 10-1. Lze rozeznat skupiny *iónových* hydridů, skupinu hydridů přechodných kovů s převážně *kovalentním* charakterem vazby a posléze skupinu hydridů *korelaminých*. Vzácné plyny hydridy netvoří.

Vedle binárních hydridů existuje ještě pestrá a významná skupina *uvz, komplexních* hydridů. Jsou to koordinační sloučeniny, v nichž funkci všech nebo části ligandů zastává hydridový anion \(H^- \), resp. přenesí atom vodíku v oxidačním stavu \(H^+ \).

- **Iontové hydridy**

Krástalové měďky iontových hydridů jsou vystaveny z kationtů sílně elektropozitivního kovu (kovy alkalicke a kovy alkalicke zemín) a z aniontů \(H^- \). Podíl kovalentnosti v těchto sloučeninách není velký.

Iontové hydridy lze nejlépe připravit přímou syntezou z prvků. Nejčastěji se postupuje tak, že se rozptýlený kov syti při vyšších teplotách plynným vodíkem. Všechny iontové hydridy jsou látky bezbarvé a krystalické, mají tedy typický vzhled iontových sloučenin. Hydridové iony patří mezí mimořádně silná redukční činitel.

Využívají elektronky reakci

\[
2H^+ = H_2 + 2e^{-}
\]

Prudce reagují s vodou, neboť redukují vodíkové kationty na elementární vodík. Poněvadž současně se ionty \(H^- \) oxidují na vodík, probíhá reakce s vodou podle jednoduché rovnice

\[
H^- + H_2O = H_2 + OH^-
\]

Některé iontové hydridy se v důsledku této silně exothermické reakce na vlhkém vzduchu samovolně zapalují.

LiH a CaH	extsubscript{2} se používají jako sílná redukční činitel v preparativní chemii (při práci v nevodných rozpuštědlech) a těž odstranění stop vlhkosti z některých rozpouštědel.

- **Kovaletní hydridy**

Kovaletní charakter vazby nacházíme u sloučenin vodíku se všemi nekovy a polokovy a těž s některými nepřechodnými kovy. Názorně vymezuje oblast těchto sloučenin v periodickém systému obr. 10-1. Většina těchto sloučenin má charakter nízkomolekulárních látek s polární kovaletní vazbou bez vodíkem a prvkem. Přitom vodíku přísluší kladné oxidační číslo (1)1.

Typickými představiteli těchto látek jsou halogenovodíky, chlorkovodíky a daleké \(NH_3, PH_3, AsH_3, SbH_3 \). Je těž dát sem i všechny uhlovodíky a také \(SiH_4, GeH_4 \). Převážně kovaletní charakter mají též \(SnH_4, PbH_4 \) a \(BiH_3 \).

Přechodný iontové kovaletní charakter vazby předpokládáme u BeH\textsubscript{2} a MgH\textsubscript{2}. Jejich monomerové molekuly by byly elektronově deficitní (neměly by vytvořené elektronové oktety), a proto polymerují. Se zřetelem k nedostatku elektronů se tvoří struktury, v nichž trojice atomů jsou vžády prostřednictvím jediného elektronového páru (třístředová dvoelektronová vazba). Hydrid beryllnatý má např. strukturu řezůcích:

\[
\begin{array}{c}
\text{BeH}_3
\end{array}
\]

\[
\begin{array}{c}
\text{BeH}_4
\end{array}
\]

\[
\begin{array}{c}
\text{BeH}_5
\end{array}
\]

1) Tuto skutečnost vyjádříme i v názvového tím, že v konkrétním názvu sloučeniny používáme místo slova hydrid (názvuvačencího přítomnosti iontu \(H^- \)) bud triviální názvy (fluorovodík, chlorovodík, jodovodík, ...) nebo označení koncovkou "-an (arstian, fosfian, sulfan, plumban,...).
Obdobná situace nastává u boranů, jenže pestrost ve tvorbě třístředových vazeb je zde větší než u BeH₂ a MgH₂. Při výkladu chemie boru se proto zmínime o těchto zajímavých a významných sloučeninách podrobněji a uvedeme jejich přesnější vazebnou charakteristiku. Do skupiny polymericích kovalentních hydrídů lze řadit sloučeniny vodíku s Al (alany) a Ga (gallany).

Většina polymerických hydrídů jsou látky tuhé. Jen ty z nich, u nichž stupeň polymerace je nízký a jejích molekuly nemají velkou relativní molekulovou hmotností (H₂H₂, H₂H₄, Ga₃H₆, aj.), jsou za laboratorní teploty plynné nebo kapalné.

Naproti tomu všechny kovalentní molekulové hydridy jsou látky velmi těkavé. U nejpolárnějších z nich (HF, H₂O) je těkavost ponekud snížována přítomnosti mezimolekulové vazby vodíkovým můstkem.

Kovalentní hydridy jsou, až na výjimky, dalšky spíše redukčními než oxidačními prostředky:

\[
\begin{align*}
2 \text{HI} + \text{H}_2\text{O} & = 2 \text{H}_2\text{O} + \text{I}_2 \\
2 \text{H}_2\text{S} + \text{O}_2 & = 2 \text{H}_2\text{O} + 2 \text{S}
\end{align*}
\]

Redoxní vlastnosti hydrídů nekovů souvisí se snadnou oxidovatelností elektronegativních částí molekul (I⁻, S⁻, ...), nikoli s redoxními vlastnostmi atomu H⁺. Ovšem k silným redukciadům se může vodík H⁺ chovat jako oxidovadlo:

\[
\begin{align*}
2 \text{Na} + 2 \text{H}_2\text{O} & = 2 \text{NaOH} + \text{H}_2 \\
\text{Mg} + 2 \text{HCl} & = \text{MgCl}_2 + \text{H}_2
\end{align*}
\]

Mnohé z kovalentních hydrídů mají značný průmyslový význam a použití (H₂O, HCl, NH₃, aj.).

- **Kovové hydridy**

Okraje oblastí kovových hydrídů, jak ji vzniká obr. 10-1, jsou tvořeny hydridy přechodného typu. V hrubých rýsech lze říci, že hydridy kovů skupiny 3A, 4A a 5A jsou přechodem mezi iontovými a kovovými hydridy a hydridy 2B, 3B a snad i 1B tvoří jakýsi přechod k polymerům hydrídům kovalentním.

Hydridy s kovovým charakterem vazby jsou všeměs netěkavé látky kovových vlastností. Jsou elektriky vodivé nebo jsou polovodiče. Přesto, že o kovových materiálech tuhote typu bylo již získáno velmi mnoho poznatků, nejsou ještě dostatečně poznávány. Poznání struktury a vlastností těchto látek přispívá k porozumění podstatě některých katalytických procesů (katalytická hydrogenace).

- **Hydridové komplexy**

Hydridové komplexy jsou sloučeniny, které formálně obsahují iony H⁻ koordinované na ionty kovů. Samozřejmě, že tato koordinace vazba má charakter obecně spíše kovalentní, avšak vždy je polární, úměrné rozdílu elektronegativit částic a prvku.

Hydridové komplexy slouží pro svou poměrnou stálost jako silné redukční činidla. Největší použití mají Li[AlH₄]₂, Na[BH₄] a K[BH₄], neboť jsou rozpuštěné v organických rozpouštědlech (eterech). Reakce hydridových komplexů s vodou (zejména okyselkovanou) je velmi prudká a může mít i explozivní charakter.¹

\[4\text{H}_2\text{O} + [\text{BH}_4]^- \rightarrow 4\text{H}_2 + \text{M(OH)}_3 + \text{OH}^- \]

Vysloveně iontové hydridové komplexy jsou krystalické látky; některé kovalentní hydridové komplexy jsou kapaliny.

Zajímavou a dojmuto prozkoumanou skupinou sloučení tvorí hydridové komplexy přechodných kovů. Jde bud o očkování s jediným druhem ligandu (např. [ReH₂]²⁺), nebo častěji o smíšené hydridové komplexy (např. [FeH(CO)₅]⁻, [Re(C₅H₅)₂H]) Je pozoruhodné, že mnohé z těchto sloučení mají velmi významné katalyztické účinky. Období technického využití těchto látek teprve začíná.

10.3 VODA

Voda je nejběžnější a přitom nejvýznamnější kovalentním hydridem. Má závažnou úlohu v geochemii, geologii, klimatologii, v biochemii, v samotné chemii i v dalších vědách, ale zejména v průmyslu a technice.

Rozmanitost a specifitnosti svého chemického chování nemá mezi ostatními sloučeninami obdobu.

- Vazba v molekule vody

Experimentálně bylo zjištěno, že molekula vody je lomená, s úhlem vazby HOH = 104,5° a délkou vazby O—H 96 pm. Její atomovou konfiguraci lze dobře objasnit hybridizací SP² na středovém atomu kyslíku a překryvem dvou ze čtyř vzniklých HAO s orbity 1s obou atomů vodíku. Tato představa, předpokládající lokalizovaný charakter obou vazeb O—H, je prostorově znázorněna na obr. 10-2.

![Diagram molekul vody](image)

Obr. 10-2. Vazba v molekule vody. a) Prostorová představa; b) diagram MO

¹) Prudce reagují s vodou a zapalují se na výdechu především kovalentní hydridové komplexy [Al[BH₄]₃], UF[BH₄]₄. Výrazně iontové hydridové komplexy (např. Na[BH₄]) se hydrolyzují jen zvolně. V alkalickém prostředí se muže jejich hydrolyza dokonale zastavit (lze připravit vodné roztoky Na[BH₄]).

222
Na obrázku je současně uveden diagram MO odpovídající tomato výkladu vazby. Dva obsazené orbitaly σ_{2p}^x a tvoří dvojici vazeb O—H. Dva hybridizaci vytvořené orbitaly sp³ na atomu kyslíku jsou obsazeny dvěma páry elektronů, mají nevazebný charakter a ke vzniku vazby energeticky neprispívají.

Tento výklad vazby v molekule vody je postačující a vyhovující při objasňování některých jejích vlastností. Jak jste však již dříve v poznámkách uvedli, teorie MO ve své klasičtě podobě pracuje s představou delokalizovaných (polycentrických) vazeb (molekulových orbitalů) a objasňuje elektronové konfigurace molekul, aniž zavírá pojem hybridizace (str. 105).

Molekula vody je nejednoušitím případem, na kterém lze demostrovat podstatu tohoto postupu. Tento alternativní (a přesněji) výklad vazby v molekule vody nyní uvedeme. Použijeme k tomu náčrtky na obr. 10-3.

Obr. 10-3. Popis vazby v molekule vody představeno delokalizovaných MO.

a) Umístění skelenu atomů do součástného systému;

b) grafické znázornění AO účastnicích ve vazbě;

c) delokalizované MO vzniklé kombinací východících AO (prostorová představa). Sražením jsou znázorněny „lásky“ s kladným znaménkem vlnové funkce;

d) diagram MO molekuly vody
Způsob umístění součetného systému do atomového skeletu molekuly vody znázorňuje část a na obr. 10-3. Do jedna atomu kyslíku je umístěn počátek: rovina molekuly určená atomy H, H a O je totožná s rovinou určenou osami x a z. Osa z přilší úhel s OH. Část b téhož obrázku schematicky znázorňuje AO všech tří zúčastněných atomů. Tyto AO je treba použít při vyhledávání vznikajících vazebných překryvů. Jsou to dva orbitaly 1s obou atomů vodíku a dál orbitaly 2s, 2p_x, 2p_y a 2p_z, kyslíku.

Jednoduchá geometrická představa a pravidla výběru a připustnosti jednotlivých kombinací z hlediska symetrie zúčastněných AO nás vedou k formulaci řesti MO (\(\psi_1\) a \(\psi_2\)). Vzniklé MO jsou symbolicky znázorneny v části c obr. 10-3 jako kombinace původních AO. Kontakt „jedlů“ se stejnými znaménky vedle je vzniku vazebných MO, s opačnými znaménky ke vzniku nevazebných MO. Překryv je nyní delokalizovaný, vznikly průnikem AO všech tří zúčastněných atomů.

Čtyři páry elektronů obsazují orbitaly \(\psi_1\) a \(\psi_2\), vzniklé molekuly. Elektronové páry na orbitaly \(\psi_1\) a \(\psi_2\) působí vazebně a přispívají (oba současně) ke tvořbě dvojice vazeb H–O–H.

Orbital \(\psi_1\) má jen slabé vazebný charakter a představuje vlastne jeden z „nevazebných“ elektronových pář na atomu kyslíku. Ztečené nevazebné charakter má elektronový pár na orbitalu \(\psi_2\). Tento orbital je totožný s orbitalem 2p_x atomu kyslíku, který se neuchází překryv v důsledku své nevhodné prostorové orientace.

Na obr. 10-3, v jeho části znázorňující diagram MO, je k označení orbitalů \(\psi_1\) a \(\psi_2\), použito symbolů tvořených kombinací písmen a, b s číselnými indexy 1, 2. Pomoci této symboliky je vyjadřována symetrie orbitálů. 1)

Rozdíl elektronegativit O a H je přičinou polárního charakteru vazeb H–O–H. Ponevadž molekula má lomený tvar, dává vektorový součet dipolových momentů obou vazeb nemalou hodnotu a molekula vody má značné velký permanenční dipól.

Struktura ledu a kapalné vody

Molekuly vody mají tendenci asociovat do takových geometrických uskupení, při nichž je počet vodíkových mostků, vytvářených mezi molekulami vody, maximální. Znamená to, že každá dvojice molekul vody, které se dostanou do těsné blízkosti k sobě, dává přednost takové vzájemné orientaci, při níž se atomy vodíku jedné molekuly dostávají do oblasti nevazebných elektronových párů atomu kyslíku druhé molekuly (obr. 10-4).

1) Tento pravidlo se zde nebudeme bližší zabývat, neboť jejich výklad předpokládá předběžnou matematickou přípravu z matematického počtu a teorie grup.

2) Symbolem a se označují orbitaly symetrické a symbolem b orbitaly antisymetrické k otočení kolem osy C_2 ježí ve svou druhé ose z. Číselné indexy 1 a 2 rozlišují symetrické a antisymetrické chování orbitalů k rovině symetrie určené osami x a z.
Výsledkem takovýchto asociací je struktura ledu nebo kapalná voda. V uspořádání hexagonální mřížky ledu (obr. 10-5) má každý z atomů kyslíku kolem sebe čtyři další kyslíkové atomy ve zcela pravidelné tetraedrické konfiguraci (αKOO = 109,5°, O-O-O = 276 pm). Atomy kyslíku ovšem nejsou spojeny chemickou vazbou, nýbrž prostřednictvím vodíkových městek. Atomy vodíku leží na spojnících atomů kyslíku, a to tak, že každý kyslík má dva ze čtyř jej obklopujících atomů vodíku ve vzdálenosti 100 pm, zbylé pak ve vzdálenosti 176 pm. Led vytváří při odlišných fyzikálních podmínkách (vysokých tlacích) ještě dalších šest modifikací. Jejich struktury jsou blízké uvedené hexagonální mřížce a liší se od ni jen určitými deformacemi.

Z obrázku znázorňujícího strukturu ledu je vidět, jak velké volné prostory se v jeho krystalové mřížce vyskytují. Nepřekvapuje proto, že led má velmi malou hustotu, menší než kapalná voda.

Obr. 10-5. Struktura ledu

Obr. 10-6. Struktura vody

U kapalné vody již neexistuje pravidelná hexagonální mřížka. Vyskytují se v ní pouze v průměru sedmice členěné asociáty molekul vody s dosti kompaktní oktaedrickou strukturou (obr. 10-6). Tyto struktury jsou ovšem značně variabilní, molekuly vody mezi jednotlivými asociáty neustále fluktuují, takže znázorněné uskupení lze chápat pouze jako rovnováhu, statisticky nejpravděpodobnější vzájemnou orientací šestce molekul vody.

- Chemické vlastnosti vody
 Voda patří mezi nejstálější chemické sloučeniny. Její tepelný rozklad na prvky
 \[2 \text{H}_2\text{O} = 2\text{H}_2 + \text{O}_2 \]
je endotermická reakce a má rovnoměřnou posunutu úplně doleva. Teprve při velmi vysokých teplotách a sníženém tlaku se termické řešení stává postulemným\(^1\).

Oxidačně-redukční vlastnosti vody jsou velmi nevyznamné. Pouze silná redukovačka vodu (přesnější atomy H\(^{+}\)) redukuje na elementární vodík. Soli chromaté, sodík a těž rozhazovaný uhlík (koks) reagují s vodou podle rovnice

\[
2\text{Cr}^{3+} + 2\text{H}_2\text{O} = 2\text{Cr}^{2+} + \text{H}_2 + 2\text{OH}^{-}
\]

\[
2\text{Na} + 2\text{H}_2\text{O} = 2\text{Na}^{+} + 2\text{OH}^{-} + \text{H}_2
\]

\[
\text{C} + \text{H}_2\text{O} = \text{H}_2 + \text{CO}
\]

Spíše výjimečné může být voda oxidována na elementární kyslík. Oxidační přítom podléhají atomy O\(^{=8}\). Příkladem může být reakce vody s extrémně silným oxidovačem – fluor.\(^2\)

\[
2\text{H}_2\text{O} + 2\text{F}^{-} = 4\text{HF} + \text{O}_2
\]

nebo anodická oxidace vody vyjádřená elektrodovou reakcí

\[
4\text{OH}^{-} = \text{O}_2 + 2\text{H}_2\text{O} + 4\text{e}^{-} \quad \text{[příjímá anoda]}
\]

Velmi významné jsou acido-bazické vlastnosti vody. Molekula vody má schopnost přijmout nadbytečný proton uvolněný jinou částicí a měnit se na hydroxoniový ion H\(_3\)O\(^+\):

\[
\text{H}_2\text{O} + \text{H}^+ = \text{H}_3\text{O}^+
\]

V naopak však může těž protony uvolňovat a měnit se na ion OH\(^-\):

\[
\text{H}_2\text{O} = \text{OH}^- + \text{H}^+
\]

Oba děje jsou vratné. V prvním je přijem protonu, a je tedy zásadou, ve druhém připadá se chová jako kyselina, neboť proton uvolňuje. Molekuly vody tedy mají vlastnosti kyseliny i zásady. V kapalné vodě dokonce dochází k usamostatnění rovnováhy děje.

\[
\text{H}_2\text{O} + \text{H}_2\text{O} = \text{H}_3\text{O}^+ + \text{OH}^-
\]

který se nazývá autolýza. Vody, Tento děj je projevem acidobazických vlastností vody. Je třeba zdůraznit, že při acidobazických dějích se plesouvané protony ve vodních roztocích nikdy nevyskytují jako samostatné částice, nýbrž jsou vždy zachyceny molekuly vody ve smyslu rovnice

\[
\text{H}_2\text{O} + \text{H}^+ = \text{H}_3\text{O}^+
\]

nebo ve smyslu rovnice

\[
\text{H}^+ + \text{OH}^- = \text{H}_2\text{O}
\]

spojen s ionem OH\(^-\) na neutrální molekulu vody. Výkladu acidobazických dějů ve vodních roztocích, procesům elektrolytické disociace ve vodě a jevům hydrolyzy budou věnovány zvláštní kapitoly.

Voda v technice a průmyslu

Voda vyskytuje se v přírodě není nikdy čistou látkou. Vždy je více nebo méně znečištěna přítomností rozpuštěných nebo i heterogeny rozptýlených látek minerálního nebo biologického původu. Vedle kontaminace vzniklé střikem vody s přírodními materiály se s rozvojem civilizace stále více projevuje znečištění vod, které je důsledkem činnosti člověka. Voda z přírodních zdrojů proto může též obsahovat rozpuštěné a necelopoustěné anorganické i organické látky, se kterými se manipuluje při běžné denní činnosti, v průmyslové a zemědělské výrobě, a dále též látky, jež jsou odpadem ze všech těchto oblastí.

\(^1\) Při teplotě 2100°C a tlaku 0,1 MPa jsou termicky rozštěpěna asi 2% molekuly vody ve vodní páře.

\(^2\) Vzniklý kyslík obsahuje též ozon O\(_3\).
Podle upotřebení se rozlišuje voda pitná a voda užitková. Městské vodovodní řady jsou zdrojem pitné vody, která je většinou současně užívána jako voda užitková. Užitková voda používaná v průmyslových závodech se nazývá průmyslová voda. Lze ji dále třídit na vodu energetickou (k napájení parních kotlů), chladiči (odvod tepla z výměníků aj.), technologickou (voda používaná např. jako rozpouštědlo ve výrobním procesu) a odpadní (průmyslová voda opouštějící provoz).

Problematikou a praktickým prováděním úpravy složení vod tak, aby kvalita a kvantita ve vodě přítomných komponent vyhovovala danému účelu jejího použití, se zabývá chemická technologie vody.

Častým požadavkem na kvalitu vody je snížení obsahu ve vodě rozpustných minerálií. Jde zejména o obsah solí vápenatých a hořčicatých, které podmiňují tzv. tvrdou vodu a jsou příčinou vytváření úsad (tzv. kotelinného kamene aj.). Soli sodné a draslé, nejsou-li přítomny v extrémním množství, obvykle většině způsobě použití vody nevadí.

Obsah vlhků lze snížit, je-li přítomen ve formě hydrogenuhličitanu, zahřátím vody (při tlaku 0,12 MPa na teplotu 105 °C), při němž dochází k reakci

\[
Ca(HCO_3)_2 = CaCO_3 + H_2O + CO_2
\]

a CaCO₃ se vylučuje jako úsada (tzv. změkkování vody varcem) ¹.

Jinou cestou je příklad Ca(OH)₂, NaOH, Na₂CO₃ či Na₃PO₄. Vápenaté i hořčicaté soli se po přidávání těchto látek vylučují jako prakticky nerozpustné CaCO₃, Ca₃(PO₄)₂, Mg(OH)₂ a Mg₆(PO₄)₂.

![Obr. 10-7. Symbolické vyjádření funkcí měnících iontů. Měnící iontů v náhradu za zachycené ionty Ca⁺⁺ uvolňuje do roztoku protony H⁺, jež se tímto hydratuji molekulární vody.](image)

Dalším požadavkem, kladeným zejména na kvalitu vody určené k napájení kotlů, bývá odstranění válcové části rozpuštěných plynných (O₂, CO₂), aby nepůsobily korozivně na kovový materiál zařízení. Odplyňování se nejlepší dosáhne varem vody při zvýšení tlaku anebo bez zahřívání evakuací prostoru nad povrchem vody, popř. při chemickou cestou.

Prakticky při jakémkoli použití se voda musí zbarvit heterogenních nečistot sedimentací nebo filtrací. Ke zvýšení učinnosti filtrace se velmi často využívá chemickou cestou s čistěné vody

¹ Mg(HCO₃)₂ takto reaguje jen zvolně a obtížně.
takové látky, jako je např. Fe(OH)$_3$, nebo Al(OH)$_3$, jež jsou schopny poutat do své voluminózní sráženiny přitomné nečistoty, látky zbarvující vodu a dokonce i bakterie.

Při přípravě pitné vody usilujeme o dosažení optimální tvrdosti vody a o dostatečné zmenšení obsahu železa, mangana a zejména dusičnanů a dalších látek, který by působili toxicky. Objevující pozornost se musí věnovat zmenšování obsahu patogenních mikroorganismů *dezinfeční* (chloraci, bromaci, ozonizaci pitné vody).

Zvláštní kapitolu v technologii vody tvoří čištění odpadních vod z městských aglomerací a průmyslových závodů, zejména chemických. Naléhavý požadavek, aby vodní toky a zdroje podzemní vody byly trvalou zásobnou kvalitní užitkové (a po úpravě i pitné) vody, si vynucuje čištění odpadních vod do takové míry, aby přirozený biologický mechanismus čištění odpadních vod nebyl přetěžován, popř. úplně porušen. Technologie čištění odpadních vod je samozřejmě pro každý okruh znečišťujících látek jiná.

- **Těžká voda**

Kromě nuklidem 1H (protium) je prvek vodík tvořen též nuklidem 2H = D (deuteriem). Deuterium je v malém množství přítomno v původní vodě jako sloučenina DHO a D$_2$O. Elektrolyzu vody se na katodě přeměňují na plný vodík především atomy 1H, kdežto deuterium zůstává ve formě uvedených sloučenin ve zbylém elektrolytu. Lze tak nakonec připravit čistou sloučeninu D$_2$O, zvanou těžká voda.

Těžká voda slouží v jaderné energetice jako látka zpomalující rychlé neutrony (moderátor). Používá se též při výzkumu konstituce látek obsahujících vodík metodami infračervené spektroskopie, a to tak, že se identifikují změny, které nastanou ve spektech těchto látek zánětnou některých atomů 1H atomy deutera 2H. Těžká voda je též využívána v experimentální biologii při studiu látkového metabolismu organismů.
11 Roztoky

Názvem roztoky se označují homogenní, nejméně dvousložkové soustavy látek (viz kap. 8). Při jejich klasifikaci lze přihlédnout např. ke skupenskému stavu složek systému. Omezíme-li se pro jednoduchost na systémy tvořené právě jen dvěma složkami, můžeme všechny kombinace skupenských stavů zúčastněných komponent vyjádřit graficky takto:

Kombinace označené 1, 2 a 3 představují typy roztoků, s nimiž se nejčastěji setkáváme v chemické praxi. Příkladem takovýchto soustav mohou být: roztok NaCl(s) v H₂O(l), roztok H₂SO₄(l) v H₂O(l) nebo roztok HC₂H₄O₂(l) v H₂O(l). Také kombinace 4 je zcela běžná, neboť zahrnuje všechny směsi plynů. Příkladem je roztok N₂(g) a O₂(g) ¹). Kombinace 5 a 6 jsou již méně frekventované. Nazýváme se tuhé roztoky. Jejich příkladem je tuhý roztok KClO₃(s) a KMnO₄(s) nebo roztok H₂(g) v Pd(s). Patří sem též dveusložková skla apod.

Podstatou rozpuštění látek je jejich vzájemné prostupení na molekulární úrovni, tedy pro-
míšení stavebních jednotek (molekul, iontů) původních složek. Nezřídka se přitom vytvářejí nová
vize či méně stálá volná uskupení (associaty) těchto stavebních jednotek.

Při úvahách o vzniku roztoků je závažná i otázka jejich kvantitativního složení, tedy zastou-
pení jednotlivých složek. Některé složky se vzájemně mísí neomezeně. Jejich smíšení při libovolném
relativním zastoupení vede ke vzniku homogenního roztoku. O takovýchto složkách říkáme, že je
kvantitativně vzájemně rozpuštěn (neomezeně) vzájemnou rozpuštěnost. Příkladem může být systém ethanol-voda
nebo libovolná směs plynů (všechny plyn je kvantitativně směsnou směsí) apod.

V jiných případech dochází k tomu, že složky poskytují homogenní systém jen v určitém
užívání či širším intervalu složení. Hovoříme o rozpuštěnosti omezené, o omezené míšitelnosti složek.
Příkladem mohou být systémy chlorid sodný-voda, jódid draselný-aceton apj.

Kvantitativní zastoupení složek v daném roztoku se odvíjí i v nomenklaturní oblasti.

¹) Nepřihlédně-li k dalším přítomným komponentám, je takovým roztokem vzduch.
Složka, která má největší relativní zastoupení v soustavě, označujeme obvykle za látku rozpuštějící, ostatní složky, které jsou méně zastoupené, se nazývají látky rozpuštěné. Často užívaný termín „rozpuštěné“ je v podstatě též označením rozpuštějící látky, používá se však jen pro rozpuštějící látky kapalné.

11.1 VYJADŘOVÁNÍ SLOŽENÍ ROZTOKŮ

Základní význam při kvantifikaci všech úvah o roztocích mají rozdílné způsoby vyjadřování relativního zastoupení složek v systému. Číslo charakterizující složení roztoků se nazývají koncentrace složek roztoků.

V chemické praxi se koncentrace vyjadřuje několika různými způsoby. Žádnému z nich nelze dát jednoznačnou a neomezenou přednost, neboť všechny v závislosti na typu chemického a technického výpočtu, představují neznačně barevné zjednodušení početní stránky postupu.

S doporučenými a rozšířeně užívanými způsoby vyjadřování koncentrací se nyní seznáme.

- **Hmotnostní a molární zlomek**

Zabývejme se systémem látek A, B, ..., které tvoří soustavu, jejíž složení chceme vyjádřit. Jsou-li \(m_A, m_B, ... \) hmotnosti složek A, B, ..., můžeme s jejich pomocí definovat hmotnostní zlomky \(w_A, w_B, ... \) pomocí vzťahů

\[
\begin{align*}
 w_A &= \frac{m_A}{m_A + m_B + \ldots} = \frac{m_A}{\sum_{i=A,B} \ m_i} \\
 w_B &= \frac{m_B}{m_A + m_B + \ldots} = \frac{m_B}{\sum_{i=A,B} \ m_i}
\end{align*}
\]

(11-1a)

Hmotnostní zlomky určitě komponenty je tedy definován jako podíl hmotnosti této komponenty a celkové hmotnosti roztoku. Je vceléhov bezrozměrnou. Součet hmotnostních zlomků všech složek směsi je roven 1:

\[
w_A + w_B + \ldots = \sum_{i=A,B} w_i = 1
\]

(11-1b)

Zcela analogicky jako hmotnostní zlomek je definován zlomek molární. Misto hmotností jej určují látková množství přítomných složek. Označme-li molární zlomky složek A, B, ... symbolem \(x_A, x_B, ... \) a látková množství složek symboly \(n_A, n_B, ... \), můžeme psát

\[
\begin{align*}
 x_A &= \frac{n_A}{n_A + n_B + \ldots} = \frac{n_A}{\sum_{i=A,B} n_i} \\
 x_B &= \frac{n_B}{n_A + n_B + \ldots} = \frac{n_B}{\sum_{i=A,B} n_i}
\end{align*}
\]

(11-2a)

Látková množství ve vztazích (11-2a) jsou dána podíly

\[
\begin{align*}
 n_A &= \frac{m_A}{M_A} \quad n_B = \frac{m_B}{M_B} \ldots
\end{align*}
\]

(11-2b)

kde \(m_A, m_B, ... \) jsou hmotnosti složek A, B, ... a \(M_A, M_B, ... \) — molární hmotnosti složek A, B, ...

Molární zlomek složky je tedy definován jako podíl látkového množství této složky v systému a součtu
látkačích množství všech složek ve směsi. Molarní zlomky jsou opět bezrozměrná čísla a splňují podmínku
\[x_A + x_B + \ldots = \sum_{i=A,B,\ldots} x_i = 1 \] (11-2c)

Z uvedeného vyplývá, že jak hmotnostní, tak molarní zlomky látek ve směsich nabyvají hodnot od 0 do 1. Má-li hmotnostní či molarní zlomky hodnoty ≈ 0, znamená to, že látku není ve směsi přítomna, hodnoty naopak dosahují zlomky tehdý, je-li složka ve směsi přítomna sama\(^1\).

Často se hmotnostní, resp. molarní zlomek vyjadřuje v procentech (např. \(w = 0.23 = 23\% \), nebo \(x = 0.01 \)). Takto vyjádřený údaj se někdy nesprávně označuje jako „hmotnostní procento“, resp. „molarní procento“ a ve výpočtech se navíc často zaměňuje s čištinou hodnotou stejné před symbolem „%“. Údaj např. 23\% (pisán také někdy jako 23 hmotn.“%”, resp. 23 mol.%) je jen jedním ze způsobů vyjádření hmotnostního, resp. molarního zlomku.

Oběma uvedenými způsoby vyjadřování složení roztoků se v chemické a zejména technické praxi běžně také určuje složení heterogenních soustav.

- **Látková číli molarní koncentrace**

K vyjádření koncentrací roztoků, především roztoků kapalných (tuhých, kapalných či plynných látek ve vodě apod.) se velmi často používá tzv. látkové koncentrace komponenty v roztoku.

Látková koncentrace komponenty v roztoku je definována jako podíl látkového množství rozpuštěné látky a objemu vzniklého roztoku. Pro koncentraci \(c_A \) komponenty A v roztoku platí vztah

\[c_A = \frac{n_A}{V} = \frac{m_A}{M_A V} \] (11-3)

kde \(n_A \) je látkové množství komponenty A v roztoku, \(V \) – celkový objem roztoku, \(m_A \) – hmotnost komponenty A v roztoku a \(M_A \) – molarní hmotnost komponenty A v roztoku. Hlavní jednotkou látkové koncentrace je mol m\(^{-3}\), avšak v praxi se nejčastěji užívá jednotky mol dm\(^{-3}\).

Je třeba zdůraznit, že pro označení látkových koncentrací se velmi často užívá též název „molarní koncentrace“.

Zdá se, že v budoucnu nalezne při chemických výpočtech významné použití vyjadřování složení systému pomocí tzv. rel ativních látkových (molarních) koncentrací. Relativní látková koncentrace je definována jako číslo, které vyjadřuje, kolikrát je daný roztok koncentrovanější než roztok obsahující 1 mol látky v 1 dm\(^3\) roztoku. Číselně je relativní látková koncentrace totožná s hodnotou látkové koncentrace, avšak je bezrozměrná. Užití relativních látkových koncentrací proto velmi zjednodušuje některé fyzikálně chemické rovnice.

- **Molalita**

Zejména v chemickém inženýrství má (např. při bilančních výpočtech) rozšíření použití vyjadřování koncentrací složek systému veličinou zvanou molalita. Rozlišujeme molalitu hmotnostní a molalitu objemovou. Hmotnostní molalita je definována jako podíl látkového množství rozpuštěné látky a hmotnosti rozpouštědla. Pro rozpouštědanou látku A je hmotnostní molalita \(\mu_A \)

dána vztahem

\[\mu_A = \frac{n_A}{m_1} = \frac{m_A}{M_A m_1} \] (11-4)

kde \(m_1 \) je hmotnost rozpouštědla, ostatní symboly mají stejný význam jako u rovnice (11-3). Jednotka hmotnostní molality je mol kg\(^{-1}\).

\(^1\) Takováto „směr“ ovšem již není směš, ale chemickým individuem.
Objemová molařita je definována jako podíl látkového množství rozpuštěné látky a objemu rozpouštědla.

\[\mu_m = \frac{n_A}{V_i} = \frac{m_A}{M_A V_i} \]

(11.5)

kde \(V_i \) je objem rozpouštědla; ostatní symboly stejné jako u rovnice (11.3). Její jednotkou je mol m\(^{-3}\), resp. v praxi častěji užívaný mol dm\(^{-3}\).

- Jiné způsoby výjadřování koncentrace

Kromě již uvedenými způsoby se koncentrace složek v systémech někdy určují např. hmotnostními nebo moliárními poměry, hmotnostními poměry typu g rozpuštěné látky na 100 g roztoku, hmotnostní objemovými poměry typu g rozpuštěné látky na 100 ml roztoku aj. Jeich používání se však již nedoporučuje.

11.2 TVORBA ROZTOKŮ A JEJICH STRUKTURA

Uvedli jsme již, že při tvorbě roztoků dochází k vzájemnému prostoupení rozpuštěné a rozpouštějící látky na molekulární úrovni. Vzniklé situace si lze představit asi tak, jak ukazuje obr. 11.1.

První případ (obr. 11.1a) nastává tehdy, když rozpuštěná látku má nízkomolekulární charakter (str. 164) a v jejích molekulách se přitom uplatňuje nepolární nebo slabě polární kovalentní vazba. Molekuly takového látky mohou vstoupit do roztoku, aniž změní svou atomovou a v podstatě i elektronovou konfiguraci. V roztoku jsou obklopeny molekuly rozpouštědla a potají se

Obr. 11.1. Schematické znázornění chování látek při rozpouštění.

a) Látka je neelektrolyt, rozpouští se molekulárně;
b) látka je pravý elektrolyt, při rozpouštění se její ionty rozptylí mezi molekuly rozpouštědla;
c) látka je potenciální elektrolyt, její původně polární kovalentní molekuly se ionizují a rozptylí mezi molekuly rozpouštědla

232
s nimi slabými van der Waalsovými silami. Vzniklý systém je obvykle elektricky nevodivý. Látka, která se v rozpuštědle rozpuští tímto způsobem, se nazývá neelektrolyt, popř. se hovoří o látkě molekulárně rozpustné v daném rozpuštědle. Roztokům tohoto typu se říká roztoky neelektrolytů.

Jeho příkladem mohou být:

- Jod (I₂) v chloridu uhličitém
- Glukosa (C₆H₁₂O₆) ve vodě
- Benzen (C₆H₆) v toluenu
- Ethanol (C₂H₅OH) v methylethylketonu
- Kyslík (O₂) ve vodě
- Ethin (C₅H₈) v acetonu

Za druhý, odlučný případ považujeme, když rozpuštěná látky vytvoří s rozpuštědem systém, v němž je přítomna v ionizované formě a její ionty jsou rozptýleny mezi molekulami rozpuštědla. Takový roztok je v důsledku přítomnosti volné polohovlivých iontů elektricky vodivý. Látky, které se takto rozpuštějí, nazýváme elektrolyty.

Elektrolyty, jež jsou iontovými sloučeninami a u nichž dochází při rozpuštění pouze k rozpuštění kondenzovaného iontového systému a k rozptýlení iontů mezi molekuly rozpuštědla (obr. 11-1b), označujeme často jako **povodní elektrolyty**.

Elektrolyty, které mají molekulární strukturu a jsou v kondenzovaném skupenském stavu přítomny v podobě molekul s polární kovalentní vazbou, vstupují do roztoku poněkud složitějším dějem (obr. 11-1c). Nejprve se jejich molekuly rozpadnou za vzniku iontů a teprve potom se vzniklé ionty rozptýlí mezi molekuly rozpuštědla. Takovým látkám se říká **potenciální elektrolyty**.

Příkladem roztoku pravých elektrolytů může být jakýkoliv systém tvořený iontovou látkou (sol) a dostatečně polárním rozpouštědlem:

- Na₂SO₄(s) ve vodě
- KI(s) v acetonu

Roztokem potenciálního elektrolytu je např.:

- HCl(g) ve vodě
- H₂SO₄(l) ve vodě

Rozpad povodní struktury pravých i potenciálních elektrolytů na systém volné rozptýlených iontů v roztoku se nazývá **elektrolytická disociace** těchto látek.

Uvedený děj byl poznán a principálně objasněn již v minulém století (Arzhenias 1887). A i když dnes víme, že skutečné struktury vznikajících roztoků je poněkud komplikovanější a při jejím popisu užíváme složitější teoretické přístupy, považujeme povodní představy za síce zjednodušené, ale v podstatě pravdivý obraz skutečnosti.

V celém dosavadním výkladě jsme měli na mysli pouze roztoky, které vznikají rozpuštěním tuhé, kapalné či plynné látky v kapalném rozpouštědle a po svém vzniku si kapalné skupenství dále zachovávají. Takové systémy jsou v chemické praxi nejběžnější, a jimi se proto budeme v dalších odstavicích zabývat. Jen stručně se zmíníme o situaci při vzniku plynných roztoků a tzv. tuhých roztoků.

V roztocích plynů (každá směs plynů je jejich homogenním roztokem) dochází za běžných teplot pouze k molekulárnímu rozptýlení zčástencených složek, ionty v těchto systémech nejsou přítomny a plyny se teky při vzájemném rozpuštění chovají jako neelektrolyty. Výrazně zvýšení teploty, popř. elektrický výboj, radioaktivní záření apod. však mohou v plynové fázi i v jejich směsích vyvolat ionizační procesy. Za extrémních teplot se může vytvořit spontánně ionizovaný plyn – plazma.
Mnohem pestřejší možnosti jsou u tuhných roztoků. Z jednodušeně lze říci, že u tuhných systémů může dojít k rozptýlení „rozpuštěné“ látky jak v ionové formě, tak i ve formě molekulelního nebo atomového. Přitom se tato látku může rozptýlit do „rozpuštějící“ látky tak, že její stavební jednotky (iony, molekuly, atomy) nahradí některé stavební jednotky v míře „rozpuštědla“ nebo vsupojí do mezer mezi stavebními jednotkami v míře „rozpuštědla“. Může se také stát, že zaniká pravidelné uspořádání obou výše zmíněných látek za vzniku nové, odlišné struktury, nebo že vzniklý tůný roztok má amorfní sklovitý charakter, vyzařující se velmi nízkým stupněm uspořádání stavebních jednotek systému.

Roztoky elektrolytů

Procesy elektrolytické disociace v kapalných roztocích mají rozpuštěný charakter a mohou být v dobrem přibližení kvantitativně popsány pomocí jednoduššího pojmu elektroplánku a početního aparátu.

Označí-li se elektrolyt obecným vzorcem BA, kde B je elektropozitivní a A — elektronegativní část molekuly, lze psát rovnici disociace elektrolytu:

\[BA \rightarrow B^+ + A^- \]

Rovnováha děje je určena tzv. disociační rovnovážou konstantou \(K_d \):

\[K_d = \frac{[B^+][A^-]}{[BA]} \]

(11-6)

Ve vztahu vyjadřuje hranaté závorky aktuální (skutečné, okamžitě) látkové koncentrace vyznačených částí. Poněvadž při disociaci molekuly (vzorcové jednotky) elektrolitu BA vzniknou podle uvedené reakce rovnice jeden kation B⁺ a jeden anion A⁻, platí podmínka \([B^+] = [A^-] \).

Zavedeme-li pojem tzv. disociačního stupně elektrolytu a, definovaného jako poměr látkového množství elektrolytu, který v jednotce objemu roztoku podlehl disociaci, a látkového množství veškerého elektrolytu, který byl do objemu roztoku vnesen, můžeme psát

\[a = \frac{[B^+]}{c_{BA}} = \frac{[A^-]}{c_{BA}} \]

(11-7)

Látkové koncentrace \([B^+]\) resp. \([A^-]\) jsou totálně s počtem molů disociovaného elektrolytu v jednotce objemu a \(c_{BA} \) je původní (tzv. analytický) látková koncentrace veškerého elektrolytu. Koncentrace \(c_{BA} \) se samozřejmě skládá z podílu elektrolytu, který disocioval \((a) \) a z podílu nedisociovaného elektrolytu, vyjádřeného koncentrací \([BA]\). Platí tedy vztahy

\[[B^+] = [A^-] = c_{BA}a \quad [BA] = (1-a)c_{BA} \]

(11-8)

Dosadíme-li ze vzorců (11-8) výrazy pro aktuální koncentrace do vztahu (11-6), získáme

\[K_d = \frac{c_{BA}a^2}{1-a} \]

(11-9)

\[1) \] Je tomu tak u každého tzv. uni-univalentního elektrolytu, např. u NaCl (disociove podle rovnice \(NaCl = Na^+ + Cl^- \)). V jiných případech je stochiometrie složitější a musí být do těchto úvah zavedena. Například CaCl₂ je elektrolyt bi-univalentní a disociove podle rovnice

\[CaCl₂ = Ca^{2+} + 2Cl^- \]

As₂S₃ je tri-bivalentní elektrolyt (velmi málo rozpuštěný) a disociove podle rovnice

\[As₂S₃ = 2As^{3+} + 3S²⁻ \]

234
což je Ostwaldova rovnice. Tato kvadratická rovnice vyjadřuje závislost disociačního stupně z na koncentraci c_{BA} elektrolytu. Disociační konstanta K_a je přitom veličinou specifickou pro každý elektrolyt (za daných fyzikálních podmínek a pro jeho kombinaci s určitým rozpouštědlem) a lze ji experimentálně stanovit.

Disociační stupně z v závislosti na druhu elektrolytu a na jeho koncentraci v roztoku nabývá hodnot v intervalu $<0,1>$. Jestliže $z = 0$, je látkà BA nedisociována; lze též říci, že nulová hodnota z odpovídá situaci, kdy látkà je neelektrolytem. Naproti tomu při $z = 1$ je veškerý elektrolyt disociovan.

Elektrolyty, které disocuji jen částečně (hodnota z je mnohem menší než 1), se obvykle nazývají slabé a elektrolyty disocujiící spontánně (hodnota z se blíží 1) se nazývají silné.

Do skupiny slabých elektrolytù patří všechny slabé organické i anorganicke kyseliny a zásady. Prakticky všechny tyto látky mají původnì kovalentní charakter vazby, a jsou tedy potenciálnìmi elektrolyty.

Skupinu silných elektrolytù tvoří především téměř všechny soli anorganických i organických kyselin (iontové složení) a dále tìž silné anorganické i organické kyseliny a zásady. Některé z těchto látek jsou elektrolyty potenciálními, jiné pravými.

Vztah (11-9) může být pro případ roztoku slabého elektrolytu (tak koncentrovaného, že $z \rightarrow 0$) ještì upraven tím, že se z vede jednìcky ve jménovateli zlomku zanící. Pak bude

$$z = \frac{K_a}{\sqrt{c_{BA}}} \quad \text{(11-10)}$$

Tato rovnice (zvaná rovnice Kolbasa) velmi názorně ukazuje, že zanedlìnìm (zmenšovánìm koncentrace c_{BA}) roztoku elektrolytu vždy stoupá hodnota disociačního stupnì z.

Solvatace iontù

Iony vzniklé elektrolytickou disociací a rozptýlené mezi molekulou rozpouštìda nejsou k témtì obklopujícím je částicí prakticky nikdy indiferentní. Elektrostatický náboj iontu způsobuje, že polární molekuly rozpouštìda se kolem nich v důsledku elektrostatické ion-dipolové interakce orientují do některých preferovaných poloh. Tyto optimální (rovnovážnì) orientace monopolu a dipolu (iontu a molekuly rozpouštìda) ukazuje obr. 11-2.

Vedle ion-dipolové interakce se mezi iontem a molekulou rozpouštìda mohou uplatnit tìž elektrostatické interakce mezi vzájemnì indukovanými dipoly (str. 145) a zamjenì tìž může dojít k hluším vazebným interakcím za vzniku koordinační, donor-akceptorové vazby (str. 13) (2). Anioni se mohou za příznivých okolností poustat k rozpouštìdu více nebo ménì vyvinutou vazbou vodíkovým mástekem. Všechny tyto efekty většinì elektrostatických interakcí jednak orientují molekuly rozpouštìdu, jednak je nutno k vzniklým iontùm.

Zjednodušenì lze říci, že ionty jsou vždy v roztocích obklopeny molekulami rozpouštìda. Tento jev se nazývá solvatace iontù (ve vodných roztocích se hovoří o hydrataci).

![Obr. 11-2. Energeticky nejvyhodnìjší vzájemné polohy monopolu a dipola. Orientace dipolu: a) ke kationtu, b) k aniontu](image)

1) Podle hodnoty a roztoku elektrolytu o koncentraci přibližnì 0,1 mol dm$^{-3}$.
2) Podrobné bude interakce tohoto druhu vysvìtlìna při výkladu vazby v koordinačních složcích.
V bezprostřední blízkosti iontů vzniká nová struktura vzájemného uspořádání molekul rozpoštědla. Tato zóna se nazývá **primární solvatační sféra**. Molekuly, které zakotví v primární solvatační sféře, z ní prakticky již neodcházejí.

V dalším, vzdálenějším okolí iontu se vytváří **sekundární solvatační sféra**, v níž se ještě uplatňuje vliv středového iontu slabým poutáním molekul rozpoštědla. Struktura sekundární solvatační sféry je obvykle přechodem mezi centrálním uspořádáním primární solvatační sféry a uspořádáním molekul v čistém rozpoštědle.

Je samozřejmé, že uvedené zóny (viz schéma na obr. 11-3) mají se získáním na diskrétní (molekulární) charakter daných systémů difúzní charakter. V žádném případě nelze rozeznat ostře hranice obou solvatačních sfer. Často se však další experimentálně zjistí počet molekul, kterými je ion za daných fyzikálně chemických podmínek v roztoce obklopen (solvatační číslo). Tyto molekuly tvoří primární solvatační sféru.

![Obr. 11-3. Primární a sekundární solvatační sféra iontu](image)

Obr. 11-4. Iontový asociát (iontová dvojice) v roztoce

Pro ilustraci uvedeme, že např. ionty Fe³⁺ a Al³⁺ jsou ve vodném roztoku za běžných podmínek obklopeny šesti molekulami vody, tedy existují jako ionty \([\text{Fe(H}_2\text{O)}_6]^{3+} \) a \([\text{Al(H}_2\text{O)}_6]^{3+} \). Ion Cu²⁺ je ve vodném roztoku obklopen čtyřmi až šesti molekulami vody. Ionty alkaličních kovů a těžké halogenidové anionty jsou hydratovány ještě menším a proměnlivým počtem velmi slabě poutaných molekul vody atd.

Iontové asociáty

Z řady dalších efektů, které se uplatňují v roztoce elektrolytů, zasahuje zmínku proces tvorby iontových asociátů.

Disociované ionty elektrolytu se v některých případech ve roztoce přechodně sdružují do iontových dvojic, trojic, popř. ještě větších skupin. Na proměnlivé struktuře těchto útvarů se významně podílejí molekuly rozpoštědla. Nejde je proto považovat za fragmenty mřížky nedisociovaného elektrolytu, ani jim nelze přisoudit neměnnou atomovou konfiguraci. Schematicky je uspořádání iontové dvojice znázorněno na obr. 11-4.

Tvorba iontových asociátů je typická pro koncentrovanější roztoky některých elektrolytů. Někdy využívá až ve svrchní kvalitěnou útvarů, např. ve smyslu rovnice

\[
\text{Cd}^{2+} + 3\text{I}^- = [\text{CdI}_3]^- \quad \text{nebo} \quad \text{Fe}^{3+} + 6\text{F}^- = [\text{FeF}_6]^{3-}
\]
11.3 ROZPUSTNOST LÁTEK

V chemické praxi je velmi významným jevem — zajména u kapalných roztoků — omezená vzájemná rozpuštěnost složek vytvářejících roztok (str. 229). Rozpouště-li se např. krystalický Na₂SO₄ ve vodiči, vytváří se postupně vodný roztok o stálé větší koncentraci Na₂SO₄, až se posudí další rozpuštění zastaví. Je možné z termodynamického hlediska říci, že obě vzniklé fáze (krystalický Na₂SO₄ a nasyčený vodný roztok Na₂SO₄) jsou spolu v rovnováze a změna Gibbsovy energie propůjčuje další rozpuštění tuhého Na₂SO₄ v nasyčeném roztoku, právě tak jako změna Gibbsovy energie opačného děje (vylučování Na₂SO₄ z nasyčeného roztoku) je za daných fyzikálně chemických podmínek nulová. Vzniklá rovnováha lze chápat též kineticky jako stav, při němž se rychlost rozpuštění Na₂SO₄ rovná rychlosti jeho krystalizace. Uvedené představy jsou obecně platné.

Koncentrace nasyčeného roztoku určí látky při určitých fyzikálních podmínkách (teplotě, tlaku) se nazývá rozpuštěnost této látky.

Rozpuštěnost látě je případ od případu velmi proměnlivá a je specifiká pro každou kombinaci určité látky a rozpuštědla. Pro nejhustší odhad rozpuštěnosti látky v daném rozpuštědle lze vycházet z toho, že iontové látky se obvykle dobře rozpuštějí v silně polárních rozpuštědlech. Výrazně kovalentní látky se naopak lépe rozpuštějí v nepolárních rozpuštědlech. Záleží však i na vznikajících mezníkolekulových interakcích (solvataci), tvorbě asociátů, krystalové mřížce rozpuštěné tuhé látky atd.

V posledních desetiletích jsou intenzivně studovány mikromechanizmy rozpuštění látě v roztočích a krystalizace (z par, z roztoků, tavenin atd.). Poznání těchto jevů má totéž mimořádný význam pro zvládnutí technologie krystalizace. Studium přineslo významné výsledky a poznatky o poměrně složitých jevech a zákonitostech těchto procesů.

Rozpuštěnost anorganických látek ve vodiči

Používání vodních roztoků anorganických látek v chemické praxi je tak rozšířené, že každý experimentálně pracující chemik i technolog musí alespoň orientačně znát rozpuštěnost základních typů anorganických látek.

Teoretické výtvorový popsání rozpuštěnosti látek z jejího složení a struktury je početně obtížné a velmi nepřesné. Prozatím dovedeme jen velmi zhruba odhadnout vlivy a příspěvky všech jevů a dělí, které rozpuštění provázejí a rozpuštěnost látka ovlivňují. Početný odhad rozpuštěnosti z údajů o kvalitě látky není proto dosud v praxi možný. Místo toho se uchylujeme k vyhledávání experimentálně zjištěných rozpuštěností v tabulka. Pro potřeby rychlého a operativního rozhodování je dobré si zapamatovat zjednodušená schémata rozpuštěnosti látek. Neosvojme si přitom samozřejmě čišťení hodnot rozpuštěnosti jednotlivých látek, ale pouze skutečnost, zda látka patří mezi sloučeniny ve vodič „nerozpuštěné“, nebo „rozpuštěné“. Hranice mezi těmito dvěma kategoriemi je na základě hodnot položena na hodnotu rozpuštěnosti 0,1 g látky na 100 g H₂O. Vedle tohoto hrubého slovního rozlišení rozpuštěnosti látek se užívá i rozlišení jemnější. Jako „nerozpuštěné“ se označují látky o rozpuštěnosti menší než 0,1 g látky na 100 g H₂O, za „částečně“ nebo „omeseně rozpuštěné“ se považují látky o rozpuštěnosti 0,1 až 1 g látky na 100 g H₂O, za „rozpuštěné“ jsou považovány látky o rozpuštěnosti těchto látek menší než 10 g látky na 100 g H₂O.

Pokud se nyní podaž názorný přehled o rozpuštěnosti anorganických solí:

1. Rozpuštěnost oxidů vyjadřuje tab. 11-1. Většina oxidů uvedených prvků v běžných oxidácích stavěch je nerozpuštěná s výjimkou oxidů alkaličních kovů, oxidů kovů alkaličních zemin.

\[1\] Uvedený způsob vyjadřování koncentrací je nesnadný a nedoporučuje se (str. 230). Avšak právě v oblasti vyjadřování rozpuštěnosti látek je stále používán.
většiny oxidů nekovů a polokovů a některých kovalentních silně kyselých oxidů, jako je CrO₃, Mn₂O₇ a OsO₄ nebo naopak silně bazického Ti₂O₇. O rozpuštnosti oxidů lze obecně říci: Ve vodě jsou rozpuštěně silně kyselé a silně bazické oxidy; nerozpuštěné oxidy s nevýraznými acido-bazickými vlastnostmi (amfoterní oxidy) a oxidy s polymerní strukturou.

2. Tab. 11-2 znázorňuje rozpuštnost hydroxidů prvků. Oblast nerozpuštěných hydroxidů v periodické tabulce se prakticky shoduje s oblastí ve vodě nerozpuštěných oxidů. Obecně tedy platí, že ve vodě jsou rozpuštěné jen silně bazické hydroxidy. (Obdobně jsou rozpuštěné silně kysličné kyseliny nekovů a polokovů, které v tabulce neuvádíme.)

3. Rozpuštnost fosforečnanů (PO₄³⁻), uhlíčitanů (CO₃⁻) a síličitanů (SO₄²⁻) vyjadřuje tab. 11-3. Je vidět, že rozpuštěné jsou pouze fosforečnany, uhlíčitany a síličitany alkalických kovů.

1) Pouze soli lithní jsou málo rozpuštěné.

238
(a amonia). Ostatní fosforečané, uhlíčitany a sířičitany jsou vesměs nerozpuštěné, výjimečně částečně rozpuštěné. Obečné platí (zejména u kationtů těžkých kovů), že rozpustnost jejich hydrogen-uhlíčitanů (HCO₃⁻), hydrogenfosforečanů a dihydrogenfosforečanů (HPO₄²⁻, H₂PO₄⁻) je po-někud (a někdy i výrazně) větší.

Tabulka 11-3. Rozpustnost fosforečanů, uhlíčitanů a sířičitanů

![Diagram fosforečanů, uhlíčitanů a sířičitanů](image)

4. **Fluoridy, chloridy, bromidy a jodidy** prvků se vyzařují dobrou rozpustností. Výjimky jsou uvedeny v tab. 11-4. Fluoridy hořčíku, hliníku, chromu, kovů alkalických zemin, železa, mědi a olova jsou vesměs nerozpuštěné. Chloridy, bromidy a jodidy jsou s výjimkou soli stříbrných, olovnatých, rtuťných a thalliných rozpuštěné. Nerozpuštěny je vedle uvedených výjimek těž HgI₂ a BiI₃. Omezená rozpustnost některých dalších halogenidů méně běžných prvků není v tabulce zaznamena.

Tabulka 11-4. Neroszpuštěné halogenidy

![Diagram fluoridů, chloridů, bromidů a jodidů prvků](image)

5. Všechny **sulfidy** kromě sulfidů alkalických kovů, kovů alkalických zemin a sulfidu amoného jsou nerozpuštěné (tab. 11-5). Některé z nerozpuštěných sulfidů s vodou reagují — hydrolyzují se (Al₂S₃, Cr₂S₃ aj.).
Tabulka 11-5. Rozpuštěnost sulfitů

<table>
<thead>
<tr>
<th>H</th>
<th>Li</th>
<th>Be</th>
<th>Na</th>
<th>Mg</th>
<th>Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
</tr>
<tr>
<td>Rb</td>
<td>Sr</td>
<td>Y</td>
<td>Zr</td>
<td>Nb</td>
<td>Mo</td>
</tr>
<tr>
<td>Cs</td>
<td>Ba</td>
<td>La</td>
<td>Hf</td>
<td>Ta</td>
<td>W</td>
</tr>
</tbody>
</table>

rozpuštěné | nerozpuštěné

6. Většina běžných soli alkalických kovů a soli amonýních je rozpuštěná. Výjimkou (využívanou v chemické analýze) jsou nerozpuštěné sloučeniny Na[Sn(OH)₆], K₂[Co(NO₃)₆], K₂[PtCl₆], KClO₄, [NH₄]₂[PtCl₄], [NH₄]₂[Co(NO₃)₆] a několik dalších.

7. Dusičnany, dusitinany, octany, chloridany a chloréfnany většiny běžných kationtů jsou rozpuštěná.

8. Rozpuštěna je většina solitů. Výjimkou tvoří BaSO₄, SrSO₄ a PbSO₄. Částečně rozpuštěně jsou CuSO₄, Ag₂SO₄ a Hg₂SO₄.

- **Součin rozpuštěnosti těchto látek**

Rovnováhu usuzujičí se při disociaci elektrolytu $B\text{A}_y$ podle rovnice

$$B\text{A}_y = zB^{y+} + yA^{z-}$$

je popisána vztahem

$$K_d = \frac{[B^{y+}]^z[A^{z-}]^y}{[B\text{A}_y]}$$

(11-11)

v zde ovšem platí, že vztah je přesně splněn pouze pro aktivity zůstávajících článků.

Chceme-li vztah (11-11) použít ke kvantitativnímu popisu rovnováhy, je třeba usuzovat mezi tuhou látkou a jejím nasyčeným roztokem, mítme tak užín, ale jen v případě, kdy je splněna podmínka maleho rozdiłu mezi aktivitami a koncentracemi zůstávajících molekul a iontů. Tato situace nastává tehdy, jestliže se usuzuje rovnováha mezi „nerozpuštěnou“ nebo „omezeně rozpuštěnou“ látkou a jejím nasyčeným vodním roztokem. Koncentrace nasyčeného roztoku takového látky je velmi malá a aktivity iontů B^{y+} a A^{z-} jsou pak shodné s jejich aktuálními koncentracemi. Postavičnost roztok je velmi zředěný, nabývá disociového stupně hodnoty $x = 1$ a koncentrace nedisociovaných molekul elektrolytu $[B\text{A}_y]$ je v roztoku prakticky malý a roztok se neshoduje s aktivitou tuhého elektrolytu. Disociovaná rovnováha může charakterizovat nerozpuštěný roztok. Nemožná aktivita tuhého elektrolytu (označme ji α_{tuhe}) je veličina konstanty K_{tuhe}, za neměněných fyzikálních podmínek a může být zahrnuta do nově rovnovážně konstanty K_{tuhe} využívající tuto heterogení rovnováhu:

$$K_{tuhe} = \frac{[B^{y+}]^z[A^{z-}]^y}{[B\text{A}_y]}$$

(11-12)

Konstanta K_{tuhe} se nazývá „jontový produkt látky $B\text{A}_y$“ a vztah (11-12) je tzv. součin rozpuštěnosti. Rovnice je vyjadřována skutečností, že součin stěchiometrickými koeficienty umocněných koncentrací

1) Někdy též „součin rozpuštěnosti látky $B\text{A}_y$“.

240
Tabulka 11-6. Iontové produkty některých sloučenin ve vodě při 25 °C

<table>
<thead>
<tr>
<th>Sloučenina</th>
<th>Iontový produkt</th>
<th>Sloučenina</th>
<th>Iontový produkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al(OH)₃</td>
<td>2 . 10⁻³³</td>
<td>PbS</td>
<td>7 . 10⁻²³</td>
</tr>
<tr>
<td>BaCO₃</td>
<td>8,1 . 10⁻⁹</td>
<td>Mg(OH)₂</td>
<td>1,2 . 10⁻¹¹</td>
</tr>
<tr>
<td>BaCrO₄</td>
<td>2,4 . 10⁻¹⁰</td>
<td>MgC₂O₄</td>
<td>8,6 . 10⁻⁵</td>
</tr>
<tr>
<td>BaF₂</td>
<td>1,7 . 10⁻⁶</td>
<td>Mn(OH)₂</td>
<td>4,5 . 10⁻¹⁴</td>
</tr>
<tr>
<td>BaSO₄</td>
<td>1,5 . 10⁻⁸</td>
<td>MnS</td>
<td>7 . 10⁻¹⁶</td>
</tr>
<tr>
<td>CdS</td>
<td>3,6 . 10⁻²⁶</td>
<td>H₃PO₄</td>
<td>2 . 10⁻¹⁸</td>
</tr>
<tr>
<td>CaCO₃</td>
<td>9 . 10⁻⁹</td>
<td>H₂SO₄</td>
<td>1,6 . 10⁻⁵⁴</td>
</tr>
<tr>
<td>CaF₂</td>
<td>1,7 . 10⁻¹⁰</td>
<td>NiS</td>
<td>2 . 10⁻²¹</td>
</tr>
<tr>
<td>CaSO₄</td>
<td>2 . 10⁻⁴</td>
<td>Ag₂CO₃</td>
<td>8,2 . 10⁻¹²</td>
</tr>
<tr>
<td>CoS</td>
<td>3 . 10⁻²⁵</td>
<td>AgCl</td>
<td>1,1 . 10⁻¹⁰</td>
</tr>
<tr>
<td>CuS</td>
<td>8,5 . 10⁻³⁶</td>
<td>AgBr</td>
<td>5 . 10⁻¹³</td>
</tr>
<tr>
<td>Fe(OH)₂</td>
<td>2 . 10⁻¹³</td>
<td>AgI</td>
<td>8,6 . 10⁻¹⁷</td>
</tr>
<tr>
<td>Fe(OH)₃</td>
<td>1,1 . 10⁻³⁶</td>
<td>Ag₂CrO₄</td>
<td>1,9 . 10⁻¹²</td>
</tr>
<tr>
<td>FeS</td>
<td>3,7 . 10⁻¹⁹</td>
<td>AgCN</td>
<td>1,6 . 10⁻¹⁶</td>
</tr>
<tr>
<td>PbCl₂</td>
<td>1,6 . 10⁻³</td>
<td>Ag₂S</td>
<td>2 . 10⁻⁴⁹</td>
</tr>
<tr>
<td>PbCrO₄</td>
<td>1,8 . 10⁻¹⁴</td>
<td>SnS</td>
<td>1 . 10⁻⁷⁶</td>
</tr>
<tr>
<td>PbSO₄</td>
<td>2 . 10⁻⁴</td>
<td>ZnS</td>
<td>1,2 . 10⁻²³</td>
</tr>
</tbody>
</table>

Na základě vztahu (11-12) lze při znalosti hodnoty $K_{B_n A_m}$ kdykoliv vypočítat, jaké koncentrace iontů $[B^{n+}]$ a $[A^{-}]$ jsou v násyceném roztoku nad látkou $B_n A_m$. Při výpočtu se naopak možná odhadnout, známe-li v roztoku primárně vytvořené koncentrace $[B^{n+}]$ a $[A^{-}]$, zda vzniklý roztok není násycen (tento případ nastává tehdy, když $[B^{n+}] [A^{-}] < K_{B_n A_m}$, nebo v případě násycení $[B^{n+}] [A^{-}] = K_{B_n A_m}$), popř. dochází-li k vytváření sloučeniny látky $B_n A_m$ ($[B^{n+}] [A^{-}] > K_{B_n A_m}$). 1] I další obdobné typy relativně přesných výpočtů jsou možné.

Jiná situace nastává, jestliže máme rozvozu propůjčování čili „rozpuštění“ nebo „velmi rozpustnou“ tuhou látku a její násycený roztok. Zde již nelze diferencovat mezi aktivitami a koncentracemi přehlédnout. Podmínky součinu rozpustnosti je pro tyto látky při dosažení koncentrací zůstávajících iontů splňují velmi nepřesné

Změny rozpustnosti elektrolytů

Rozpuštění látek je obvykle velmi závislá na teplotě. U tuhých a kapalných látek vyvolává vzrůst teploty většinou zvýšení rozpustnosti, ale i opačně závislost je běžná. Látky, jejichž rozpustnění je endothermickým dětem, jsou u vysokých teplotách nejčastěji rozpustnější. Exothermicky rozpustné látky za výšší teploty naopak se rozpustnost často sníží.

Rozpuštění látek v běžných rozpouštědlech (zejména ve vodě) jsou velmi známé a jsou tabelovány.

1) Sraženina se vytvořuje tak dlouho, až koncentrace iontů elektrolytu splňuje rovnici (11-12).
Plyny jsou v kapalných rozpouštědlech lépe rozpuštěné při nižších teplotách, zabraňuje roztoků obsahujících plyn, způsobuje, že obsah plynné složky klesá (vyvření plynu).

U plynů pozorujeme tedy výraznou závislost jejich rozpustnosti v kapalných na tlaku. Zvyšováním tlaku v soustavě jejich rozpustnost vzrůstá.

Naproti tomu rozpustnost tuků a kapalných látek v kapalinách na tlaku prakticky nezávisí.

Vede uvedených způsobů ovlivňování rozpustnosti změna fyzikálních podmínek v soustavě existují ještě další fyzikálně chemické způsoby posunu rovnováhy rozpouštění.

U roztoků elektrolytů lze ovlivnit rozpustnost umělou změnou koncentrací (aktivní) zúčastněných iontů. Tuto možnost si ukážeme na konkrétním příkladu.

Iontový produkt AgCl má hodnotu $K_{AgCl} = 1,1 \cdot 10^{-10}$. To znamená, že nasycený roztok AgCl obsahuje volné ionty Ag⁺ v koncentraci $[Ag^+] = \sqrt{K_{AgCl}} = 1,05 \cdot 10^{-5}$ a ionty Cl⁻ rovněž v koncentraci $[Cl^-] = 1,05 \cdot 10^{-5}$.

Zvýšíme-li v roztoku např. přidáním určitého množství dobře rozpustného chloridu sodného koncentraci iontů Cl⁻ (např. na hodnotu $[Cl^-] = 2 \cdot 10^{-3}$), musí koncentrace iontů Ag⁺ poklesnout (v našem případě na hodnotu $[Ag^+] = 5,5 \cdot 10^{-8}$), aby zůstala splněna podmínka konstantního součinu rozpustnosti.

Znamená to, že umělé zvyšování koncentrace jednoho z iontů vznikajících disociace elektrolytu snižuje rozpustnost elektrolytu v takovémto roztoku. V chemické preparaci se toto snižení rozpustnosti často označuje jako „učinění stejnojmenným iontem“. Kvalitativně lze tuto představu užívat i pro odhad změn rozpustnosti látek relativně rozpustných (jež nemají konstantní iontový produkt). Náhled rozpuštěnost KCl ve vodě je výrazně snížována přítomností jak chloridů, tak i jiných draselných solí.

Ne váž nás může vyvolávat přítomnost stejnojmenného iontu v roztoku snížení rozpustnosti elektrolytu. Efekt může být i opačný. Tento případ nastává tehdy, když v systému může dojít k tvarové koordinačním složení. Tak v roztoku s ionty Ag⁺ a Cl⁻ mohou být při velkém přebývání iontů Cl⁻ vyvolány procesy

$$\text{AgCl} + \text{Cl}^- \rightarrow \text{[AgCl}_2\text{]}^-$$
$$\text{[AgCl}_2\text{]}^- + \text{Cl}^- \rightarrow \text{[AgCl}_2\text{]}^2^-$$

které „stahují“ nerozpustný AgCl do roztoku ve formě rozpustných chloridů fbrnaných.

Posunovaný proces lze oznámit za zvyšování rozpustnosti látek fyzikálně chemickou cestou. Látka ve zkřížené míře vchází do roztoku proto, že jeden z jejich iontů je neustále odčerpáván probíhající chemickou reakcí.

Obdobně lze např. v důsledku chemické reakce rozpouštět CaCO₃ ve vodním roztoku HCl. Rozpuštědlo rozpouštědlo reakce je směsí rovnice

$$\text{CaCO}_3 \rightarrow \text{Ca}^{2+} + \text{CO}_3^{2-}$$

je posouvána acidobázickou chemickou reakcí

$$\text{CO}_3^{2-} + 2\text{H}_2\text{O}^+ \rightarrow 3\text{H}_2\text{O} + \text{CO}_2$$

Podobně složité, ale technicky významné ovlivňování rozpustnosti látek pozorujeme při jejich kontaktu v roztocích i tehdy, když spolu chemický nereagují. Zajímavé je ovlivňování rozpustnosti mezi indiferentními elektrolyty a jevy provázející sektání elektrolytu a nedělelého v rozpouštědle. Tato oblast je však spíše doménou fyzikální chemie a nebudeme se ji nyní zabývat.

1) K_{AgCl} je určen jako součin relativních látkových (molárních) koncentrací obou iontů (str. 231), a proto i výpočet koncentrace uvádíme jako relativní, bezrozměrné.
12 Kyseliny a zásady

Pojem kyseliny a zásady a představa kyselých či zásaditých vlastností látek se v chemii tradují od samých jejich počátků. V jednotlivých etapách vývoje chemie se obsah a náplň těchto pojmenování a představ ponekud měnily. I dnes existuje v chemické teorii několik alternativních způsobů chápaní acidobazických vlastností.

12.1 POJEM KYSELINY A ZÁSADY

Pragmatická a z dnešního hlediska ponekud naivní představa kyseliny a zásady pochází z počátku minulého století. Kyseliny jsou podle téžky chutnající v roztoku kysel, vytvářející se roztokem CaCO₃ plynový CO₂, rozpouštějící některé kovy za vývoje vodního barvičkem červené a poskytující se zásadami sůl a vodu. Naopak zásady chutnají v roztoku „louhovité“, barvi červené a zásadami poskytují sůl a vodu. Taková definice nepostihovala podstatu jevu a byla ještě konstatováním běžných elementárních projevů kyselosti a zásaditosti látek.

- Arrheniova teorie

První pokus o exaktní výklad podstaty acidobazického chování látek učinil Arrhenius (1887). Základem jeho výkladu byla představa, že kyseliny a zásady jsou elektrolyty, tedy látky schopné disociovat v roztocích na ionty. Přitom kyseliny disociují podle obecné rovnice

\[HA = H^+ + A^- \]

Ježich disociaci tedy vždy vzniká proton \(H^+ \) a kyselinový zbytek, anion \(A^- \).

Zásady naproti tomu disociují podle rovnice

\[BOH = B^- + OH^- \]

Vytváří se tedy anion \(OH^- \) a zbytek zásady, kation \(B^- \).

Arrheniovy základní představy rozpracoval Ostwald. Vznikla tak posléze ucelená teorie, která po několik desetiletí vyvovala potřebná chemie a byla všeobecně uznávána. Jejími hlavním nedostatkem bylo, že nepostihovala význam úlohy rozpuštědla při acidobazickém ději.

- Protonová teorie Brönsteda a Lowryho

Roku 1923 vytvořili Brönsted a Lowry nový myšlenkový přístup k chápaní acidobazických dějů. Základní myšlenku disociace kyselin doplnili představou solvaturace vznikajících protonů molekulami rozpuštědla; v případě vodného roztoku podle rovnice

\[H^+ + H_2O \rightarrow H_3O^+ \]

1) Z lat. acidum – kyselina, z hes. base – základ, zásada.
Své úvahy teď omezili jen na roztoky s proteckými rozpuštědly. Vypracovali teorii, která je až došlo v případě rozpuštění a velmi dobře se osvědčuje. Slouží k popisu acidobazických déjů, jmenovitě ve vodných roztocích. Je zjevné, že Bronstedova a Lowryho teorie podává myšlenkově jednoduchý a přitom pravdivě velmi blízký výklad acidobazických procesů.

Za kyselinou jsou podle této teorie považovány látky, které ve svých roztocích jsou měnitelnou (experimentálně prokazatelnou) snahu odsícevat protony H^+. V protikladu k tomu jsou za zásady označovány látky, které ve svých roztocích jsou měnitelnou snahu odsícevat protony H^+ přijímat.

V souladu s těmito definicemi, avšak v ponekud užším slova smyslu, můžeme říci, že kyselinou je každá částice, která při určitém déji odštěpuje proton (je donorem protonu) a zásadou je jiná částice, která jej přijímá (je akceptorem protonu).

Elementárním acidobazickým krokem [aktem] je podle této teorie přenos protonu H^+ mezi dvěma částicemi. Lze jej znázornit schématem

![Schéma kyseliny HA a kyseliny BH⁺ ve vztahu do zásad A⁻ a B⁺](image)

Konkrétním příkladem uvedeného acidobazického déje je rovnice znázorňující ionizaci kyanovodíku ve vodném roztoku:

\[
\begin{align*}
HCN + H_2O & \rightarrow CN^- + H_2O^+ \\
\text{kyselina 1} & \text{zásada 2} & \text{zásada 1} & \text{kyselina 2} \\
\text{konjugovaná dvojice 1} & \text{konjugovaná dvojice 2}
\end{align*}
\]

Molekula kyanovodíku je kyselinou a odštěpením protonu se změní v zásadu — kyanidový ion. Obě tyto částice tvoří tzv. konjugovaný pár (kyselina 1, zásada 1). Molekula vody je pro tento acidobazický déj zásadou a přijetím protonu se z ní vytvoří hydroxidový ion, který je kyselinou. H_2O a H_2O^+ tvoří konjugovanou dvojici (zásada 2, kyselina 2).

Obdobným případem je acidobazický proces probíhající při kontaktu např. alifatického amínu s vodou jako rozpouštědlo:

\[
\begin{align*}
RNH_2 + H_2O & \rightarrow RNH_3^+ + OH^- \\
\text{zásada 1} & \text{kyselina 2} & \text{zásada 2} & \text{kyselina 1} & \text{konjugovaná dvojice 1} & \text{konjugovaná dvojice 2}
\end{align*}
\]

1) Protecká rozpouštědla jsou taková, jejichž molekuly obsahují ionizovatelný atom vodíku, tedy atom odštěpený z molekuly jako proton H^+, který může být přijímán jinou molekulou rozpouštědla.
Amin je bazický a jeho tendence přijímat protony způsobuje, že molekuly vody se chovají jako kyselina.

Voda při obou pravé uvedených acidobazických dějích vystupuje jednou jako zásada (k HCN) a jednou jako kyselina (k RNH₂). Je však, že acidobazické vlastnosti je nutné chápat relativně. Kyselost nebo zásaditost látek se projevuje tepře v okamžiku jejich styku s další látkou. Jedna z látek se stává zdrojem protonů (je kyselinou), druhá jejich přijemcem (je zásadou).

Přesně vzato, měli bychom upoutat od obecného označování látek názvem „kyselina“ či „zásada“, a tedy od výroků jako „H₃SO₄ je kyselina“ nebo „NaOH je zásada“ apod. Takovéto označování nemá ve smyslu protonové teorie vůbec význam, pokud nespecifikujeme druhou látku, k níž se projeví acidobazické chování látky. Na potvrzení správnosti této úvahu uvedeme rovnici ionizace molekul kyselin chloridu v koncentrované kyselině sírové:

\[
\text{HClO}_3 + \text{H}_2\text{SO}_4 = \text{ClO}_4^- + \text{HSO}_4^-
\]

Reakce je ve smyslu protonové teorie dějem acidobazickým. Přitom „kyselina“ sírová se chová jako zásada k molekulám kyselin chloridu.

Abychom neporušovali tradici a vžité chemické citění, zachováme používání názvů „kyselina“ a „zásada“. Obecně označení „kyselina“ dáváme látkám, o nichž víme, že ve styku s vodou projevují své kyselé vlastnosti. Přidomk „zásada“ dostávají látky, které se k vodě chovají jako zásady. Tendence molekul vody odstěpovat proton a tendence přijímat jej je tedy jakousi referenční hladinou, k níž kvalitativně (a jak poznáme později, i kvantitativně) vztahujeme a vyjadřujeme acidobazické chování ostatních látek.

Vraťte-li se tedy k uvedené reakci mezi kyselinou chloridou a kyselinou sírovou, můžeme dodat, že v tomto smyslu jsou obě látky skutečné kyselinami (ji každý z nich oddělen k vodě). Avšak v popsaném ději je H₂SO₄ zásadou ve vztahu k HClO₃.

Acidobazické vlastnosti, jak to ostatně vyplývá ze všech uvedených ionizačních reakcí, nacházíme nejen u neutrálních molekul, ale i u iontů.

Uvedeme několik příkladů molekul a iontů, které vystupují ve vztahu k molekulám vody jako kyseliny.

a) Molekuly:

<table>
<thead>
<tr>
<th>Kyselina</th>
<th>Zásada</th>
<th>Zásada</th>
<th>Kyselina</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCl</td>
<td>HClO₃</td>
<td>H₂O</td>
<td>H₂O⁺</td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>H₂SO₄</td>
<td>H₂O</td>
<td>H₂O⁺</td>
</tr>
<tr>
<td>H₂O</td>
<td>H₂O</td>
<td>H₂O</td>
<td>H₂O⁺</td>
</tr>
</tbody>
</table>

b) Anionty:

<table>
<thead>
<tr>
<th>Kyselina</th>
<th>Zásada</th>
<th>Zásada</th>
<th>Kyselina</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSO₄⁻</td>
<td>HClO₃</td>
<td>H₂O</td>
<td>H₂O⁺</td>
</tr>
<tr>
<td>HS⁻</td>
<td>HClO₃</td>
<td>H₂O</td>
<td>H₂O⁺</td>
</tr>
<tr>
<td>H₃PO₄⁻</td>
<td>HClO₃</td>
<td>H₂O</td>
<td>H₂O⁺</td>
</tr>
</tbody>
</table>

c) Kationty:

<table>
<thead>
<tr>
<th>Kyselina</th>
<th>Zásada</th>
<th>Zásada</th>
<th>Kyselina</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₃O⁺</td>
<td>H₂O⁺</td>
<td>H₂O</td>
<td>H₂O⁺</td>
</tr>
<tr>
<td>NH₄⁺</td>
<td>H₂O⁺</td>
<td>H₂O</td>
<td>H₂O⁺</td>
</tr>
<tr>
<td>pyH⁺</td>
<td>pyH⁺</td>
<td>H₂O</td>
<td>py⁺</td>
</tr>
</tbody>
</table>

1) **py** = pyridin, **pyH⁺** = kation pyridinía.
Příkladem molekul a iontů, které se mohou chovat k vodě jako zásady, jsou např. tyto částice:

<table>
<thead>
<tr>
<th>zásada</th>
<th>kyselina</th>
<th>kyselina</th>
<th>zásada</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) molekuly:</td>
<td>NH₃</td>
<td>NH₃ + H₂O = NH₄⁺ + OH⁻</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H₂O</td>
<td>H₂O + H₂O = H₂O²⁻ + OH⁻</td>
<td></td>
</tr>
<tr>
<td></td>
<td>py</td>
<td>py + H₂O = pyH⁺ + OH⁻</td>
<td></td>
</tr>
<tr>
<td>b) anionty:</td>
<td>H⁻</td>
<td>H⁻ + H₂O = H₂ + OH⁻</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SO₄²⁻</td>
<td>SO₄²⁻ + H₂O = HSO₄⁻ + OH⁻</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S²⁻</td>
<td>S²⁻ + H₂O = HS⁻ + OH⁻</td>
<td></td>
</tr>
<tr>
<td>c) kationty:</td>
<td>ve vztahu k molekulám vody prakticky nikdy nevystupují jako zásada.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vzniká otázka, jak chápout ve smyslu tohoto přístupu klasičku "neutralizaci" kyseliny zásadou ve vodném roztoku (tedy např. reakci NaOH + HCl = NaCl + H₂O). Je zřejmé, že z hlediska protonové teorie jde o děj složený z několika elementárních procesů.

Lze si představit, že při přípravě roztoku kyseliny nastává její acidobazická reakce s vodou:

HCl + H₂O = H₃O⁺ + Cl⁻

Zásada se při tvorbě roztoku disociuje (její o acidobazickou reakci):

NaOH = Na⁺ + OH⁻

Smišením roztoků kyseliny a zásady nastává vlastní neutralizace. Ustavuje se rovnováha neutralizačního acidobazického děje, přičemž ioni ty Na⁺ a Cl⁻ se děje neúčastí:

H₃O⁺ + OH⁻ = 2 H₂O

Protonová teorie našla velké uplatnění v chemické teorii i praxi. Vedle kvalitativního popisu, jehož elementární základy jsme právě uvedli, má i stránku kvantitativní, při jejímž rozvíjení lze vycházet z vyjadření rovnováh acidobazických reací rovnovážnými constantami a přesně popisovat acidobazické děje v roztocích. Právě tak může být protonová teorie rozvážena z pozic termodynamického přístupu, popř. mohou být těž žkumány mechanismy přenosu protonů mezi částicemi apod.

- Solvotecie kyselin a zásad

Ještě obecnější přístup k výkladu acidity a bazicity látek představuje tzv. solvotecie kyselin a zásad, vytvořená Guttmannem a Lindqvistem (1954).

Teorie je použitelná k výkladu acidobazických dějů jak v protických, tak i aprotických rozpuštědlech. Vychází z představy, že každé rozpuštědlo je autoionizováno.

Označuje za tzv. solvokyseliny takové látky, které interagují s rozpuštědlem tak, že zvyšují koncentraci kationtů vytrvalých autoionizací rozpuštědla.

Za solvozásadu považuje látky, které při styku s rozpuštědlem zvyšují koncentraci aniontů produkovaných autoionizací rozpuštědla.

Za neutralizaci považuje solvotecie zpětný průběh autoionizace reakce nebo v širším slova smyslu reakce solvokyseliny se solvozásadou.

1) Aprotická rozpuštědla jsou taková rozpuštědla, která nemají tendenci odštěpovat ani přijmat proton (např. uhlovodíky, oxid sířitý).
K snažímu porozumění základním představám solvotorie uvedeme příklady acidobazických dějů, jež se mohou uplatnit v kapalném amoniaku nebo v kapalném oxidu sířkém:

<table>
<thead>
<tr>
<th>Kapalný amoniak (protické rozpuštědlo)</th>
<th>Příklady ionizace kyseliny:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoionizace rozpouštědla:</td>
<td>NH₄Cl = NH₄⁺ + Cl⁻</td>
</tr>
<tr>
<td>NH₃ + NH₄⁺ = NH₄⁺ + NH₃⁻</td>
<td>HSO₄⁻ + H₃⁺ = NH₄⁺ + SO₄²⁻</td>
</tr>
<tr>
<td>kation</td>
<td>anion</td>
</tr>
<tr>
<td>Příklady ionizace zásady:</td>
<td>NaNH₂ = Na⁺ + NH₃⁻</td>
</tr>
<tr>
<td>RNH⁺ + NH₃⁻ = RNH₃⁺ + NH₃⁻</td>
<td>Příklady neutralizačního děje:</td>
</tr>
<tr>
<td>NH₄⁺ + NH₃⁻ = 2 NH₃</td>
<td>NH₄⁺Cl + NaNH₂ = NaCl + 2 NH₃</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kapalný oxid sířky (aprotické rozpouštědlo)</th>
<th>Příklady ionizace kyseliny:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoionizace rozpouštědla:</td>
<td>SOCl₂ = SO₂⁺ + 2Cl⁻</td>
</tr>
<tr>
<td>SO₃⁺ + SO₂⁻ = SO₂⁺ + SO₃⁻</td>
<td>Pb²⁺ + 2 SO₃⁻ = PbSO₄⁻ + SO₄²⁻</td>
</tr>
<tr>
<td>kation</td>
<td>anion</td>
</tr>
<tr>
<td>Příklady ionizace zásady:</td>
<td>Mg₃SO₄ = Mg²⁺ + SO₄³⁻</td>
</tr>
<tr>
<td>Na₂O + SO₂ = 2 Na⁺ + SO₃⁻</td>
<td>Příklady neutralizačního děje:</td>
</tr>
<tr>
<td>SO₂⁺ + SO₃⁻ = 2 SO₂</td>
<td>SOCl₂ + Na₂O = 2 NaCl + SO₂</td>
</tr>
</tbody>
</table>

Vidíme, že v kapalném amoniaku jsou kyselinami např. NH₄Cl nebo ion HSO₄⁻, protože podle hají dějům, jejichž konečným důsledkem je zvýšení koncentrace kationtu NH₄⁺. Zásadami jsou naproti tomu např. amido sodný nebo organické aminy, poněvadž zvyšují koncentraci aniontu NH₃⁻. Z obdobných důvodů jsou v kapalném oxidu sířkém kyselinami např. SOCl₂ či ion Pb²⁺, zásadami např. Mg₃SO₄, Na₂O.

Solvotorie je aplikovatelná i na vodné roztoky a představuje vlastně jen určité rozšíření Brønstedovy teorie. Dokládá její platnosti ve vodných roztocích je soubor acidobazických reakcí probíhajících ve vodě.

<table>
<thead>
<tr>
<th>Voda (protické rozpouštědlo)</th>
<th>Příklady ionizace kyseliny:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoionizace rozpouštědla:</td>
<td>(H₂O)ClO₄ = H₂O⁺ + ClO₄⁻</td>
</tr>
<tr>
<td>H₂O + H₂O = H₂O⁺ + OH⁻</td>
<td>H₃BO₃ + H₂O = H₂O⁺ + H₂BO₃⁻</td>
</tr>
<tr>
<td>kation</td>
<td>anion</td>
</tr>
<tr>
<td>Příklady ionizace zásady:</td>
<td>NaOH = Na⁺ + OH⁻</td>
</tr>
<tr>
<td>NH₃ + H₂O = NH₄⁺ + OH⁻</td>
<td>Příklady neutralizačního děje:</td>
</tr>
<tr>
<td>H₂O⁺ + OH⁻ = 2 H₂O</td>
<td>NaOH + HCl = NaCl + H₂O</td>
</tr>
</tbody>
</table>

247
Lewisova teorie kyselin a zásad

Představa kyselosti a zásaditosti látok může být založena na ještě širším a obecnějším základu. Velmi širokou a obecnou definici pojmu kyseliny a zásady podal již roku 1923 Lewis. Jeho koncepci však byla přijata a rozvíjena teprve po roce 1938.

Lewis označuje za zásadu každou částicí, která má alespoň jeden volný (nevezebný) elektronový pár schopný zprostředkovat vznik kovalentní (donor-akceptorové) vazby s dalším atomem, iontem či jiným atomárním uskupením.

Ve funkcii Lewisových zásad jsou schopny vystoupat prakticky všechny molekuly a ionty s nevezebnými elektronovými páry, tedy všechny částice nukleofilní (str. 137), např.

\[
\begin{align*}
N—H & \quad \text{[OH]}^- & \quad \text{[O—H]}^- \\
H & \quad \text{[O]}^- & \quad \text{[O]}^2- \\
\end{align*}
\]

Jako kyseliny chápí Lewis ty částice, které jsou schopné volný elektronový pár zásad vystříkat k teorbi kovalentní (donor-akceptorové) vazby, již se k bázi připoutají. Lewisovými kyselinami jsou proto všechny elektrofilní částice (str. 137):

1. elektronově deficitní molekuly, např.

\[
\begin{align*}
\text{[}\text{P}^-\text{]} & \quad \text{H} \\
\text{B—[P]} & \quad \text{Al—H} \\
\text{[P]} & \quad \text{H} \\
\end{align*}
\]

2. molekuly, u nichž se může ještě zvýšit vaznost (koordinační číslo) středového atomu tím, že se do vazby zapojí jeho další AO (nejčastěji orbitaly d), např.

\[
\begin{align*}
\text{Cl—Sn—Cl} & \quad \text{F—Si—F} \\
\text{Cl—Sn—Cl} & \quad \text{Cl—Sn—Cl} \\
\text{(např. SnCl}_6^{2-}) & \quad \text{(např. SiF}_6^{2-}) \\
\end{align*}
\]

3. molekulové ionty (kationty), např.

\[
\begin{align*}
\text{O}_2^+ & \quad \text{NO}^+ & \quad \text{SO}_4^{2-} \\
\end{align*}
\]

248
 \[\text{Cu}^{2+}, \text{Fe}^{3+}, \text{Ni}^{2+}, \text{Pu}^{2+}, \text{Ag}^+ \]
nebo nepřechodných prvků, např.
 \[\text{H}^+, \text{Al}^{3+}, \text{Si}^{4+} \]
5. Molekuly s násobnými vazbami, např. oxid dusnatý, oxid uhličitý nebo oxid sířčitý.
Jako elementární acidobazický děj lze ve smyslu Lewisovych představ označit každý takový proces, při němž se vytváří donor-akceptorová vazba mezi dvěma částicemi. Případ částic nukleofilní přísluší označení „zásad“ a částic elektofilní označení „kyselina“. Acidobazickými reakcemi jsou tedy např. tyto děje:
 \[\text{H}^+ + \text{H}^- = \text{H}_2 \quad \text{SiO}_2 + \text{O}^{2-} = \text{SiO}_3^{2-} \]
 \[\text{AlH}_3 + \text{H}^- = [\text{AlH}_4^-]^{-} \quad \text{Cu}^{2+} + 4 \text{NH}_3 = [\text{Cu(NH}_3)_4]^{2+} \]
 \[\text{H}^+ + \text{OH}^- = \text{H}_2\text{O} \quad \text{BF}_3 + \text{F}^- = [\text{BF}_4^-] \]
Je účelné zapamatovat si zjednodušené vyjádření těchto procesů schématem

Lewisova teorie tím, že připouští, aby do skupiny acidobazických reakcí byly řazeny i procesy, v nichž vystupují částice bez protonů, umožňuje rozšířit pojem kyselostí a zásadostí do oblasti tavenin, aprotických rozpouštědel aj. Současně je však tento teoretický přístup poněkud neprakticky pro kvantitativní aplikaci na vodní roztoky. Z tohoto důvodu se v praxi provádí přibližně, tj. do jednoho a protivnitně řešeného výkladu acidobazických dějů. Vodné roztoky popisujeme na základě představ protovodové teorie. Lewisovy koncepce se naproti tomu běžně využívá při výkladu reakčních mechanismů v anorganické i organické chemii, v chemii koordinačních sloučenin a při objasňování dějů v taveninách a aprotických rozpouštědlech.

12.2 KVANTITATIVNÍ VYJADŘOVÁNÍ KYSELOSTI A ZÁSADOSTI LÁTEK

Jako každý chemický proces mají acidobazické reakce vedle své kvantitativní stránky i stránku kvantitativní. Známá je, že vedení odpovídě na otázku, jak probíhá a v jakých dějích spočívá určitá acidobazická reakce, lze též u každé takové reakce vyjádřit, v jaké míře a jak rozsáhle se uskutečňuje.

Poloha rovnováhy acidobazických reakcí může být kritériem acidobazických vlastností výchozích látek. Zaměříme-li se pouze na vodné roztoky (jsou v praxi daleko největším), máme možnost vyjádřením acidity či bazicity vodného roztoku, v němž se uskutečnila acidobazická reakce, určit rovnováhu, do níž reakce dospěla. Se způsobem vyjadřování acidity a bazicity vodných roztoků kyselin a zásad a s kvantitativním určováním sily kyselina a zásad na základě jednoduchých představ upravené Arrheniovy teorie se seznámíme v tomto oddíle.
Acidita a bazicita vodních roztoků
I v chemické čisté vodě probíhá autoionizační (acidobazický) děj
\[
\text{H}_2\text{O} + \text{H}_2\text{O} \rightleftharpoons \text{H}_3\text{O}^+ + \text{OH}^-
\]
a ustanovuje se jeho rovnováhu. Z hlediska protonové teorie kyselin a zásad je tento proces acidobazickou reakcí. Rovnováha autoionizační reakce je použita výrazně doleva, tedy ve prospěch neutrálních molekul vody, avšak jiná, i když velmi malá část molekul vody je skutečně převedena na ionty \text{H}_3\text{O}^+ a \text{OH}^-.

Podmínky rovnováhy vyjadřuje rovnovážná konstanta
\[
K_{\text{H}_2\text{O}} = [\text{H}_3\text{O}^+][\text{OH}^-] \tag{12-1}
\]
I zde je třeba zdůraznit, že vztah (12-1) je čelena přesně splněn pouze pro aktivity iontů \text{H}_3\text{O}^+ a \text{OH}^-; jeho splnění pro koncentrace je jen přibližné.

Hodnota konstanty \(K_{\text{H}_2\text{O}}\) při teplotě 25 °C a tlaku 0,1 MPa je přibližně \(10^{-12} \text{ mol}^2 \text{l}^{-2}\). Aktivity obou iontů, a tedy přibližně i jejich koncentrace (v mol l\(^{-1}\)) za těchto podmínek trvale splňují vztah
\[
[\text{H}_3\text{O}^+][\text{OH}^-] \approx 10^{-14} \text{ mol}^2 \text{l}^{-2} \tag{12-2}
\]
V čisté vodě, kde navíc platí podmínka \([\text{H}_3\text{O}^+] = [\text{OH}^-]\), budou mít koncentrace obou iontů hodnotu
\[
[\text{H}_3\text{O}^+] \approx 10^{-7} \text{ mol l}^{-1} \\
[\text{OH}^-] \approx 10^{-7} \text{ mol l}^{-1} \tag{12-3}
\]

Takovéto prostředí označme za neutrální (tj. ani kyselé, ani zásadité).

Jiná situace nastane ve vodních roztocích kyselin nebo zásad. Acidobazická reakce kyseliny s vodou bude produkovan ionty \text{H}_3\text{O}^+ a zvyšovat jejich koncentrace v roztoku. Bude tomu tak proto, že kyselina \(\text{HA}\) ve vodném roztoku podléhá reakci
\[
\text{HA} + \text{H}_2\text{O} \rightleftharpoons \text{A}^- + \text{H}_3\text{O}^+
\]
při níž ionty \text{H}_3\text{O}^+ vznikají. Zásady \(\text{B}\) nebo \(\text{BOH}\) budou ve svém vodném roztoku naprosto reagovat ve smyslu rovnice
\[
\text{B} + \text{H}_2\text{O} \rightleftharpoons \text{BH}^+ + \text{OH}^-
\]
nebo
\[
\text{BOH} = \text{B}^+ + \text{OH}^-
\]
a produkují roztoku ionty \text{OH}^-.

Podmínka (12-2) v jakémkoliv vodném roztoku však musí být neustále splněna. V roztoku kyselin nebo zásad může proto nastat dvojí situace:

1. vodný roztok kyseliny
 (kyselé reagující roztok)
 \[
 [\text{H}_3\text{O}^+] > 10^{-7} \text{ mol l}^{-1} ; \quad [\text{OH}^-] < 10^{-7} \text{ mol l}^{-1}
 \]
2. vodný roztok zásady
 (zásadité reagující roztok)
 \[
 [\text{H}_3\text{O}^+] < 10^{-7} \text{ mol l}^{-1} ; \quad [\text{OH}^-] > 10^{-7} \text{ mol l}^{-1}
 \]

\(^{1)}\) Lze s výhodou použít i relativní látkové koncentrace, což se vztahuje (12-2) projeví vymíráním rozměru a číslené hodnoty konstanty.
Pojem pH (a pOH) vodných roztoků

Již Sörensen doporučil používat vztah (12-2) v logaritmované formě
\[
\log 10^{-\text{14}} \approx \log [H_3O^+] + \log [OH^-]
\]
(12-4)
a upravit jej na tvar
\[
-(14) \approx -\log [H_3O^+] + (-\log [OH^-])
\]
(12-5)
oba členy na pravé straně logaritmického vztahu (12-5) označíme symbolem pH a pOH
\[
-\log [H_3O^+] = \text{pH} \quad -\log [OH^-] = \text{pOH}
\]
(12-6)
a vztah (12-5) upravit na tvar
\[
14 \approx \text{pH} + \text{pOH}
\]
(12-7)
Veličinu pH definujieme jako záporný logaritmus aktyvit iontů H$_3$O$^+$. Číslná hodnota takto definovaného pH je otvorem ve vodných roztocích velmi blízká (prakticky rovná) zápornému logaritmu relativní látkové koncentrace (str. 231) iontů H$_3$O$^+$.

Splňuje-li veličina pH a zcela analogicky definovaná veličina pOH rovnici (12-7), je zřejmé že při popisu acidobazických procesů ve vodném roztoku vystačíme vždy s určením jediné z těchto veličin, nejčastěji pH.

Vrátíme-li se nyní k popisu acidobazických poměrů ve vodě a vodních roztocích kyselin a zásad, můžeme konstatovat, že hodnoty pH (resp. pOH) se musí pohybovat v těchto oblastech

vodný roztok kyseliny (kysele reagující roztok): \(\text{pH} < 7; \text{pOH} > 7 \)
chemicky čistá voda (neutralně reagující roztok): \(\text{pH} = 7; \text{pOH} = 7 \)
vodný roztok zásady (zásadně reagující roztok): \(\text{pH} > 7; \text{pOH} < 7 \)

Disociační konstanty kyselin a zásad

Každá acidobázická reakce kyseliny HA s molekulami vody produkce ionty H$_3$O$^+$ a je charakterizována rovnovážnou konstantou \(K_{\text{HA}} \), zvanou disociační konstanta kyseliny:
\[
K_{\text{HA}} = \frac{[A^-][H_3O^+]}{[HA]} \quad \text{(12-8)}
\]

(rovnovážná konstanta děje \(\text{HA} + \text{H}_2\text{O} = \text{A}^- + \text{H}_3\text{O}^+ \))

Poloha rovnováhy acidobázické reakce kyseliny s vodou závisí na hodnotě disociační konstanty kyseliny \(K_{\text{HA}} \) a na celkové (izv. analytické) koncentraci kyseliny \(c_{\text{HA}} \). Disociační stupeň \(\alpha \) (str. 234) je pro kyseliny typu HA definován vztahy
\[
\alpha = \frac{[H_3O^+]}{c_{\text{HA}}} \quad \text{resp.} \quad \alpha = \frac{[A^-]}{c_{\text{HA}}} \quad \text{(12-9)}
\]

Uvedené dva definiční vztahy pro \(\alpha \) jsou rovnocenné, neboť v roztoku kyseliny platí podmínky plnoucí se stechiometrie acidobázického děje \([H_3O^+] = [A^-] \).

Hodnotu pH vodného roztoku kyseliny lze tedy vypočítat z rovnice
\[
\text{pH} = -\log [H_3O^+] = -\log (c_{\text{HA}} \alpha) \quad \text{(12-10)}
\]

Pokud je kyselina silná, tj. je silným elektrolytem, nabývá disociační stupeň hodnoty \(\alpha = 1 \) a pH roztoku silné kyseliny se vypočítá přímo z rovnice
\[
\text{pH} = -\log c_{\text{HA}} \quad \text{(12-11)}
\]
Silné a velmi silné kyseliny identifikujeme formálně podle hodnoty jejich disociační konstanty \(K_{HA} \), jež je zřetelně větší než 1.

Roztok slábě kyseliny, tedy kyseliny, která je slabým elektrolytem, je disociován jen nepatrně a jeho disociační stupeň \(a \) limituje k nule. Do rovnice (12-10) se tedy musí při výpočtu pH roztoku slábé kyseliny dosadit co nejblížší hodnota \(a \). Uveď si z Kohlraussovy rovnice (str. 235), jež platí pro \(a \ll 1 \):

\[
\alpha = \frac{K_{HA}}{\sqrt{c_{HA}}}
\]
(12-12)

Rovnice (12-10) přeje po dosazení za \(a \) z rovnice (12-12) na tvar

\[
pH = -\log \sqrt{c_{HA}K_{HA}}
\]
(12-13)

resp. po úpravě

\[
pH = -\tfrac{1}{2} \log c_{HA} + (-\tfrac{1}{2} \log K_{HA})
\]
(12-14)

Výraz \((-\log K_{HA})\) jsme si zvykli nahrazovat symbolem \(pK_{HA} \), takže zavedením této změny symboliky dostaneme definitivní tvar pro pH roztoku slábé kyseliny

\[
pH = pK_{HA} - \tfrac{1}{2} \log c_{HA}
\]
(12-15)

Slabé kyseliny a kyseliny velmi slábé poznáme formálně velmi dobře podle toho, že mají hodnotu disociační konstanty výrazně menší než 1 \((K_{HA} < 10^{-2} \text{ až } 10^{-3}) \).

Zcela analogicky jako u kyselin jsou charakterizovány v roztoku rovnováhy acidobazických reakcí zásad. Disociační konstanta zásady je určena vztahem

\[
K_{BOH} = \frac{[BOH^{+}][OH^{-}]}{[BOH]}
\]
(12-16)

Disociační stupeň zásad \(\alpha \) je definován takto:

\[
\alpha = \frac{[B^{+}]}{c_{BOH}} \quad \text{resp.} \quad \alpha = \frac{[OH^{-}]}{c_{BOH}}
\]
(12-17)

Přitom \(c_{BOH} \) značí celkovou (analytickou) látkovou koncentraci zásady roztoku.

Není obtížné přesvědčit se výpočtem a úvahou, že pH roztoku zásady může být podle sily zásady počítáno bud ze zásady

\[
pH = 14 + \log c_{BOH} \quad \text{(pro roztok silné zásady)}
\]
(12-18)

nebo ze zásady

\[
pH = 14 - \tfrac{1}{2}pK_{BOH} + \tfrac{1}{2} \log c_{BOH} \quad \text{(pro roztok slabé zásady)}
\]
(12-19)

Přitom silné zásady mají disociační konstantu \(K_{BOH} \) výrazně větší než 1. Slabé zásady mají naproti tomu disociační konstantu zřetelně menší než 1 \((K_{BOH} < 10^{-2} \text{ až } 10^{-3}) \).

12.3 VZTAHY MEZI STRUKTUROU
A ACIDOBAZICKÝMI VLASTNOSTMI LÁTEK

Vydělá-li z představ protonové teorie kyselin a zásad, můžeme vyslovit některá evidentní tvrzení a formulovat empiricky nalezené poznatky o vztažích mezi strukturou látěk a jejich acidobazickými vlastnostmi.

Bröndstedovy kyseliny mají v molekule vždy alespoň jediný atom vodíku v oxidačním stavu 252

V ternárních sloučeninách obsahujících kyslík (a samozřejmě i vodík) je přičinou kyselostí látky přítomnost heterolytický štěpírné vazby O—H. Kyselinami jsou proto např. H₂SO₄, H₃PO₄, H₃BO₃, H₂CO₃ aj. se strukturami

![Struktura H₂SO₄, H₃PO₄, H₃BO₃, H₂CO₃](image)

Pokud se v molekule kyselinaté kyseliny vyskytuje vedle vazeb O—H též přímá připojení atomu vodíku na středový atom Y, tedy vazby Y—H, pak se takto poutané atomy vodíku na kyselosti kyseliny nepodílejí a při acidobazických reakcích se nikdy neodštěpují. Příkladem je dvojice kyselin fosforu H₂PO₃ a H₃PO₃ se strukturami

![Struktura H₂PO₃ a H₃PO₃](image)

(nezionizovatelné atomy H jsou vytištěny tučně).

Přičinou zásaditého chování látek (a tím i přičinou zásadité reakce jejich vodných roztoků) může být to, že látka má ve svých molekulách místa schopná přijímat a poutat ionty H⁺. Prakticky vždy tuto funkci plní volný nevazebný elektronový pár. Zásadami jsou proto molekuly amoniaku nebo pyridinu se strukturou

![Struktura amoniaku a pyridinu](image)

Na jejich volné elektronové páry se mohou zachytit protony z roztoku a vytvořit kation amonný nebo kation pyridiní. Obdobně je zásadou anion fosforečnanový PO₄³⁻ nebo uhličitanový CO₃²⁻, u nichž mohou být protonizovány volné elektronové páry na některém z kyslíků za vzniku hydrogenfosforečnanového HPO₄²⁻ a hydrogenuhličitanového HCO₃⁻ aniontu:

![Struktura PO₄³⁻ a CO₃²⁻](image)

1) Každá Brønstedova zásada je proto současně zásadou Lewisovou (opačné tvrzení však neplatí).
Jinou příčinou zásaditého chování látky v roztoku se může stát skutečnost, že látky, ačkoliv sama proton nepřijímají, se ionizují vlivem rozpostrádání a tepvje jeden ze vzniklých iontů je Brønstedová zásadou a je schopen poutat protony. Například LiH, Na₂CO₃ nebo KOH udelují svým roztokům alkalickou reakci, neboť ionizují za vzniku aniontů H⁺, CO₃²⁻, OH⁻, které jsou zásadami a s vodou reagují podle rovnic

\[
H^+ + H_2O = H_3 + OH^- \\
CO_3^{2-} + H_2O = HCO_3^- + OH^-
\]

Zvýšení koncentrace iontů OH⁻ chápejme jako růst bazicity roztoku.

Stoji za povšimnutí, že přítomnost skupiny OH může být příčinou kyselosti molekuly (jestliže skupina má tendenci heterolytické štěpiti na vazbě O—H) i její bazicity (dohlazli-li snadno k heterolytickému štěpení vazby B—OH pouťají skupinu OH ke zbytku molekuly).

Uvedené jednoduché poznatky spolu s chemickou zkušeností dovolují vyslovovat soudy o aciditě a bazicitě jednotlivých látek. Přítom existuje ještě další empirické vztahy a pravidla, která umožňují zhruba odhadnout dokonce i sílu kyselin a zásad na základě znalosti jejich atomové a elektronové konfigurace a postavení řáďových prvků v periodickém systému. S nimi se nyní seznamíme.

- Acidita kyselin

Na aciditu bezkyslíkatých (binárních) kyselin působí řada faktorů. Výrazný je vliv rozdílu elektronegativit vodíku a atomu určujícího kvalitu kyseliny. Zvětšování rozdílu znamená zvýšení polarity vazby, a tím i její větší sklon k heterolytickému štěpení. Proto jsou nízkomolekulární kovalentní hydridy elektronegativních prvků z pravého okraje periodické tabulky (tj. nekovů) kyselinami. Extrémní zvýšení polarity vazby však posléze zvyšuje její pevnost a snižuje snahu po odštěpení protonu. Fluorovodík není proto nejsilnější kyselinou ze všech kovalentních hydridů. Vliv na to má ovšem i přítomnost vazby vodíkovým můstekem (str. 150) a změny entalpie provázející hydratační ionty, které vznikají při styku hydridu s vodou.

Souhrně lze konstatovat, že kyselost kovalentních hydridů vzrůstá v periodické tabulce zleva doprava, jak stoupají hodnoty elektronegativity prvků, ale ve skupinách periodické tabulky kyselost hydridů vzrůstá shora dolů, tedy proti směru vzrůstu elektronegativity.

\[
\text{vzrůst kyselosti} \\
\text{nejslabší} \rightarrow \text{NH}_3 \quad \text{H}_2\text{O} \quad \text{HF} \\
\text{z uvedených} \quad \text{PH}_3 \quad \text{H}_2\text{S} \quad \text{HCl} \\
\text{kyselin} \quad \text{AsH}_3 \quad \text{H}_2\text{Se} \quad \text{HBr} \\
\text{SbH}_3 \quad \text{H}_2\text{Te} \quad \text{HI} \\
\text{z největší} \quad \text{nejsilnější} \\
\text{z uvedených} \quad \text{kyselin}
\]

Nejsilnější kyselina z kovalentních hydridů je HI, nejslabší je NH₃ (k vodě se již chová jako zásada).

 Řadové hodnoty disociačních konstant některých binárních kyselin a kyselin pseudobinárních jsou uvedeny v tab. 12-1.

U ternárních kyslíkatých kyselin můžeme jejich kyselost charakterizovat i disociální konstantou do prvého stupně nejdéle odhadnout přímo ze stehiometrických vzorců podle návodu v tab. 12-2.

254
Tabulka 12-1. Řadové hodnoty disociačních konstant (do I. stupně) binárních a pseudobinárních kyselin (při 20 °C) ve vodě

<table>
<thead>
<tr>
<th>H₂O</th>
<th>H₂S</th>
<th>H₂Se</th>
<th>H₂Te</th>
<th>HF</th>
<th>HCl</th>
<th>HBr</th>
<th>HI</th>
<th>H₂O₂</th>
<th>HCN</th>
<th>HNCO</th>
</tr>
</thead>
<tbody>
<tr>
<td>10⁻¹⁴</td>
<td>10⁻⁷</td>
<td>10⁻⁴</td>
<td>10⁻³</td>
<td>10⁻¹</td>
<td>>1</td>
<td>>1</td>
<td>>1</td>
<td>10⁻¹²</td>
<td>10⁻¹⁰</td>
<td>10⁻⁴</td>
</tr>
</tbody>
</table>

Tabulka 12-2. Relace mezi stechiometrickými vzorcemi ternárních kyslikatých kyselin a jejich aciditou

<table>
<thead>
<tr>
<th>Stechiometrický vzorec</th>
<th>Řadová hodnota disociační konstanty do I. stupně</th>
<th>Slovní vyjádření acidity kyselin</th>
<th>Příklady kyselin a jejich disociačních konstant</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂XO₃⁻</td>
<td>10⁻⁷</td>
<td>velmi slabé kyseliny</td>
<td>HClO⁻</td>
</tr>
<tr>
<td>H₂XO₄⁻</td>
<td>10⁻⁵</td>
<td>slabé kyseliny</td>
<td>H₂SiO₄⁻</td>
</tr>
<tr>
<td>H₂XO₅⁻</td>
<td>10⁻³</td>
<td>silné kyseliny</td>
<td>H₂BrO⁻</td>
</tr>
<tr>
<td>H₂XO₆⁻</td>
<td>10⁻¹</td>
<td>velmi silné kyseliny</td>
<td>H₂BO₃⁻</td>
</tr>
<tr>
<td>H₂XO₇⁻</td>
<td>10⁺</td>
<td></td>
<td>H₂O⁵⁺</td>
</tr>
</tbody>
</table>

Vidíme, že nejslabší kyseliny jsou takové, u nichž se shoduje počet atomů kyslíku a atomů vodíku ve stechiometrickém vzorce. Čím méně atomů vodíku ve srovnání s počtem atomů kyslíku molekula kyseliny obsahuje, tím silnější je kyselinou. Z příkladů uvedených v tab. 12-2 je vidět, že tato jednoduchá korelace stechiometrie a acidity kyselin je u reálných látek poměrně dobře splňována.

Na aciditu kyslikatých kyselin má vliv i elektronegativita jejich středového atoma. Například v řadě složené z kyselin typu HXO (X = Cl, Br a I) klesá acidita kyselin s poklesem elektronegativity atoma X:

\[
\begin{align*}
\text{Cl} & \rightarrow \text{H} & \text{Br} & \rightarrow \text{O} & \rightarrow \text{H} \\
K_{	ext{HA}} & = 10^{-6} & 10^{-9} & 10^{-11} \\
\end{align*}
\]

255
U vícetřených kyselin hodnoty disociační konstanty do vyšších stupni klesají a vzájemně se liší o pět řádů:

pokles \(H_{3}PO_{4} \): \(H_{2}PO_{4}^{-} + H_{2}O = H_{3}PO_{4}^{-} + H_{3}O^{+} \); \(K_{H_{3}PO_{4}} \approx 10^{-2} \)
kyselost \(H_{2}PO_{4}^{-} \): \(H_{2}PO_{4}^{-} + H_{2}O = HPO_{2}^{2-} + H_{3}O^{+} \); \(K_{H_{2}PO_{4}^{-}} \approx 10^{-7} \)
částice \(HPO_{2}^{2-} \): \(HPO_{2}^{2-} + H_{2}O = PO_{4}^{3-} + H_{3}O^{+} \); \(K_{HPO_{2}^{2-}} \approx 10^{-12} \)

Postěže u izoelektronových částic lišicích se od sebe nábojem platí, že kyselostí z nich je ta, která má menší záporný náboj:

pokles \(HSO_{3}^{-} \): \(HSO_{3}^{-} + H_{2}O = SO_{4}^{2-} + H_{3}O^{+} \); \(K_{HSO_{3}^{-}} \approx 10^{-2} \)
kyselost \(HPO_{2}^{2-} \): \(HPO_{2}^{2-} + H_{2}O = PO_{4}^{3-} + H_{3}O^{+} \); \(K_{HPO_{2}^{2-}} \approx 10^{-12} \)

kyselost \(HCl \): \(HCl + H_{2}O = Cl^{-} + H_{3}O^{+} \); \(K_{HCl} \approx 10^{3} \)
kyselost \(HS^{-} \): \(HS^{-} + H_{2}O = S^{2-} + H_{3}O^{+} \); \(K_{HS^{-}} \approx 10^{-15} \)

• Bazicita zásad

Všechny anióny jsou ve větši či menší míře bazické. Vzájemné relace bazicity měžeme nejlépe posoudit tak, že si představíme srovnávané anióny v jejich protonizované formě a posoudíme kyselost takto vzniklých konjugovaných kyselin. Anion, kterému odpovídá silnější konjugovaná kyselina, je slabší bazí. Například porovnáme bazicitu amidového iontu NH_{3}^{+} a chloridového iontu Cl^{-}. Protonizaci poskytují molekuly NH_{3} a HCl:

silnější báze \(\rightarrow \) NH_{3}^{+} \xrightarrow{+ H^{+}} NH_{3} \xrightarrow{protonizace} NH_{3} \xrightarrow{+ H^{+}} HCl \xrightarrow{protonizace} silnější kyselina

Ponevadž HCl je mnohem silnější kyselinou než NH_{3}, je NH_{3}^{+} zřetelně bazitější než Cl^{-}. Obdobně naleznete pořadí bazicity např. u částic F^{-}, HS^{-}, HSO_{4}^{-}, CN^{-} a H_{2}O. Protonizaci poskytují HF, H_{2}S, H_{3}SO_{4}, HCN a H_{2}O^{-}. Sestavíme-li tyto kyseliny podle klesající kyselostí, dostaneme hledané pořadí bazicity konjugovaných částic:

\[
K_{HA} = 1, \quad 1, \quad 10^{-3}, \quad 10^{-7}, \quad 10^{-10}
\]

pokles kyselosti
\(H_{2}O^{+} = H_{2}SO_{4} > HF > H_{2}S > HCN \)
\(H_{2}O = HSO_{4}^{-} < F^{-} < HS^{-} < CN^{-} \)

pokles bazicity

Anióny lišící se od sebe nábojem lze obvykle seřadit podle velikosti negativního náboje a určit tak pořadí jejich bazicity. Nejbazitější je anión s největším nábojem. Například částice F^{-}, O^{2-}, H_{2}O, N^{3-} seřadíme podle klesající velikosti náboje a dostaneme pořadí bazicity:

\(N^{3-} \rightarrow O^{2-} \rightarrow F^{-} \rightarrow H_{2}O \)

Velmi důležité je porozumět relacím bazicity hydroxidů a oxidů. Hydroxidy a oxidy prokáží z levé části periodické tabulky prokázali jsou silně bazické. Tyto látky při rozpouštění ve vodě produkují ionty OH^{-} (hydroxidy disociuují, oxidy reagují podle rovnice O^{2-} + H_{2}O = 2OH^{-}). Silně ba-
získáhydroxidy a oxidý se ve směši dobře rozpouštějí v kyselinách. K jejich dobré rozpustnosti ovšem postačuje již „kyselost“ vody.

Při postupu v periodické tabulce zleva doprava bazícita hydroxidů a oxidů prvků obecně klesá. Jejich rozpustnost ve vodě je menší nebo velmi malá [str. 238]. Rozpustnost v silnějších kyselinách však zůstává zachována (pokud oxid není polymerní nebo nemá velmi kompaktní a pevnou krystalovou strukturu) a objevuje se rozpustnost v roztocích silných zásad. O hydroxidech a oxidech, které mají tyto vlastnosti, říkáme, že jsou amfoterní.

Postupujeme-li v periodické tabulce ještě více doprava, dostáváme se do oblasti kyselitých kyselin a kyselých oxidů prvků. Tyto látky jsou rozpustné v zásadách a jsou-li silně kyselé - tedy i ve vodě.

Dokladem všech uvedených tvrzení může být acidobazické chování hydroxidolučenin prvků 3. periody:

\[
\begin{array}{ccccccc}
\text{NaOH} & \text{Mg(OH)}_2 & \text{Al(OH)}_3 & \text{Si(OH)}_4 & \text{PO(OH)}_3 & \text{SO}_2\text{(OH)}_3 & \text{ClO}_2\text{(OH)}_3 \\
& & & & & & \\
\text{čili} & \text{čili} & \text{čili} & \text{čili} & \text{čili} & \text{čili} & \\
\text{H}_2\text{SiO}_4 & \text{H}_3\text{PO}_4 & \text{H}_2\text{SO}_4 & \text{HClO}_4 & \\
\text{silná} & \text{slabá} & \text{amfoterní} & \text{velmi slabá} & \text{slabá} & \text{silná} & \text{velmi silná} \\
\text{zášada} & \text{zášada} & \text{hydroxid} & \text{kyselina} & \text{kyselina} & \text{kyselina} & \text{kyselina} \\
\text{pokles bazicity} & \text{pokles kyselosti} & \\
\end{array}
\]

Je velmi důležité uvědomit si chemickou podstatu dějů, které nastávají při rozpouštění bazických, amfoterních a kyselých oxidů a hydroxidů (kyselin) ve vodních roztocích silných zásad, silných kyselin a v samotné vodě.

\textit{Chování silně bazické látky} (např. NaOH):
\[
\text{NaOH} + \text{KOH} \quad = \quad \text{neraaguje} \\
\text{NaOH} + \text{H}_2\text{O} \quad = \quad \text{Na}^+ + \text{OH}^- + \text{H}_2\text{O} \\
\text{NaOH} + \text{HCl} \quad = \quad \text{Na}^+ + \text{Cl}^- + \text{H}_2\text{O} \\
\text{NaCl}
\]

\textit{Chování amfoterní látky} (např. Al(OH)$_3$):
\[
\text{Al(OH)}_3 + \text{KOH} = \text{K}^+ + [\text{Al(OH)}_2]^-
\]
\[
\text{Al(OH)}_3 + \text{H}_2\text{O} \quad = \quad \text{neraaguje, prakticky se nerozpouští} \\
\text{Al(OH)}_3 + 3 \text{HCl} = \text{Al}^{3+}(\text{aq}) + 3 \text{Cl}^- + 3 \text{H}_2\text{O} \\
\text{AlCl}_3
\]

\textit{Chování látky silně kyselé} (např. HClO$_4$):
\[
\text{HClO}_4 + \text{KOH} = \text{K}^+ + \text{ClO}_4^- + \text{H}_2\text{O} \\
\text{KClO}_4
\]
\[
\text{HClO}_4 + \text{H}_2\text{O} = \text{ClO}_4^- + \text{H}_3\text{O}^+
\]
\[
\text{prakticky bez reakce; potlačením ionizace} \\ \text{kyseliny chlorovodíkové se uvolňuje plynný HCl}
\]

257
Také vertikální postup v periodické tabulce podmiňuje změnu acidobazických vlastností hydroxidů a oxidů prvků. Ve skupinách vzácných bazicit a těchto látek slovo dolů. Proto je např. KOH poněkud bazickáji než NaOH. Ještě bazickáje je Rb(OH). Bazicita hydroxidů väpenatého, strontnatého a barnatého je dána řadou Ca(OH)₂ < Sr(OH)₂ < Ba(OH)₂. Bazicita oxidů prvků skupiny 4A se mění v řadě TiO₂ < ZrO₂ < HfO₂. Obdobně lze formulovat další relaci bazicit ZnO < CdO < HgO. Rozdíly v rámci těchto oxidů a hydroxidů přechodných kovů však již nejsou výrazné.

Hydroxidy a oxidy těchto prvků v různých oxidacech stavech se od sebe těž zřetelně liší acidobazickými vlastnostmi. Hydroxid nebo oxid prvků v nižším oxidacním stavu je vždy bazickýji. Proto platí např. tyto vzorce bazicit uvedených látek:

\[
\begin{align*}
 II & \quad III & \quad VI & \quad II & \quad IV & \quad VII \\
CrO & > Cr₂O₃ & > CrO₃ & MnO & > MnO₂ & > Mn₃O₇ \\
\text{bazický amfoterní kyselý} & \quad \text{bazický amfoterní kyselý} \\
I & \quad III & \quad II & \quad III \\
\text{TIOH} & > \text{Ti(OH)}₂ & \text{Fe(OH)}₂ & > \text{Fe(OH)}₃
\end{align*}
\]

12.4 HYDROLÝZA SOLÍ

Označení „hydrolýza, hydrolytická reakce“ má v chemii dvoji, i když málo rozdílný význam.

V širším slova smyslu se tak souborně označují chemické reakce, které nastávají při stíku substrátu s vodou (str. 171) a mají charakter acidobazického děje, jehož součástí je převod protonů.

Tak např. bohatíme o hydrolyze chloridu hlinitého:

\[
\text{AlCl₃} + 6 \text{H₂O} \underset{\text{hydr.}}{\rightarrow} \text{Al(OH)}₃ + 3 \text{Cl}⁻ + 3 \text{H}_₂\text{O}⁺ + \text{HCl}
\]

hydrolyze bromidu fosforečného:

\[
\text{PBr₃} + 11 \text{H₂O} \underset{\text{hydr.}}{\rightarrow} \text{HPO}_₄^{2⁻} + 7 \text{H}_₂\text{O}⁺ + 5 \text{Br}⁻ + \text{HBr}
\]

nebo o hydrolyze hydridu sodného:

\[
\text{NaH} + \text{H₂O} \underset{\text{hydr.}}{\rightarrow} \text{Na}⁺ + \text{OH}⁻ + \text{H}_₂
\]

Některé z těchto hydrolyz jsou významné, ještě více umělou změnou koncentraci zúčastněných látek lze dosáhnout zpětného děje (děje probíhajícího zprava doleva), již jsou nevratné, poněvadž některý z produktů odechází z reakční směsi (v našich příkladech H₂, HBr) a rovnává se v důsledku toho, popř. i v důsledku velké hmotnosti rovnovážné konstanty hydrolytického děje, je jednoznačně a trvale posunuta dopravá.

V užším slova smyslu chápeme jako hydrolytické děje elementární acidobazické reakce probíhající mezi kationty a anionty na jedné straně a vodou na straně druhé. Tyto procesy jsou součásti již uvedených říše chápáníhydrolytických reakcí, jsou v nich obsaženy, popř. tvori jejich podstatu.

1) Pokud je atakuje na rozpouštědlem jiná látku než voda, mluvíme o „solvolýze, solvolýtické reakce“.

258
Hydrolýza kationtů

Jako hydrolýza kationtů se označují děje obecného typu (zjednodušeně)

$$\text{M}^+ + 2\text{H}_2\text{O} = \text{MOH} + \text{H}_3\text{O}^+$$

V konkrétních případech mívá hydrolýza kationtu ponechá složitější průběh. Vratná hydrolýza AlCl₃ je v podstatě hydrolýzou kationtu Al³⁺ ve smyslu rovnice

$$\text{Al}^{3+} + 6\text{H}_2\text{O} = [\text{Al} (\text{H}_2\text{O})_6]^{3+} \quad \text{(hydratace)}$$

$$[\text{Al} (\text{H}_2\text{O})_6]^{3+} = \text{Al} (\text{OH})_3 + 3\text{H}_2\text{O}^- \quad \text{(vlastní hydrolýza)}$$

Obdobně hydrolýza PCl₅ je v užším slova smyslu hydrolýzou atomu P⁺ (tj. fiktivního iontu P⁺⁺⁺). Má určitý (dostři složitý) reakční mechanismus postupné substituce atomů Cl⁻ molikulární vody, jež po případném k atomu P⁺ odstěpuji protony H⁺. Formálně ji lze vyjádřit celkovou hydrolytickou rovnici

$$\text{P}^{5+} + 11\text{H}_2\text{O} = \text{HPO}_4^{2-} + 7\text{H}_3\text{O}^+$$

Uvedme ještě poměrně jednoduchou hydrolytickou reakci kationtu amoného podle rovnice

$$\text{NH}_4^+ + 2\text{H}_2\text{O} = \text{NH}_3\cdot\text{H}_2\text{O} + \text{H}_3\text{O}^+$$

Společným resem hydrolyzy všech kationtů je tvorba iontů H₂O⁺, jež znamená vznik acidiity rodučního roztoku (pokles pH). Z hlediska představ o posunu chemické rovnováhy to znamená, že hydrolýza kationtů bude probíhat spontánně v alkalickém prostředí. Okyselením roztoku se naopak může hydrolýza kationtů potlačit.

Schopnost hydrolyzovat mají pouze kationty odsouzené od slabě bazických hydroxidů, resp. oxidů. Hydrolyza kationtů silných bází, např. Na⁺, K⁺, Ba²⁺ vůbec neprobíhá.

Hydrolýza aniontů

Hydrolýza aniontů probíhá podle rovnice

$$\text{A}^- + \text{H}_2\text{O} = \text{HA} + \text{OH}^-$$

Jelikož příkladem může být proces hydrolyzy hydridového aniontu podle rovnice

$$\text{H}^- + \text{H}_2\text{O} = \text{H}_2\text{O}^- + \text{OH}^-$$

nebo hydrolyza uhličitanového aniontu

$$\text{CO}_3^{2-} + \text{H}_2\text{O} = \text{HCO}_3^- + \text{OH}^-$$

která může pokračovat (v dostatečně kyselém prostředí) hydrolyzou hydrogenuhličitanového aniontu:

$$\text{HCO}_3^- + \text{H}_2\text{O}^+ = \text{H}_2\text{CO}_3 + \text{H}_2\text{O}$$

Následuje rozpad:

$$\text{H}_2\text{CO}_3 = \text{H}_2\text{O} + \text{CO}_2$$

Dalším příkladem je hydrolyza kyanidového iontu:

$$\text{CN}^- + \text{H}_2\text{O} = \text{HCN} + \text{OH}^-$$

Procesy hydrolyzy aniontů mají opět společný znak, a to produkci iontů OH⁻ do vodného roztoku a vzrost jeho bazicity (zvýšení pH). Hydrolyza aniontů je tedy podporována a prohlabována.
umělým zvýšením kyselosti vodního roztoku. Alkalizace roztoku naopak hydrolýzu aniontů potlačuje.

Hydrolýzy jsou schopny výhradně anionty slabých kyselin. Hydrolýza aniontů silných kyselin např. ClO₄⁻, Cl⁻, HSO₄⁻ ve vodním roztoku nenastává.

* Hydrolýza v roztocích soli

Sůl silné kyseliny a silné bazického hydroxidu, např. NaCl, vytváří v roztoku elektrolytickou disociaci systém iontů Na⁺ a Cl⁻. Ani jeden z těchto dvou druhů iontů nehydrolýzuje. Oba ionty se ve vodním roztoku pouze hydratují.

\[
\text{Na}^+ + \text{H}_2\text{O} = \text{bereaguje} \\
\text{Cl}^- + \text{H}_2\text{O} = \text{bereaguje 1)}
\]

Jelikož v systému neprobíhá žádný hydrolytický děj, který by měl vliv na hodnotu pH tohoto systému, je pH vzniklého roztoku dán autoionizací vody a má hodnotu 7 (roztok je neutrální).

Jiná situace vzniká, když je sůl rozpouštěná ve vodě bud soli slabé kyseliny, nebo soli malo bazického hydroxidu.

Jde-li o sůl slabé zásady a silné kyseliny, např. o NH₄Cl, dochází po rozpadu jeho iontové mřížky na ionty NH₄⁺ a Cl⁻ k této reakci:

\[
\text{NH}_4^+ + 2 \text{H}_2\text{O} = \text{NH}_3\cdot\text{H}_2\text{O} + \text{H}_3\text{O}^+ \text{(hydrolýza kationtu)} \\
\text{Cl}^- + \text{H}_2\text{O} = \text{bereaguje}
\]

Acidita roztoku vzrostá (jeho pH se snižuje). Kation NH₄⁺ odvozený od slabé bazického hypothetického „hydroxidu ammoniótní“ NH₂OH hydrolýzuje a jeho hydrolýza je příčinou vzrůstu koncentrace iontů H₃O⁺ v systému.

pH roztoku soli silné kyseliny a slabé zásady se ustává na hodnotě dané vztahem

\[
pH = 7 - \frac{1}{2}pK_{\text{H}OH} - \frac{1}{2}\log c
\]

kde \(pK_{\text{H}OH}\) je pro náš případ disociační konstanta NH₂OH a \(c\) je látková koncentrace NH₄Cl v roztoku, jehož pH počítáme.

Pokud jde o pH roztoku soli silné zásady a slabé kyseliny, je situace obdobná jako v předchozím případě. Například roztok NaCN disociuje na ionty Na⁺ a CN⁻, které reagují s vodou takto:

\[
\text{Na}^+ + \text{H}_2\text{O} = \text{bereaguje} \\
\text{CN}^- + \text{H}_2\text{O} = \text{HCN} + \text{OH}^- \text{(hydrolýza aniontu)}
\]

Hydrolýzuje tedy pouze anion slabé kyseliny kyanovodíkové. Jeho hydrolýza znamená vzrůst bazicity roztoku, tj. zvýšení pH.

Hodnota pH roztoku soli slabé kyseliny a silné zásady je dána vztahem

\[
pH = 7 + \frac{1}{2}pK_{\text{H}A} + \frac{1}{2}\log c
\]

kde \(K_{\text{HA}}\) je v případě hydrolýzy NaCN – disociační konstanta kyseliny kyanovodíkové a \(c\) je látková koncentrace NaCN v roztoku.

\(^1\) Je zcela nesprávné předpokládat děje typu

\[
\text{Na}^+ + 2 \text{H}_2\text{O} = \text{NaOH} + \text{H}_3\text{O}^+; \quad \text{Cl}^- + \text{H}_2\text{O} = \text{HCl} + \text{OH}^- \\
\]

neboť rovnováha je v těchto případech posunuta stoprocentně doleva.
Posledním možným případem, který musíme uvážit, je hydrolytické chování soli slabé kyseliny a slabé zásady. Takovou látkou je např. octan amonný. Oba jeho ionty hydrolyzují:

\[
\begin{align*}
\text{NH}_4^+ + 2\text{H}_2\text{O} & \rightarrow \text{NH}_3\cdot\text{H}_2\text{O} + \text{H}_3\text{O}^+ \\
\text{CH}_3\text{COO}^- + \text{H}_2\text{O} & \rightarrow \text{CH}_3\text{COOH} + \text{OH}^-
\end{align*}
\]

Vliv těchto dvou reakcí na změnu pH roztoku je protichůdný, a je-li síla kyseliny srovnatelná se sílou zásady, zůstává roztok v podstatě neutrální. Při výraznějším rozdílu mezi sílou kyseliny a sílou zásady se pH roztoku poněkud mění.

Hodnota pH roztoku soli slabé kyseliny a slabé zásady je dána vztahem

\[
\text{pH} = 7 + \frac{1}{2}\text{pK}_{\text{HA}} - \frac{1}{2}\text{pK}_{\text{ROH}}
\]

(12.22)
13 Elementární nekovy

V této kapitole si povímme rozšíření a surovinných zdrojů nekovových prvků, popiseme jejich přípravu a výrobu v elementární formě (tj. ve formě tzv. singulárních sloučení, v nichž jsou atomy prvků sloučeny vzájemně mezi sebou) a jejich strukturu a fyzikální vlastnosti.

- Relativní zastoupení nekovů v přírodě

Příroda, která je člověku dostupná a může být využita jako zdroj surovin, se skládá z těchto čtyř částí:

1. litosféry (zemské kůry), tvořené převážně křemičitanovými horninami, řídcejí horninami a minerály sulfidickými, oxidickými a dalšími,

2. hydrosféry (vodního obalu Země), v níž jsou kromě vody soustředěny rozpoustěné sloučeniny vyloučené v průběhu věků ze svrchních vrstev litosféry,

3. atmosféry (plynného obalu Země), obsahující plynné složky, které se vytvořily a vytvářejí při geologických i biologických procesech.

4. biosféry, která je souborem všech živých organismů, organismických látek a zbytků živočišných a rostliných těl.

Tabulka 13.1. Poměrné zastoupení nejrozšířenějších prvků v přírodě (hodnoty jsou udány v hmotnostních procentech)

<table>
<thead>
<tr>
<th>Atomové číslo</th>
<th>Prvek</th>
<th>Zastoupení</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>O</td>
<td>49,50</td>
</tr>
<tr>
<td>14</td>
<td>Si</td>
<td>25,80</td>
</tr>
<tr>
<td>13</td>
<td>Al</td>
<td>7,57</td>
</tr>
<tr>
<td>26</td>
<td>Fe</td>
<td>4,70</td>
</tr>
<tr>
<td>20</td>
<td>Ca</td>
<td>3,38</td>
</tr>
<tr>
<td>11</td>
<td>Na</td>
<td>2,63</td>
</tr>
<tr>
<td>19</td>
<td>K</td>
<td>2,41</td>
</tr>
<tr>
<td>12</td>
<td>Mg</td>
<td>1,95</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>0,88</td>
</tr>
<tr>
<td>22</td>
<td>Ti</td>
<td>0,41</td>
</tr>
<tr>
<td>celkem</td>
<td></td>
<td>99,23</td>
</tr>
<tr>
<td>ostatní prvky</td>
<td></td>
<td>0,77</td>
</tr>
</tbody>
</table>
Zastoupení první desítky nejrozšířenějších prvků (kovů i nekovů) v přírodě, tj. v jejich částech uvedených částech, ukazuje tab. 13-1.

Je vidět, že příroda je tvořena převážně prvky nižších atomových čísel, tedy prvky poměrně lehkými. Z nekovů se v prvé desítce nejčastěji se vyskytujících prvků objevuje kyslík, rodník a polokov křemík. Kyslík je ovšem prvkem daleko nejrozšířenějším. Jeho velké rozšíření není důsledkem jeho přítomnosti v atmosféře (O₂) a hydrosféře (H₂O), ale především vplyvá z toho, že spolu s křemíkem tvoří oxid křemíčitý a křemíčitany, které jsou hlavními komponentami litosféry.

Celkový přehled o rozšíření všech nekovů v přírodě podává tab. 13-2. Je v ni značně zvýrazněna část periodického systému prvů tvořená nekovy (popř. polokovy) spolu s přibližnými údaji o jejich relativním zastoupení v přírodě, vyjádřeném hmotnostnimi zlomky v procentech.

Tabulka 13-2. Poměrné zastoupení nekovů v přírodě (hodnoty jsou udány v hmotnostních procentech)

<table>
<thead>
<tr>
<th>Prvek</th>
<th>8,8 · 10<sup>-1</sup></th>
<th>4,2 · 10<sup>-7</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H</td>
<td>He</td>
</tr>
<tr>
<td></td>
<td>1,6 · 10<sup>-3</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8,7 · 10<sup>-2</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,0 · 10<sup>-2</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>49,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28,1 · 10<sup>-2</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50,1 · 10<sup>-2</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9,0 · 10<sup>-2</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,8 · 10<sup>-2</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,9 · 10<sup>-1</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,6 · 10<sup>-4</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8,0 · 10<sup>-5</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6,0 · 10<sup>-4</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,9 · 10<sup>-4</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,0 · 10<sup>-6</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6,0 · 10<sup>-6</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4 · 10<sup>-9</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,0 · 10<sup>-14</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,1 · 10<sup>-14</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6,0 · 10<sup>-16</sup></td>
<td></td>
</tr>
</tbody>
</table>

Pořadí prvů podle jejich relativního zastoupení by se zásadně změnilo, kdybychom do bilance zahrnuli i odladované složení zemského nitra (které obsahuje především prky Fe, O, Mg, Si, S, Ni, Ca, Al, Co, Na atd.). Zastoupení prvů na Zemi je také výrazně odlišné od odladovaného složení vesmíru, kde daleko převládá obsah nejlehčích prvků, vodíku a helia.

Rozsah a četnost použití prvku a jeho sloučení v technické praxi nebyvají vždy úmerné jeho relativnímu zastoupení v přírodě. Mnohé dosti rozšířené prvky netvoří samostatné technicky významné minerality a jsou přítomny jen v malé koncentraci v některých horninách jako přímesi (prky dispergované), takže jsou přes své značné rozšíření technicky obtížně dostupné. Nacpál jiné prvky celkově těžba v přírodě málo zastoupené se vyskytují nahromadeny v ložiskách a získávají se poměrně snadno (prky kumulované).

Záleží také na obtížnosti chemického procesu, kterým se prvek ze suroviny získává. Je samozřejmé, že objem výroby prvku a jeho sloučení je v dané etapě technického rozvoje závislý především na tom, jak jsou tyto látky momentálně technicky významné, zda mají vlastnosti, jichž se může užitelně využívat.

Nejnovější údaje ohledně zastoupení a významu prvků, dále údaje o vlivu jejich sloučení na výrobu a na výrobu a zpracování, je dobře propracovaná.

Tabulka 13-3. Odhadovaná roční celosvětová spotřeba nekovových prvků (hodnoty jsou udány v tunách)

<table>
<thead>
<tr>
<th></th>
<th>10^7 H</th>
<th>10^8 He</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>10^9 C</td>
<td>10^8 N</td>
</tr>
<tr>
<td></td>
<td>?</td>
<td>10^4 O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10^4 F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>Si</td>
<td>10^8 P</td>
<td>10^7 S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10^7 Cl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>10^3 Se</td>
<td>10^4 Br</td>
</tr>
<tr>
<td></td>
<td></td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>10^2 Te</td>
<td>10^3 I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>?</td>
</tr>
</tbody>
</table>

13.1 ELEMENTÁRNÍ VODÍK

Nesloučený (molekulární i atomární) vodík se vyskytuje v horních vrstvách zemské atmosféry, jeho koncentrace v blízkosti zemského povrchu je mizivá. Je součástí plynů provázejících ropu a obsahuje jej i plyny okladované na některých horninách.

Běžně se vodík v přírodě vyskytuje sloučen na vodu; je také součástí molekul uhlovodíků a jiných organických látek biologického původu. I některé anorganické látky vyskytující se v přírodě (krystalohydráty, hydroxidy, hydrogenolity, kyseliny aj.) obsahují vázaný vodík.

• Příprava vodíku

Vodík lze připravit těmito způsoby:

A. Reakce elektropozitivních kovů (alkalických kovů, kovů alkalických zemin apod.) s vodou podle rovnic

$$Ca + 2H_2O \rightarrow Ca(OH)_2 + H_2$$

popř. reakcí dalších, méně ušlechtilých kovů s vodní párou

$$3Fe + 4H_2O \rightarrow Fe_3O_4 + 4H_2$$

nebo s vodnými roztoky zludněných netěžných kyselin a hydroxidů:

$$Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$$

$$Zn + 2NaOH + 2H_2O \rightarrow Na_2[Zn(OH)_4] + H_2$$

1) Viz poznámku k odst. Výroba vodíku.
B. Elektrolyzou vody (přesněji elektrolyzou vodivého vodného roztoku kyseliny nebo zásady):

\[2\text{H}_2\text{O}^+ + 2e^- (katoda) \rightarrow 2\text{H}_2 + \text{O}_2 \]

C. Rozkladem iontových hydridů (str. 220) totoh:

\[\text{CaH}_2 + 2\text{H}_2\text{O} \rightarrow \text{Ca(OH)}_2 + 2\text{H}_2 \]

Děl je synproporcionací iontů \(\text{H}^+ \) a \(\text{H}_2\text{O}^- \):

\[\text{H}^+ + \text{H}_2\text{O}^- = \text{H}_2 + \text{H}_2\text{O} \]

D. Velmi čistý vodík lze připravit teplým rozkladem některých hydridů přechodných kovů:

\[2\text{LiH} \xrightarrow{300^\circ\text{C}} 2\text{Li} + 3\text{H}_2 \]

Výroba vodíku

A. Významným průmyslovým zdrojem čistého vodíku je hydroformylační proces. Jeho součástí je dehydrogenace nasyčených a acylických uhlíkovodíků za vzniku aромátů, např.

\[\text{CH}_3\text{CH}_2\text{CH}_2\text{OH} \xrightarrow{\text{Pt}} \text{CH}_3\text{CH} = \text{CH}_2 + \text{H}_2 \]

Obdobně je zdrojem vodíku termické šklenění metanu (zemního plynu):

\[\text{CH}_4 \xrightarrow{1200^\circ\text{C}} \text{C} + 2\text{H}_2 \]

kdy vede \(\text{H}_2 \) vzniká další důležitý produkt – amorfní uhlík (saže). Při krakovině metanu (uhlíkovodíků), při němž se část \(\text{CH}_4 \) spaluje, aby se dosáhlo potřebné teploty, se reakce:

\[2\text{CH}_4 \xrightarrow{1500^\circ\text{C}} \text{C}_2\text{H}_2 + 3\text{H}_2 \]

opět získává plynová směs obsahující vodík.

Za teploty 700 až 1000°C lze uskutečnit reakci (oxidaci) uhlíkovodíků s vodní párou, pří ruží vzniká CO a \(\text{H}_2 \). Například metan reaguje podle rovnice:

\[\text{CH}_4 + \text{H}_2\text{O} \xrightarrow{\text{Ni(Al)}_2} \text{CO} + 3\text{H}_2 \]

B. Plynová směs velmi bohatou na vodík lze získat konverzi tzv. vodního plynu:

\[\text{C} \text{ (koks, antracit)} + \text{H}_2 \xrightarrow{1000^\circ\text{C}} \text{CO} + \text{H}_2 \] (příprava vodního plynu)

\[\text{CO} + \text{H}_2\text{O} \xrightarrow{\text{Fe}_3\text{O}_4\text{Cr}_2\text{O}_3} \text{CO}_2 + \text{H}_2 \] (konverze vodního plynu,

\[\text{CO} \text{ (oxidace CO na CO}_2 \text{ vodní párou)}

\[\]

\[\] **1) V odstavcích nazvaných „příprava prvku“ se uvádí převážně laboratorní a malokapacitní způsoby jeho izolace. V odstavcích „výroba prvku“ se podává přehled způsobů jeho velkokapacitní průmyslové výroby.
Vzniklý CO₂ se odděluje v plynné fázi vyprážáním vodou a roztokem KOH; zbytek CO se odstraní reakcí
\[CO + NaOH(s) \rightarrow HCOONa(s) \]

C. Elektrolýza vody, jejíž vodivost byla zvýšena přidáváním elektrolytu (NaOH, KOH), vede k získání velmi čistého (99,5\% ního) vodíku na katodě a kyslíku na anodě
\[4 \text{H}_2 \text{O}^- + 4 e^- \rightarrow 2 \text{H}_2 \text{O} + 2 \text{H}_2 \]
\[4 \text{OH}^- \rightarrow \text{H}_2 \text{O} + \text{O}_2 + 4 e^- \] (anoda)
Též katodová reakce probíhá i při elektrolýze roztoku NaCl sloužící k výrobě NaOH nebo NaClO. Pokud se NaOH vyrábí tzv. amalgámovým způsobem, rozkládá se elektrolyticky připravený sodíkový amalgám Na[Hg], reakci s vodou:
\[2 \text{Na}[\text{Hg}] + 2 \text{H}_2 \text{O} \rightarrow 2 \text{NaOH} + \text{H}_2 + 2 \text{x Hg} \]
Současně s roztokem NaOH je tak vyráběn plynný vodík.
D. Plyn získaný suchou destilací čerstvého uhlí při výrobě koksu, resp. svititelnou má obvykle toto přibližné složení: 50\% H₂, 25\% CH₄, 12\% N₂, 8\% CO a zbyléch 5\% jsou těkavé uhlovodíky, CO₂, O₂ atp. Je dobrým zdrojem vodíku. Všechny jeho komponenty lze oddělit buď vyprážáním, nebo se mohou zkonzentrovat postupným snížováním teploty plynů až na −200 °C. V podstatě jedinou nezkapanelnou složkou zůstane H₂.
E. Měné běžně je dnes již výroba vodíku reakcí tečeza s vodní párou:
\[3 \text{Fe} + 4 \text{H}_2 \text{O} \rightarrow \text{Fe}_3\text{O}_4 + 4 \text{H}_2 \]
Vzniklý Fe₃O₄ se redukce (regeneruje) vodním plynnem na elementární Fe.
F. Výjimečně lze pro malou místní spotřebu získávat vodík z amoníaku katalytickým termickým štěpením:
\[2 \text{NH}_3 \rightarrow \text{N}_2 + 3 \text{H}_2 \]
Běžně se však amoníak vyrábí naopak syntézou z elementárního dusíku a vodíku. Asi dvě třetiny ve světě vyráběného vodíku se spotřebovávají právě pro výrobu NH₃.

* Struktura elementárního vodíku

13.2 VYHRAĐNÉ PLYNY

Vzácné plynů se v přírodě vyskytují výhradně v elementárním stavu. Jsou obsaženy ve vzduchu, avšak – jak naznačuje jejich název – ve velmi malém množství. Pouze zastoupení argonu je výraznější. Hmotnostní zlomek (využitený v procentech) vzácných plynů ve vzduchu:

<table>
<thead>
<tr>
<th>Plyn</th>
<th>Hmotnostní zlomek</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>7,2 · 10⁻⁵</td>
</tr>
<tr>
<td>Ne</td>
<td>1,3 · 10⁻³</td>
</tr>
<tr>
<td>Ar</td>
<td>1,29</td>
</tr>
<tr>
<td>Kr</td>
<td>2,9 · 10⁻⁴</td>
</tr>
<tr>
<td>Xe</td>
<td>3,5 · 10⁻⁵</td>
</tr>
<tr>
<td>Rn</td>
<td>10⁻¹³</td>
</tr>
</tbody>
</table>

266
Radon, jehož koncentrace ve vzduchu je nepatrná, se tvoří v přírodní radioaktivním rozpadem Ra. Helium je ve většině množstvích (až 8%) obsaženo v některých ložiskách zemního plynu, popř. je včená na některých minerálech. V obou těchto případech pochází helium z radioaktivního rozpadu a vzniká tím, že částice ze (heliová jádra), vytvořené radioaktivním nuklidem, připoutávají dvojici elektronů a mění se tak v atomy helia.

- **Příprava vzácných plynů**

Laboratorně lze získat poměrně čistý Ar (stejného atomů vzácných plynů) ze vzduchu tak, že suchý a bezprašný vzduh se chemickou cestou zbaví přítomného kyslíku (např. reakce \(2Cu + O_2 = 2CuO \) a dusíku (např. reakce \(3Mg + N_2 = Mg_3N_2 \)). Tento postup se však v laboratoři běžně neuvádí a dává se přednost průmyslově vyráběnému plynu.

- **Výroba vzácných plynů**

A. Izolace vzácných plynů ze vzduchu spočívá v jímání a dělení některých frakcí při destilaci zkapalněného vzduchu. Kombinací fyzikálních postupů (adsorpcie a desorpcii frakce na aktivním uhlí, silikagelu, molekulových sítech za nízké teploty) a postupů chemických (reakce \(O_2 + Cu, H_2O + P_2O_5, KOH + N_2 \), nebo \(Mg, Ca \)) se tuto frakci dělí a čistí podle toho, k jakému účelu jsou určeny.

B. K získávání helia je vhodným zdrojem zemní plynný. Pokud ho obsahuje více než 0,2 obj.%, je výroba ekonomická. Spočívá ve frakční kondenzaci všech méně teplých složek zemního plynu a v dočištění zbylého surového helia již uvedenými fyzikálními a chemickými postupy.

C. **Radon** se získává z prepravů radonatých solí (chloridu radnatého), které po delším uzavření v evakuovaném prostoru vytvoří směs obsahující \(Rn, H_2, O_2 \). Vodík i kyslík se oddělí chemicky. Znečištěný radioaktivní radon se vyhrazí kapalným dusíkem nebo se čistí sorpcí na aktivním uhlí. Pro lékařské účely se pak radon komprimuje do skleněných trubic.

- **Struktura vzácných plynů**

Elektronová konfigurace vzácných plynů způsobuje, že jejich atomy jsou k sobě chemicky netěžné. Všechny vzácné plyně tvoří pouze jednoatomové molekuly, v aner Wdašovské mezimolekulové síly jsou v průměru velmi malé a vzáruost od helia k radonu. Svědčí o tom i hodnoty bodů tání a bodů varu jednotlivých plynů.

Vzácne plyny se samožetíjí i v kondenzovaném stavu, tj. jako tuhé a kapalné, zachovávají svou bezbarvost a elektrickou nevodivost. Vzniklá fyzikální vlastnosti se projevují u kapalného helia při teplotách nižších než 2,178 K. Tomuto jeho skupenskému stavu říkáme helium II. Helium v této formě je supralektické, má extrémně velkou tepelnou vodivost a projevuje se u něho i řada dalších neobyčejných fyzikálních vlastností. Popis a objasnění kvantové mechanické podstaty těchto jevů jsou jednou z významných výsledků práce teoretického fyzika Landaua.

13.3 ELEMENTÁRNÍ FLUOR

Nejběžnějším minerálem užívaným jako surovina pro výrobu fluoru a jeho sloučenin je kažice (fluorit) CaF₂. Dalšími minerály jsou: kryolith \(Na_3AlF_6 \), fluoroapatit \(Ca_3(F,PO_4)_2 \). V potravinových zemích a ve vodě oceánů jsou obsaženy v malé koncentraci fluoridy. Elementární prvek se v přírodě nevyvíjí.

- **Příprava fluoru**

Ve svých sloučeních se fluor nevyvíjí v kvadratém oxidačních stavech, nýbrž pouze jako \(F^- \). Elementární fluor tedy lze připravit pouze oxidací \(F^- \rightarrow F^0 \). Ponevadž žádný che-
nicky system nemá dostatečný redoxní potenciál k uskutečnění této přeměny, musí se využívat výhradně proces anodické oxidace. Vede toho je ovšem možné dosáhnout uvolnění elementárního fluoru termicky vyvolanou vnitřní oxidace-redukce změnou některých jeho složení.

A. **Elektrolytická příprava** fluoru spočívá v elektrolytické roztažení směsi fluoridu alkašického kovu (např. KF) a fluorovodíku. Elektrolýze se při teplotách do 300 °C v ocelovém elektrolyzéru, jehož vnitřní plochy jsou chráněny vrstvou slitiny Cu a Ni (izolovánovým kovem). Na niklové anodě se vytváří plynný fluor:

\[2 \text{F}^- = \text{F}_2 + 2e^- \text{(anoda)} \]

Vodík, tvořící se na železné katodě od anodového prostoru oddělené diafragmou, nesmí přijít do styku s fluorem, neboť by došlo k jejich explozivnímu snažení.

B. **Termický** iniciovaná vnitřní oxidace-redukce změna u některých fluoridů (takových, v nichž elektropozitivní partner fluoru má vysoké a nestálé oxidace číslo) může být též zdrojem laboratorně připraveného fluoru:

\[2 \text{CoF}_3 = 2 \text{CoF}_2 + \text{F}_2 \]

\[\text{IF}_3 = \text{IF}_2 + \text{F}_2 \]

Takto získaný fluor je velmi čistý.

Výroba fluoru

Průmyslově se fluor rovněž vyrábí *elektrolyzou*. Z fluoritu CaF$_2$ se působením silné minerální kyseliny uvolní plynný HF, připraví se jeho draselní sůl KF a směs fluorovodíku a fluoridu draselného (o poměru molů 1:1 až 3:1) se elektrolyzuje způsobem popsaným v předchozím odstavci. Získaný fluor se čistí vyhražením a absorpcí (obsahuje HF, O$_2$, N$_2$, H$_2$O, CF$_4$, CO, O$_3$, OF$_2$). Plní se do tlakových nádob.

13.4 **ELEMENTÁRNÍ CHLOR, BROM A JOD**

Nejrozšířenější z této trojice halogenů je *chlor*. V přírodě je obsažen převážně v minerálech, které se vytvořily odpadními mořské vody. Je to především *halit* NaCl. Menší technický význam mají sylvin KCl, *karnalit* K$_2$MgCl$_4$.H$_2$O a *kainit* K$_2$MgCl$_3$.3H$_2$O. Chlor je obsažen i v horninovém minerálu *chloraporit* u příbližněm složení Ca$_3$Cl$(PO_4)_2$. Významným zdrojem chloridů je mořská voda. Elementární chlor se v přírodě pro svou značnou reaktivitu nevyskytuje. Jedinou výjimkou tvoří *superpne píny*, v nichž může být elementární chlor v malé koncentraci obsažen.

Samostatné minerály obsahující brom síce existují, ale pro svou vzácnost nemají technický význam. Zdrojem bromu jsou proto *bromidy* obsažené jako příměsi v některých chloridách u *mořské vody*. Elementární brom se v přírodě nevyskytuje.

Jod je přítomen ve velmi malém množství opět v mořské vode a v sůde provozující ropná ložiska. Zvýšený obsah zjišťujeme v těch některých mořských organismů (řasách, chaluhách, mořských houbách) a v zbytcích těchto organismů (mořských jilech). Technicky významný je výskyt jodučenin v ložiskách chlorského ledku" (až 2 % NaIO$_3$).

1) Hlavní součástí chlorského ledku je NaNO$_3$. 268
Příprava chloru, bromu a jodu

A. Halogeny lze získat oxidaci halogenidů nebo halogenovodíků, např.

\[
4 \text{HCl} + \text{MnO}_2 = \text{Cl}_2 + \text{MnCl}_2 + 2 \text{H}_2\text{O}
\]

\[
16 \text{HBr} + 2 \text{KMnO}_4 = 5 \text{Br}_2 + 2 \text{MnBr}_2 + 2 \text{KBr} + 8 \text{H}_2\text{O}
\]

\[
14 \text{HCl} + \text{K}_2\text{Cr}_2\text{O}_7 = 3 \text{Cl}_2 + 2 \text{CrCl}_3 + 2 \text{KCl} + 7 \text{H}_2\text{O}
\]

Jedovodík lze dobře oxidovat vzduchem:

\[
4 \text{HI} + \text{O}_2 = 2 \text{H}_2\text{O} + 2 \text{I}_2
\]

Obdobná reakce chlorovodíku je možná jen za katalyzy (CuCl₂). Halogenovodíky jsou ve všech uvedených reakcích bud přímo vychovzí látkami, nebo vznikají v jejich průběhu protonizací halogenidových iontů působením kyselin.

Oxidovadlem halogenidů může být i jiný elementární halogen. Platí, že lehčí halogen vytišíuje těžší, např.

\[
2 \text{KBr} + \text{Cl}_2 = 2 \text{KCl} + \text{Br}_2
\]

\[
2 \text{KI} + \text{Br}_2 = 2 \text{KBr} + \text{I}_2
\]

B. Redukce kyslikatých složení halogenů (obsahujících halogen v kladném oxiidačním stavu) lze též dospět k elementárním halogenům, např. redukči jodícímu sířičitancem v kyselém prostředí podle rovnice

\[
2\text{IO}_3^- + 5 \text{HSO}_3^- + 2 \text{H}_2\text{O} = 5 \text{HSO}_4^- + 3 \text{H}_2\text{O} + \text{I}_2
\]

nebo reakcí I₂O₅ s oxidem uhelnatým:

\[
\text{I}_2\text{O}_5 + 5 \text{CO} = \text{I}_2 + 5 \text{CO}_2
\]

Kyslikaté složení lehčích halogenů lze redukovat halogeny těžšími i dosáhnout tak v tomto případě vytéšení lehčího halogenu těžším.

C. Oba postupy uvedené ad A a B lze výhodně spojit a připravovat halogeny reakčemi synproporcionálními, např.

\[
5 \text{Br}^- + \text{BrO}_3^- + 6 \text{H}_2\text{O} = 3 \text{Br}_2 + 9 \text{H}_2\text{O}
\]

\[
\text{Cl}^- + \text{ClO}^- + 2 \text{H}_2\text{O}^+ = \text{Cl}_2 + 3 \text{H}_2\text{O}
\]

Poslední uvedená reakce je velmi běžným způsobem přípravy chloru při zkrupění chlorového vápna (jehož účinnou složkou je Ca(ClO)₂) kyselinou chlorovodíkovou:

\[
\text{Ca(ClO)}_2 + 4 \text{HCl} = \text{CaCl}_2 + 2 \text{H}_2\text{O} + 2 \text{Cl}_2
\]

Výroba chloru

A. Elementární chlór se dnes získává především jako vedlejší (avšak žádaný) produkt při elektrolytické vybíhod na oxididů alkaličkých kovů. Na grafitové anodě se reakce:

\[
2\text{Cl}^- = \text{Cl}_2 + 2e^- \text{ (anoda)}
\]

tvoří plynný chlór, jímž se a odvádí se tak, aby nereagoval s hydroxidem tvořícím se v roztoku v katodovém prostoru.
B. Všechny ostatní a nyní nepříliš využívané technologie výroby chloru jsou založeny na oxidaci chlorovodíku nitroměnou plynů, kyselou dusičnou nebo vzdušným kyslíkem. Poslední ze zvedených déjů probíhá podle rovnice

$$4 \text{HCl} + \text{O}_2 \xrightarrow{\text{hř. l.}} 2 \text{H}_2\text{O} + 2 \text{Cl}_2$$

a bývá nazýván Doaconův proces. Jeho původní technický význam poklesl, avšak stále se ještě uplatňuje např. tam, kde je třeba zúžšťkovat odpadní chlorovodík.

- **Výroba bromu**

Matečné loubky po krystalizaci chloridů (zpracování halitu, karnalitu apod.) a mořská voda jsou zdrojem bromidů. Po zahuštění (na obsah nejméně 0,2 až 0,5 g ltr v 1 litru roztoku) a okyslení (H$_2$SO$_4$) téhož roztoků se plynným chlorem vytěžuje páry bromu. Po zkondenzování se znovu destiluje a popř. částí chemickou cestou.

- **Výroba jodu**

A. Hlavním zdrojem elementárního jodu jsou matečné loubky po zpracování chlazebního ledu. Jodidný sodný v nich obsazený se redukuje přísněm hydrogendiftitanu a diftitanu sodného ve vodném roztoku podle rovnice

$$2 \text{NaI} + 2 \text{NaHSO}_3 + 3 \text{Na}_2\text{SO}_4 = 5 \text{Na}_2\text{SO}_4 + \text{H}_2\text{O} + \text{I}_2$$

Získaný surový jod se čistí sublimací.

B. Jod přítomný ve formě jodidů se vodným výluhu popolu mořských chlazeb a v vodě pro-

vážející ropnou ležíku, popř. těch v některých přírodních solankách se získává oxidací dusitanem, dichromenem, jodidněnem nebo jiným vhodným oxidacním činidlem v kyselém prostředí podle rovnice

$$2\text{I}^- + 2 \text{NO}_3^- + 4\text{H}_2\text{O}^+ = 2\text{NO} + \text{I}_2 + 6\text{H}_2\text{O}$$

$$6\text{I}^- + \text{Cr}_2\text{O}_7^{2-} + 14\text{H}_2\text{O}^+ = 2\text{Cr}^{3+} + 3\text{I}_2 + 21\text{H}_2\text{O}$$

$$5\text{I}^- + \text{IO}_3^- + 6\text{H}_2\text{O}^+ = 3\text{I}_2 + 9\text{H}_2\text{O}$$

Vyloučený jod se buď zachycuje na aktivním uhli, nebo se extrahuje do petroleje a potom se pře-

cistí chemickou cestou. Čistěná spočívá v redukci (přísněm Na$_2$SO$_4$) elementárního jodu na

jodid, v extrakci jodičku do vodného výluhu a v opětové oxidaci jodidů na elementární jod.

- **Struktura elementárních halogenů**

Halogeny tvoří dvoouatomové molekuly. Výklad kovalentní vazby v těchto homonukleá-

ných molekulách (jménovitě u F$_2$) jsou podány na str. 92. Vazebné poměry u všech ostatních halo-

genů jsou analogické. Mezimolekulové síly vznikají v řadě F$_2$ < Cl$_2$ < Br$_2$ < I$_2$ jak o tom,

svědčí body tání a body varu elementárních halogenů. Halogeny v tukovém skupenství mají zachované dvoouatomové molekuly, jejichž je pravděpodobné uspořádány do krystalové mřížky. Elementární halogeny jsou tedy typicky nizkomolekulární látky.

13.5 **ASTAT**

Otvířením atomů bismutu důsledně o velké energii byl připraven izotop astatu 211I:At:

$$^{218}\text{Bi} + \alpha \text{He} = ^{211}\text{I} + 2\text{p}$$

Izotop je radioaktivní (t$_{1/2}$ = 7,5 h). Jde o jeho připravu byla uskutečněna a ověřena teprve v roce

1940. Později byly připraveny i další izotopy astatu, jež jsou však velmi nestálé.

270
13.6 ELEMENTÁRNÍ KYSLIK

Je nejrozšířenějším prvkem v přírodě nás obklopující. Vyskytuje se jako elementární prvek (v atmosféře) nebo ve formě svých sloučenin s křehkem a s dalšími prvkými (v litosféře) a ve formě rody (v hydrosféře). V atmosféře je přítomen převážně ve formě molekul O₂, ve výsích vrstvách též jako molekuly O₃ (ozon). Ve výškách nad 50 až 70 km se kyslík vyskytuje i ve své atomární formě.

- Příprava kyslíku

V laboratorním měřítku lze připravit elementární kyslík řadou různých chemických reakcí.

A. Snadno probíhá tepelný rozklad některých oxidů (oxidů těžkých kovů):

\[
\begin{align*}
2 \text{HgO} & \rightarrow 2 \text{Hg} + \text{O}_2 \\
2 \text{Ag}_2\text{O} & \rightarrow 4 \text{Ag} + \text{O}_2 \\
2 \text{PbO}_2 & \rightarrow 2 \text{PbO} + \text{O}_2 \\
3 \text{MnO}_2 & \rightarrow \text{Mn}_3\text{O}_4 + \text{O}_2
\end{align*}
\]

peroxidů (termicky i katalyticky), např.

\[
\begin{align*}
2 \text{BaO}_2 & \xrightarrow{750^\circ C} 2 \text{BaO} + \text{O}_2 \\
2 \text{H}_2\text{O}_2 & \xrightarrow{\text{MnO}_2, \text{Pt}, \text{C}} 2 \text{H}_2\text{O} + \text{O}_2
\end{align*}
\]

a kyslíkatých solí (termicky i katalyticky), např.

\[
\begin{align*}
2 \text{KClO}_3 & \xrightarrow{\text{MnO}_2} 2 \text{KCl} + 3 \text{O}_2 \\
2 \text{KNO}_3 & \xrightarrow{\text{heřm.}} 2 \text{KNO}_2 + \text{O}_2 \\
2 \text{KMnO}_4 & \xrightarrow{\text{tepl.}} \text{K}_2\text{MnO}_4 + \text{MnO}_2 + 2 \text{O}_2
\end{align*}
\]

Ze všech uvedených reakcí se v laboratoři nejčastěji používá katalyzovaný rozklad peroxidu vodíku a katalyzovaný rozklad chlorečanu draselného. Rozpad peroxidu barnatého při 750 °C a zpětný děj probíhající výrazně při 500 °C se využívají dříve k průmyslové výrobě kyslíku ze vzduchu.

B. Reakce nastávající při rozpuštění oxidů některých těžkých kovů v kyselinách mohou být také využity k laboratorní přípravě kyslíku:

\[
\begin{align*}
2 \text{MnO}_2 + 2 \text{H}_2\text{SO}_4 & = 2 \text{MnSO}_4 + 2 \text{H}_2\text{O} + \text{O}_2 \\
4 \text{Cr}_2\text{O}_3 + 6 \text{H}_2\text{SO}_4 & = 2 \text{Cr}_2\text{(SO}_4)_3 + 6 \text{H}_2\text{O} + 3 \text{O}_2
\end{align*}
\]

C. Zdrojem kyslíku je také reakce peroxidu vodíku s K\text{MnO}_4 v kyselině prostředí:

\[
5 \text{H}_2\text{O}_2 + 2 \text{K}_2\text{MnO}_4 + 3 \text{H}_2\text{SO}_4 = \text{K}_2\text{SO}_4 + 2 \text{MnSO}_4 + 8 \text{H}_2\text{O} + 5 \text{O}_2
\]

Reakce peroxidu vodíku s chlorovým úpam (chlorové vápno je technický produkt obsahující převažně CaCl₂ a Ca(ClO)₂, účinnou složkou je chlornan vápenatý):

\[
2 \text{H}_2\text{O}_2 + 2 \text{Ca(ClO)}_2 = 2 \text{CaCl}_2 + 2 \text{H}_2\text{O} + 3 \text{O}_2
\]

popř. reakce směsi peroxidu sodného a chlorového vápena (oxylit) s vodou:

\[
2 \text{Na}_2\text{O}_2 + 2 \text{Ca(ClO)}_2 + 2 \text{H}_2\text{O} = 2 \text{Ca(OH)}_2 + 4 \text{NaCl} + 3 \text{O}_2
\]
D. Elektrolyzovaly vody se vyvíjí na anodě kyslík:
\[4 \text{OH}^- = 2 \text{H}_2\text{O} + \text{O}_2 + 4e^- \text{(anoda)} \]

- Výroba kyslíku

Elementární kyslík se téměř vyhrazně vytráhí frakční destilací zkapaněného vzduchu. Oddělená kyslíková frakce obsahuje v optimálním případě 99 % \(\text{O}_2 \). Dočištění (odstranění zbytků \(\text{N}_2 \)) se provádí chemickou cestou. Obsah \(\text{Ar} \) v kyslíku obvykle nevadí.

- Příprava a výroba ozonu

A. Třiatomovou modifikaci kyslíku – ozon – lze chemicky připravit reakcí manganistanu nebo dichromatou s koncentrovanou kyselinou sírovou:

\[
\begin{align*}
2 \text{KMnO}_4 + \text{H}_2\text{SO}_4 & = \text{K}_2\text{SO}_4 + 2 \text{MnO}_2 + \text{H}_2\text{O} + \text{O}_3 \\
\text{K}_2\text{Cr}_2\text{O}_7 + 4 \text{H}_2\text{SO}_4 & = \text{Cr}_2(\text{SO}_4)_3 + \text{K}_2\text{SO}_4 + 4 \text{H}_2\text{O} + \text{O}_3
\end{align*}
\]

Současné s ozonem se však přitom vždy tvoří i značné množství kyslíku \(\text{O}_2 \).

Ozon vzniká i při některých dalších chemických reakcích, při působení fluoru na vodu, při reakci kyseliny sírové s některými peroxidy kovů apod.

B. K průmyslové i laboratorní připravě ozonu z elementárního kyslíku běžně slouží tzv. ozonisátor. Jsou to zařízeně, v nichž na kyslící působí tichý elektrický výboj nebo ultrafialové záření. Tím se homolytický řetěz na kyslík atomární a při rekombinaci se tvoří určité množství \(\text{O}_3 \):

\[\text{O}_2 + \text{O} + \text{O}_2 = 2 \text{O}_3 \]

Vzniklá směs \(\text{O}_2 \) a \(\text{O}_3 \) se zkapalňuje a frakčně destiluje.

- Struktura kyslíku \(\text{O}_2 \) a ozonu \(\text{O}_3 \)

Kyslík tvoří dvouatomové nepolarizované molekuly. Je typem nízkomolekulární kovalentní a vysoce těkavé látky (bod tání –218,8 °C, bod varu –183 °C) s nepatrnými mezimolekulovými van der Waalsovými silami. Molekulové krystaly kyslíku se při nízkých teplotách vyskytují ve třech stálých modifikacích. Podstatu chemické vazby v molekule \(\text{O}_2 \) a výklad jejího paramagnetismu jsme uvedli již dříve (str. 92).

Vazba v lomené molekule měně těkavého třiatomového ozonu \(\text{O}_3 \) (bod tání –193 °C, bod varu –112°C) může být objasněna představou hybridizace SP2 na středovém kyslíkovém atomu a překryvem dvou ze tří vzniklých HAO s orbitaly \(p_s \) okrajových atomů kyslíku tak, jak to vidíme na obr. 13-1a. Zbylý HAO (označme jej \(n \)) na středovém atomu kyslíku je obsazen elektronovým párem a je nevazebný.

Orbitaly \(p_s \) všech tří atomů kyslíku se neúčastní tvorby vazeb \(\sigma \), zato však vytvářejí trojici MO \(\psi_1, \psi_2, \psi_3 \) delokalizovaných v molekule \(\text{O}_3 \). Tvary těchto tři MO typu \(x \) znázorňuje obr. 13-1b. Vazba \(\pi \) v molekule ozonu je zapříčiněna jediným elektronovým párem umístěným na orbitálu \(\psi_\pi \). V souladu s uvedeným výkladem i s jednoduchým modelem VSEPR je molekula \(\text{O}_3 \) lomená a může být nejlépe vyjádřena elektronovým strukturálním vzorcem

\[
\begin{array}{c}
O \\
\equiv \\
O
\end{array}
\]
Úhel svíraný trojicí atomů kyslíku je 116,8°, tedy velmi blízký 120°, což odpovídá představě zmenšení úhlu z výchozí hodnoty 120° na hodnotu menší zvýšenou repulzi páru π na středovém atomu a zvětšení tohoto úhlu v důsledku přítomnosti vazby π delokalizované podél obou vazeb σ.

Obr. 13-1. a) Znázornění vzniku dvojice vazeb σ a jednoho elektrotnového páru π v molekule O₃. Orbitaly π, účastnicí se delokalizované vazby π jsou znázorněny tečkované. b) Znázornění trojice MO typu π v molekule ozonu.

Molekula ozonu má vlivem své lomené struktury a neekvivalentnosti středového a okrajových kyslíků zřetelný dipolový moment. Přítomnost dipolu v molekule spolu s její větší hmotností přispívá ke vzniku van der Waalsových sil a ke snížení těkavosti ozonu ve srovnání s dvouatomovým kyslíkem. Plynový ozon je namodralý, kapalný ozon je zbarven fialově. Ozon v tuhém skupenství tvoří modročerné krystaly.

13.7 ELEMENTÁRNÍ SÍRA

- **Příprava síry**

 V laboratoři se prakticky nikdy síra nepřipravuje, neboť je běžně komerčně dostupná. Při četných reakcích však pozorujeme vznik elementární síry.

 A. Elementární síra se tvoří oxidací sulfanu, polysulfanů, sulfidů a polysulfidů nepříliš silnými oxidacemi:

 \[\text{H}_2\text{S} + \text{I}_2 = \text{S} + 2\text{HI} \]
 \[2\text{S}^{2-} + \text{O}_2 + 4\text{H}_2\text{O}^+ = 2\text{S} + 6\text{H}_2\text{O} \]
 \[\text{S}_2^{2-} + 2\text{H}_2\text{O} + 2\text{H}_2\text{O}^+ = 2\text{S} + 4\text{H}_2\text{O} \]

273
Prvou z uvedených reakcí se připravuje jodovodík. Další probíhá samovolně při styku vodních roztoků sulfidů se vzdušným kyslíkem. Vyloučená síra se ve větši nebo menší míře, podle podmínek reakce, rozpouští v dosud neoxidovaném sulfidu za vzniku polysulfidů:

\[(x - 1)\text{S} + \text{S}^{2-} = \text{S}^{x-}\]

B. Silná redukovační síra v kladných oxidačních stavech na síru elementární:

\[\text{SO}_2 + 2\text{CO} = \text{S} + 2\text{CO}_2\]
\[\text{SO}_2 + 2\text{H}_2 = \text{S} + 2\text{H}_2\text{O}\]
\[\text{SO}_2 + 4\text{HI} = \text{S} + 2\text{I}_2 + 2\text{H}_2\text{O}\]

C. Sloučeniny obsahující síru ve dvou odlišných oxidačních stavech (kladném a záporném) mohou svěřené redukční změně postavit elementární právě. Například oksidaci roztočku thiosíranu (šíra v oxidačních stavech −II a VI) vede k reakci

\[\text{S}_2\text{O}_3^{2-} + 2\text{H}_2\text{O} = \text{S} + \text{SO}_2 + 3\text{H}_2\text{O}\]

Bežný je též vznik síry při reakci dvou jejích sloučenin, z nichž jedna má oxidaci a druhá redukční vlastnosti. Tak za přítomnosti vody dochází k reakci

\[2\text{H}_2\text{S} + \text{SO}_2 = 3\text{S} + 2\text{H}_2\text{O}\]

Koncentrovaná kyselina sírová oxiduje plynný sulfan:

\[\text{H}_2\text{S} + \text{H}_2\text{SO}_4 = \text{S} + \text{SO}_2 + 2\text{H}_2\text{O}\]

atd.

● Výroba elementární síry

Jako zdroj pro průmyslovou výrobu elementární síry slouží zejména přírodní síra, sulfidy a síraní. Dále se využívá síra přímo na ve formě organických i anorganických sloučenin v zemním plynu, ropě a uhlí.

A. Elementární síra se z vytěžené horniny nejčastěji vytváře pěchotou vodní párou. Výjimečně se tam, kde to dovolí geologické podmínky, síra vytváří a vyplavuje přímo z vrstev sironorných hornin hornou vodou a párou pod tlakem (Freshie způsob — užívaný v USA).

B. Zemní plyn, plyn v získané podobě (tj. při pyrolyze v ni obsažených uhlovodíků) a při její katalytické hydrogenaci a též plyn vynikající koksováním a zplynováním tuhých paliv obsahuje sulfur H₂S. Sulfan se z tétoho plynů bežně odstraňuje a zpracovává se na síru oxidaci na hydratovaném oxidu železitěm:

\[\text{Fe}_2\text{O}_3,\text{3H}_2\text{O} + 3\text{H}_2\text{S} = 2\text{FeS} + 6\text{H}_2\text{O} + \text{S}\]

FeS je za vzniku síry oxidován vzdušným kyslíkem zept na oxid železitý:

\[4\text{FeS} + 6\text{H}_2\text{O} + 3\text{O}_2 = 2\text{Fe}_2\text{O}_3,3\text{H}_2\text{O} + 4\text{S}\]

Sulfan se také může z plynů oddělovat tak, že se za chladu sorbuje do vodních roztoků některých organických sloučenin (alifatických aminů, oxidalkoholů), teplem se opět uvolní a vzdušným kyslíkem (za katalyzy sulfidem) je oxidován na elementární síru:

\[2\text{H}_2\text{S} + \text{O}_2 \xrightarrow{300^\circ\text{C}} 2\text{S} + 2\text{H}_2\text{O}\]

Těž zpracování sulfidů kontů může být zdrojem elementární síry, i když nejčastěji bývá prováděno tak, aby vznikal SO₂ jako výchozí látku pro výrobu H₂SO₄.
C. Také redukci sianu (např. sádrove) uhlíkem na SO₂ a nakonec na S podle reakci
\[
\text{CaSO}_4 + C \rightarrow \text{CaO} + \text{CO} + \text{SO}_2
\]
\[
\text{SO}_2 + 2\text{CO} \xrightarrow{800^\circ C} 2\text{CO}_2 + \text{S}
\]
popt. redukci sianu až na sulfid
\[
\text{CaSO}_4 + 4\text{C} \xrightarrow{900 \text{at} 1000^\circ C} \text{CaS} + 4\text{CO}
\]
ulovněním sulfanu ovlhčením a působením CO₂
\[
\text{CaS} + \text{H}_2\text{O} + \text{CO}_2 = \text{CaCO}_3 + \text{H}_2\text{S}
\]
a oxidaci vzniklého sulfanu kyslíkem lze získat velmi čistou elementární síru.

- **Struktura síry**

13.8 ELEMENTÁRNÍ SELEN

Selen doprovází v přírodě síru, a to jak v jejích sloučeninách (sulfidech), tak i v její řadě elektroměrů. Jeho zastoupení však bývá obvykle velmi malé. Selen tvoří těž vlastní minerály (tiemannit HgSe, herzelenit Cu₂Se, naumanit Ag₄Se aj.), které jsou obecně velmi málo rozšířeny, a proto nemají technický význam.

- **Příprava selenu**

Selen se v laboratoři obvykle nepřipravuje a využívá se komerčních zdrojů. Vznik selenu lze pozorovat při pozvolné oxidaci selenu, při redukci selenitů a selenanů, popř. při disproporcionaci některých sloučenin selenu (např. jeho halogenídů). Příkladem mohou být reakce

\[
\begin{align*}
H₂SeO₃ + 4 HI &= Se + 2 I₂ + 3 H₂O \\
H₂SeO₃ + 2 SO₂ + H₂O &= Se + 2 H₂SO₄ \\
2 SeCl₂ &= 3 Se + SeCl₄
\end{align*}
\]

- **Výroba selenu**

Průmyslovým zdrojem selenu jsou jednak anodové kaly shromažďující se pod anodou při elektrolytické ražení médi, jednak kaly získávané při mokrém způsobu zachycování íetu v plynném SO₂ při výrobě H₂SO₄.

Anodové kaly se obvykle oxidací tavi a se oxidují oleem. Vznikající SeO₂ při zahřívání odtéká. Výpražky obsahují tellur a některé těžké kovy, a proto se dále zpracovávají. Získaný SeO₂ se redukuje plynným amoniakem podle rovnice

\[
3 SeO₂ + 4 NH₃ = 2 N₂ + 6 H₂O + 3 Se
\]

a potom se dále čistí.

Kaly získané při čištění SO₂ pro výrobu kyseliny sírové se zpracovávají flotačně, aby se zvýšil obsah selenu. Oxidačním tavením (se směsi KNO₃ a K₂CO₃) se získá tavenina K₃SeO₃, vyloučí se vodou, oksidovaním se uvolní kyselina selenitá a ta se redukuje na elementární selen působením SO₂ (viz přípravu Se).

Jiná cesta spočívá v tom, že se kaly digerují koncentrovaným horkým vodným roztokem Na₂SO₃, popř. KCN. Selen obsazený v kálech přechází do roztoku, neboť se tvoří rozpustný selenosíran sodný Na₃SeSO₃, popř. selenokyanatan draselný KSeCN. Oksidovaním roztoku se obě sloučeniny rozloží a vyloučí se elementární selen.

- **Struktura selenu**

Selen stejně jako síra vytváří několik alotropických modifikací.

Červený selen a a červený selen β jsou dvě nestálé, navzájem málo odlišné jednoklonné modifikace selenu, jejichž strukturní jednotkou jsou stejně jako u síry osmiatomové cyklické molekuly Se₈.

Obě modifikace červeného selenu samovolně (při zahřátí) přecházejí na tzv. selen šedý, který má polymerní strukturu spirálitých řetězců atomů selenu.

Prudké ochlazení taveniny selenu vede ke vzniku amorfní modifikace — selenu sklovitého. Je vystaven z cyklických i lineárních řetězců atomů Se.

Stejně jako u síry lze v párách selenu identifikovat paramagnetické molekuly Se₂ vazebně podobné molekulám kyslíku.

276
13.9 **ELEMENTÁRNÍ TELLUR**

Tellur je ve velmi malých koncentracích obsažen v minerálech obsahujících síru. Tvoří těž samostatné minerály (telluridy tečkých kovů, např. *hessit* Ag₂Te, *altáit* PbTe, *coloradoit* HgTe), které jsou však velmi vzácné a technicky nevyužitelné.

- **Příprava telluru**
 Laboratorně se elementární tellur běžně neprávopisuje. Ke vzniku elementárního Te z teťů a kyslíkatých sloučenin telluru dochází stejnými cestami jako u elementární síry.

- **Výroba telluru**
 Anodové kaly po elektroytické refinaci mědi jsou hlavním zdrojem telluru. Po oddělení selenu tavením a pražením kalů (str. 276) se výpražky tavi s NaOH a NaNO₃. Tellur přeje na Na₂TeO₃, ten se vyluží vodou a vodný roztok oksydením poskytne TeO₂. Elementární tellur se pak získá nejlépe redukcí uhlíkem:

\[
\text{TeO}_2 + 2 \text{C} = \text{Te} + 2 \text{CO}
\]

- **Struktura telluru**

13.10 **POLONIUM**

V přírodě se vyskytuje ve *smolinci*. Je radioaktivní (τ₉₀ = 138 dní), vzniká rozpadem radioaktivního nuklidu ¹³¹Bi v uranové rozpadové řadě. Lze je těž přípravit judernou reakcí uměle. V technické chemii nemá polonium použití. V atomové technice je však využíváno jako zdroj neutronů a jako součást krátkodobě pracujících nukleárních baterií.

13.11 **ELEMENTÁRNÍ DUSÍK**

V elementární formě je dusík přítomen v atmosféře. Vázaný se vyskytuje převážně ve formě amonových solí, dusičanů a dusitanů (v mořské vodě) a jako dusičnan sodný (chlorid dusíku). Dusík je biologicky prvek, a je proto ve značném množství náhromaděn v formě anorganických i organických sloučenin v ložiskách tvořených pozůstatky živých organismů.

- **Příprava dusíku**
 Dusík je běžně komerčně dostupný a do laboratoří se dodává v tlakových nádobách.
 A. Chemická cesta nejčastěji laboratorní přípravy dusíku spočívá v reakci

\[
\text{NH}_₄^+ + \text{NO}_₃^- \xrightarrow{80 \text{ a} 105^\circ C} \text{N}_₂ + 2 \text{H}_₂\text{O}
\]

která se realizuje tak, že se k zahřátému roztoku chloridu amonového přikápává vodný roztok dusitanu sodného. Obdobně lze získat dusík reakcí kyselin amidositrové s dusitanem:

\[
\text{NH}_₃\text{SO₃H} + \text{NO}_₃^- = \text{HSO}_₄^+ + \text{H}_₂\text{O} + \text{N}_₂
\]

277
B. Tepelný rozklad iontových acídů může být zdrojem vysoce čistého dusíku:

\[
\begin{align*}
\text{Ba}(\text{N}_3)_2 & \rightarrow \text{Ba} + 3 \text{N}_2 \\
2 \text{NaN}_3 & \rightarrow 2 \text{Na} + 3 \text{N}_2
\end{align*}
\]

U kovalentních acídů některých těžkých kovů (Pb(N_3)_2, AgN_3) a též u LiN_3 může takovýto rozklad proběhnout explozivně.

C. Z dalších reakcí, které vedou ke vzniku dusíku (avšak k jeho laboratorní přípravě se nevyužívají) lze uvést tepelný rozklad (katalyzovaný) amoniaku při výrobě H_2 podle rovnice

\[
2 \text{NH}_3 \xrightarrow{950^\circ C} \text{H}_2 + \text{N}_2
\]

a oxidaci amoniaku oxidem dusnatým nebo broumem:

\[
\begin{align*}
4 \text{NH}_3 + 6 \text{NO} & = 5 \text{N}_2 + 6 \text{H}_2\text{O} \\
8 \text{NH}_3 + 3 \text{Br}_2 & = 6 \text{NH}_4\text{Br} + \text{N}_2
\end{align*}
\]

- **Výroba dusíku**

Dnes je jediným technicky využívaným zdrojem elementárního dusíku vzduch. Frakční destilace zkopaleného vzduchu se připraví asi 96% ze N_2, který může být dočasován procesy odstraňujícími především zbytky O_2. Výrobci distribuují dusík buď stlačený v plynné formě v tlakových nádobách, nebo zkopalněný v nádobách Dewarových.

- **Struktura dusíku**

Ve všech skupenských stavech je elementární dusík vystaven z molekul N_2. Diagram MO a výklad vazby v molekule dusíku jsme již podrobně uvedli (str. 92). Jako nízkomolekulární látku s malým uplatněním mezi molekulových van der Waalsových sil a s malou relativní molekulovou hmotností je dusík permanentním plynem, tedy látkou obtížně zkopalněnlou.

13.12 **ELEMENTÁRNÍ FOSFOR**

Fosfor se vyskytuje v přírodě výhradně ve formě sloučenin, nejčastěji v podobě fosforečnanů. Nejběžnější mineraly jsou apatity obecného vzorce Ca_3[X(PO_4)_2], kde funkci X zastává F^- (fluorapatit), Cl^- (chlorapatit), OH^- (hydroxapatit) aj. Vedle toho je fosfor jako biogenní prvek zastoupen v těle živých organismů i v jejich pozůstatcích (např. ložiska hydroxapatitu i karbonátapatitu jsou vesměs biologického původu). Fosforečnanem je též minerál monazit, obsahující kovy vzácných zemin. Výskyt fosforu v jiném oxidácím stavu než v P^V nebyl v přírodě zaznamenán. Pouze některé meteority prokazatelně obsahují malá množství fosforu ve formě fosfů.

- **Příprava fosforu**

Laboratorně se fosfor obvykle nepřipravuje. Reakce vzniku elementárního fosforu jsou navíc vzhledem k jeho reaktivitě mnoho běžné. Jejich příkladem může být termický rozklad oxidu fosforitého při teplotách nad 200°C za nepřítupu kyslíku:

\[
x \text{P}_2\text{O}_5 + x \text{P}
\]

Redukce kyslíkatých sloučenin fosforu uhlíkem při vysočkých teplotách je další reakcí vedoucí k získání elementárního fosforu.

278
Výroba fosforu

Prakticky jediným průmyslovým zdrojem fosforu jsou apatity, které se redukují na fosfor uhličem. Bereme-li v úvahu pouze aktivní složku všech apatitů, tj. Ca$_5$(PO$_4$)$_3$, lze jejich redukci probíhající v elektrické peci při teplotách 1300 až 1500 °C uhličem (koksem) v přítomnosti křemene, formulovat rovnici:

$$2 \text{Ca}_5\text{(PO}_4\text{)}_3 + 6 \text{SiO}_2 + 10 \text{C} \rightarrow 6 \text{CaSiO}_3 + \text{P}_4 + 10 \text{CO}$$

Unikající páry fosforu se za nepřístupu vzduchu jímají a kondenzují pod vodou. Většina takto připraveného fosforu se spaluje na P$_2$O$_5$, který je surovinou pro výrobu H$_3$PO$_4$ a fosforečnanů.

Struktura fosforu

Nejaktivnější strukturní modifikace fosforu je tzv. bílý fosfor. Je vystaven z tetraedrických čtyřatomových molekul P$_4$. Elektronový vzorec

![P tetraedr]

ukazuje, že atomy fosforu jsou v této molekule trojvazné a na každém z nich je nevazebný elektronový pár. Geometrie molekuly je ukázána na obr. 13-3a.

Pozoruhodné je, že vazby c spojující atomy fosforu nesledují přesně spojnice středů atomů. Místa maximální pravděpodobnosti výskytu elektronů na vazebních orbitaltech σ$_{pp}$, σ$_{pp}$ jsou lokalizována poněkud vně celého skeletu molekuly (tvori oblouky spojující dvojice atomů fosforu – obr. 13-3b).

Bílý fosfor je nizkomolekulární látkou s bodem tání 44,1 °C a bodem varu 280,5 °C. Existují dva způsoby uspořádání molekul P$_4$ do krystalové mřížky. Rozlišujeme proto dvě krystalografické modifikace bílého fosforu, fosfor α a fosfor β. Anormální lomené vazby P–P jsou příčinou značné reaktivity bílého fosforu.

Další strukturně výrazně odlišná modifikace fosforu je fosfor červený, vznikající anaerobním (tj. bez přístupu vzduchu) zahřátím bílého fosforu. Uspořádání atomů fosforu v jeho struktuře je řetězové. Mřížka červeného fosforu může být buď zcela amorfní (tj. řetěze nejsou vzájemně nijak uspořádány), nebo položky řetězů mohou mít arcičný řád (pravděpodobně se vyskytuje šest způsobů jejich uspořádání, a tedy i šest modifikací červeného fosforu). Polymerní charakter červeného fosforu je příčinou jeho malé těkavosti, poměrně vysokého bodu tání (bodem tání je neofr. S80 až 600 °C) a snížené chemické reaktivity a rozpustnosti. Intenzivním zahříváním červeného
fosforu a působením extrémně vysokého tlaku\(^1\) vzniká černý fosfor, který je ve své krystalické i amorfní formě nejstálejší modifikaci prvku. Černý fosfor je látkovou vysokomolekulárního charakteru. Každý atom fosforu je spojen s dalšími třemi atomy ve značně kompaktní formě.

Kapalný fosfor je tvořen molekuly \(\text{P}_2\). I v jeho páře se do teplot 800 až 900 °C stále vyskytují molekuly \(\text{P}_2\). Nad uvedenou teplotou začíná disociace na molekuly \(\text{P}_3\).

13.13 ELEMENTÁRNÍ UHLÍK

Uhlík v elementární formě se v přírodě vyskytuje jako neobyčejně vzácný minerál diamond a jako běžnější grafit (tuhý).

Vzácné existuje uhlík především ve formě uhličitanů – běžné je nápenec (kalcit) \(\text{CaCO}_3\), magnesit \(\text{MgCO}_3\), dolomit \(\text{CaCO}_3\cdot\text{MgCO}_3\), siderit \(\text{FeCO}_3\) a řada dalších. Dále obsahují uhlí minerály organického původu, jako je uhli, ropa, přírodní asfalt. Běžnou složkou uhlí je oxid uhličitý, přítomný v malém množství v atmosféře a zprostředkovávající koloběh uhlíku mezi atmosférou, biosférou a litosférou.

- **Vznik elementárního uhlíku**

Tvorbou grafitického uhlíku (sazí) pozorujeme při hoření organických látek za nedostatečného přístupu kyslíku. Také reakce uhlovodíků a jiných látek s elementárním fluorom mohou vést za určitých podmínek mimo jiné k tvorbě sazi.

- **Výroba diamantu**

Při vysokých teplotách a tlacích lze v omezené míře uskutečnit modifikační přeměnu snadno dostupného grafitu na vzácný a pro svou tvrdost technicky významný diamant. K uskutečnění přeměny (teplota 2000 až 3000 °C, tlak 25 až 60 MPa) je nutné použít jako katalyzátor přídevek stopových množství přechodných kovů. Takto připravené „technické diamanty“ o hmotnosti nepřesahující obvykle 20 mg mají rozsáhlé použití.

Přírodní diamanty o větší hmotnosti se těží v několika ojedinělých světových nalezništích.

- **Výroba grafitu, aktivního uhlí a sazi**

Vede těžebního grafitu se vyrábí grafit tak, že koks, antracit, dřevěné uhlí nebo jiný produkt s velkým obsahem mikrokristalického (grafitického) uhlíku se za přidanou oxidu železitého jako katalyzátoru anaerobně zahřívá na teplotu nad 2500 °C. Při této operaci prováděné v elektrické peci vytěká většina zneškodňujících příměši a veškerý uhlí rekrytalizuje na „makrokristalické“ grafickou formu.

Aktivní uhlí je grafitická forma uhlíku s velkým povrchem, jevíci velkou schopnost sorbovat plynů, organické látky apod. Vyrábí se pozvolným zahřívaním a pak (při 600 °C) úplnou karbonizací a aktivací uhlikatých látek biologického původu (dřeva, pece, rašeliny a jiných rostlinných zbytků).

Sazé se průmyslově nejčastěji získávají spolu s vodíkem tepelným štěpením uhlovodíků (nejčastěji \(\text{CH}_4\)) podle rovnice

\[
\text{CH}_4 \rightarrow 1200 \text{at} + 1400 \text{K} \quad \text{C} + 2 \text{H}_2
\]

Sazé jsou mikrokristalickou (dendritickou) formou grafitu, a mají použití zejména v gumárenském průmyslu.

\(^1\) Této výsledku lze dosáhnout bez použití vysokého tlaku katalyticky.
● Struktura uhlíku

Uhlík tvoří dvě allotropické modifikace – *diamant* a *grafit*. Obě formy jsou vysokomolekulární, a proto patří elementární uhlík mezi velmi málo těžké látky (bod tání > 3500 °C).

Atomovou konfiguraci diamantu vyjadruje znázornění části jeho prostorové trojrozměrné mříže – obr. 13-4a. Dvourozměrné polymerní (vrstvenatá) struktura grafitu je uvedena na obr. 13-4b.

![Diagram diamantu a grafitu](image)

Obr. 13-4. a) Struktura diamantu. b) Struktura grafitu

Diamant je pro svou kompaktní prostorovou síť s tetraédrickým systémem kovalentních vazeb nejtvrdší přírodní látkou.

Vrstvenatá struktura grafitu je tvořena systémem vazeb σ s hybridizací SP² na všech atomech uhlíku. Zbytek orbitálů pₓ zprostředkovávají vznik delokalizované vazby π, spojující všechny atomy jedné vrstvy. Delokalizace elektronů π je příčinou elektrické vodivosti grafitu. Vazba mezi vrstvami vystavenými ze šestičlenných cyklů je zprostředkovávána slabými mezipolárními van der Waalsovými silami.

13.14 ELEMENTÁRNÍ KŘEMÍK

Vyskytuje se v přírodě vždy v křemencí SiO₂, v křemíčitanech nebo hlinítkřemíčitanech. 96 % zemské kůry je tvořeno těmito sloučeninami. Většina z nich tvoří živce, amfiboly, modifikace SiO₂, hydratované formy SiO₂, pyroxeny a slidy. V elementární formě není křemík v přírodě zastoupen.

● Příprava křemíku

V laboratorním měšítku lze křemík připravit redukci oxidu křemíčitého (vyžíhaného sílikagelu, práškového křemene) působením Al, Mg a jiných redukčních činidel za vyšokých teplot. Lze uskutečnit reakce

\[
\begin{align*}
\text{SiO}_2 + 2 \text{Mg} & = \text{Si} + 2 \text{MgO} \\
3 \text{SiO}_2 + 4 \text{Al} & = 3 \text{Si} + 2 \text{Al}_2\text{O}_3
\end{align*}
\]

Reakcí s klinokřemíkem (aluminokřemíkem) lze být na křemík redukován i hexafluorkřemíčitan draselný:

\[
3 \text{K}_2[\text{SiF}_6] + 4 \text{Al} = 3 \text{Si} + 2 \text{K}_2[\text{AlF}_6] + 2 \text{K}_3[\text{AlF}_5]
\]

Také termický rozklad sílanu SiH₄ nebo halogenidů křemíčitých SiX₄ podle rovnice

\[
\begin{align*}
\text{SiH}_4 & \xrightarrow{500\,^\circ\text{C}} \text{Si} + 2 \text{H}_2 \\
\text{SiCl}_4 & \xrightarrow{1150\,^\circ\text{C}} \text{Si} + 2 \text{Cl}_2
\end{align*}
\]

281
i redukce par SiCl₄ zímkem nebo vodíkem

$$\text{SiCl}_4 + 2 \text{Zn} \xrightarrow{1000^\circ\text{C}} \text{Si} + 2 \text{ZnCl}_2$$

$$\text{SiCl}_4 + 2 \text{H}_2 \longrightarrow \text{Si} + 4 \text{HCl}$$

poskytuje elementární křemík.

- **Výroba křemíku**

 Pro výrobu velmi čistého křemíku se přímým smyčkovým využíváním poslední čtyři z prvních uvedených reakcí. Chlorid křemičitý se vyraší redukční chloraci SiO₂ podle rovnice

 $$\text{SiO}_2 + 2 \text{C} + 2 \text{Cl}_2 = \text{SiCl}_4 + 2 \text{CO}$$

 Nejčastěji užíváno více výrob křemíku je redukce SiO₂ uhlíkem nebo karbidem vápníku v elektrické peci:

 $$\text{SiO}_2 + 2 \text{C} = \text{Si} + 2 \text{CO}$$

 $$\text{SiO}_2 + \text{Ca}_2 = \text{Si} + \text{Ca} + 2 \text{CO}$$

Běžné se tyto procesy provádějí za přítomnosti železa nebo jeho oxidů, pak vzniká slitina Fe a Si, tzv. ferrosilicium, které se významně uplatňuje při výrobě oceli.

- **Struktura křemíku**

13.15 ELEMENTÁRNÍ BOR

Vyskytuje se v přírode pouze vázaný ve formě kyseliny borité (sassolin H₃BO₃) a boritanů (různé nebo borax Na₂B₄O₇(OH).8H₂O, colemanit Ca₃B₆O₁₁.5H₂O, boracit, kernit aj.).

- **Příprava boru**

 A. **Redukce** B₂O₃ hořlíkem, sodíkem nebo hliníkem. B₂O₃ se získává nejlépe dehydratací kyseliny borité.

 B. Obdobně jako u křemíku lze redukci halogenidů boritéch zímkem nebo vodíkem, popř. jejich *termickým rozkladem* připravit elementární bor:

 $$2 \text{BCl}_3 + 3 \text{Zn} \xrightarrow{900^\circ\text{C}} 2 \text{B} + 3 \text{ZnCl}_2$$

 $$2 \text{BBr}_3 + 3 \text{H}_2 \xrightarrow{1300^\circ\text{C}} 2 \text{B} + 6 \text{HBr}$$

 $$2 \text{Bi}_3 \xrightarrow{1000^\circ\text{C}} 2 \text{B} + 3 \text{I}_2$$

- **Výroba boru**

 Všechnu uvedených reakcí přípravy boru se využívá k jeho přímým smyčkovým výrobě. BCl₃ se vyraší redukční chloraci oxidu boritého. Bromid i jodid borité se připravují působením halogenů na surový kov získaný např. *aluminotermii* z B₂O₃.
K výrobě čistého boru lze použít těž termický rozklad jeho sloučenin s vodíkem — boranů. Také elektrolýzou taveniny fluorobortanů se může připravit bor.

- Struktura boru

Bor vytváří v krystalické formě několik modifikací, jež jsou všechny tvořeny prostorovou sítí kovalentních vazeb. Lze si představit, že mějška boru může být vytvořená opakovaným dva-

náctiatomových strukturálních jednotek B_{12}, majících v prostoru tvar icosaedru (obr. 13-5). Atomy boru se jednak v mlžce vzájemně poutají jednoduchými vazbami $\text{B}-\text{B}$ typu σ, jednak vznikají též elektronové deficitní delokalizované třístupňové dvouelektronové vazby (str. 403). Bor je proto v elementární formě podobně vodivý. Řadime jej mezi polokovy. Celkově lze říci, že krystalický bor má charakter vysokomolekulární látky s prostorovou mlži. Je proto velmi tvrdý a velmi málo těkavý (bod tání $2300 \, ^{\circ}\mathrm{C}$). Párky boru jsou tvořeny dvouatomovými molekuly B_2. Vazbu v těchto molekulách jsme již popsali (str. 92).
14 Vzácné plyny

Prvky helium 12He, neon 12Ne, argon 12Ar, krypton 12Kr, xenon 12Xe a radon 82Rn jsou v periodické soustavě umístěny do *nulté skupiny*1). V přirozené řadě prvků s nimi vlevo sousedí vodík a halogeny, vpravo následují alkačické kovy.

<table>
<thead>
<tr>
<th>7B</th>
<th>0</th>
<th>1A</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>He</td>
<td>Li</td>
</tr>
<tr>
<td>F</td>
<td>Ne</td>
<td>Na</td>
</tr>
<tr>
<td>Cl</td>
<td>Ar</td>
<td>K</td>
</tr>
<tr>
<td>Br</td>
<td>Kr</td>
<td>Rb</td>
</tr>
<tr>
<td>I</td>
<td>Xe</td>
<td>Cs</td>
</tr>
<tr>
<td>At</td>
<td>Rn</td>
<td>Fr</td>
</tr>
</tbody>
</table>

Nultá skupina je proto jakously pátéří periodického systému a tvoří hranici mezi nejvýraznějšími nekovy a nejvýraznějšími kovy.

S výjimkou helia, které má elektronovou konfiguraci 1s2, jsou konfigurace valenčních sfér atomů vzácných plynů typu ns2np6 [n = 2, 3, 4, 5, 6]. Energetické hladiny valenčních elektronů v atomech všech vzácných plynů jsou umístěny velmi „hlubko“ v potenciálové jasmě jádra. Vzácné plyntry proto mají velké hodnoty ionizačních energií (str. 75) a záporné hodnoty elektronové afinity (str. 76).

Tyto okolnosti se promítají do chemických vlastností vzácných plynů. Žádný z nich nemá snahu měnit svou elektronovou konfiguraci, sdílet své elektrony s jinými atomy přivedením do polycentrických MO a vytvářet vazby. Chemicky jsou proto vzácné plyntry neobyčejně inaktivní.

Jestě v nedávné době nebyla známa Žádná skutečná sloučenina vzácného plynu1). Oznámení prvků nulté skupiny názem inerit, resp. netřečné plyntry bylo písem oprávněné. Počátkem šedesátých let však byl připraven fluorid platinný PtF\textsubscript{6}, a jeho extrémní oxidaci schopnosti byly vyzkoušeny na xenonu (Bartlett 1962). Vznikla poměrně stálá třítá sloučenina přibížněho složení XePtF\textsubscript{6}.

1) Někdy je označována číslem 8.

2) Byly ovšem známy přirození i umělé získané nevazebné „sloučeniny“ vzácných plynů, v nichž jejich atomy jsou v podstatě pouze uzavřeny v dutinách vznikléch ve struktuře některých sloučenin. Látky tohoto typu bývají označovány názvem *blatnité.*
s atomem Xe v kladném oxidačním stavu. Pozdější studium této látky ukázalo, že má pravděpodobně polymerní charakter s řetězovitým uspořádáním:

\[
\text{f} \quad \text{P} = \text{F} \quad \ldots \quad \text{Xe} \quad \ldots \quad \text{P} \quad \text{F} \quad \ldots \quad \text{f}
\]

Nalezení prvé sloučeniny xenonu se stalo mohutným podnětem k hledání dalších. Výzkum se zaměřil především na experimenty s xenonem, neboť ten (stejně jako radioaktivní Rn) má ze všech vzácných plynů nejmenší ionizační energii, a tedy největší předpoklad k tvorbě sloučenin.

- **Sloučeniny vzácných plynů**

Úspěšně byly pokusy o sloučení xenonu s elementárním fluorem za nízkých teplot a v elektrickém výboji a též i za zvýšené teploty a tlaku. Podatilo se tak připravit *fluorid xenonový* XeF₂, *fluorid xenonitý* XeF₄ a *fluorid xenonový* XeF₆ jako bezbarvé, relativně stálé krystalické látky (body tání 140 °C, 114 °C a 48 °C).

Hydrolyza XeF₆ vodní párou umožnila připravit další, již kysličné sloučeniny xenonu:

\[
\text{XeF}_6 + 3 \text{H}_2\text{O} = 6 \text{HF} + \text{XeO}_3
\]

Oxid xenonový XeO₃ je velice explozivní bezbarvá krystalická látká. Je schopen reakce s koncentrovanými roztoky sílných zásad (hydroxidů alkalických kovů):

\[
\text{XeO}_3 + \text{OH}^- = \text{HXeO}_4^-
\]

Tvoří se tak *xenonany*, tj. soli *kyseliny xenonové* H₂XeO₄. Xenonany v alkalickém roztoku zvolna disproporcionují podle rovnice

\[
2 \text{HXeO}_4^- + 2 \text{OH}^- = \text{XeO}_4^{2-} + \text{Xe} + \text{O}_2 + 2 \text{H}_2\text{O}
\]

na xenonicelan, xenon a kyslík. Z xenonicelanů se podařilo připravit rovněž velmi explozivní *oxid xenonitý* XeO₃.

Veškeré uvedeného základního souboru sloučenin xenonu byla získána řada dalších.

Například fluoridy xenonu poskytují další sloučeniny s fluoridy některých prvků (2XeF₄, PF₅, XeF₂SF₆, 4XeF₆, SnF₄, XeF₆ BF₃ aj.) Opatrnou hydrolyzou fluoridů xenonu byly vedle již uvedeného konkrétního produktu XeO₃ připraveny též hydrolytické mezistupně *difluorid-dioxid xenonový* XeO₂F₂ a *tetrafluorid-oxid xenonový* XeOF₄. Hydrolyzou XeF₂ byl získán *difluorid-oxid xenonitý* XeOF₂.

Byly nalezeny i názvany existence sloučení XeF₃ a Xe(OH)₃. Prokazatelně byly izolovány *fluoroxy xenonany* Cs₂[XeF₅], Cs₂[XeF₆], Rb₂[XeF₅] a Rb₂[XeF₆]. Pravděpodobně existují též obdobné soli sodné a drasléně. Relativně stálé jsou xenoniceleany alkalických kovů a kovů alkalických zemin Na₂XeO₃, K₂XeO₄, Na₂O₄, Be₂XeO₆, 1,5H₂O. Jsou známé i nestoichiometrické sloučeniny xenonu, vznikající jeho interakcí s fluoridy ruhentia a rhodiumu o přibližné složení Xe[RuF₄]₂, Xe[RhF₄]₂, jež jsou analogické prvni nalezené sloučeniny XePF₆.

Ostatní vzácné plynů jeví ve srovnání s xenonem podstatně vyšší indiferentnost a neochotu ke sloučení. Věrohodně byla prokázána pouze existence KrF₆, pravděpodobně existují KrF₄, BaKrO₄ a snad i fluoridy radonu. Sloučeniny helia, neonu a argonu dosud nejsou známy.

Všechny popsané sloučeniny vzácných plynů jsou až na některé výjimky látky endothermické a vysoko labilní, mnohé z nich se rozkládají explozivně.

285
Struktura a vazebné poměry ve sloučeninách xenonu

Hlubší teoretický rozhod vazebných možností atomu xenonu ukázal, že tvorby vaze se mohou účastnit prakticky jen orbitály s a p jeho valenční sféry (tj. orbitály 5s a 5p). Podíl vnitřních obsazených orbitálů 4d a vnějších neobsazených orbitálů 5d na vazbě je zanedbatelný. Za těchto okolností lze vazu v sloučeninách xenonu vysvětlovat pouze představou tvorby delokalizovaných polycentrických MO. Tento přístup je složitý a dosti nenáročný. Jeho nejelmentárnější zjednodušený popis jsme uvedli při výkladu vazby v molekule vody (str. 223) a nebudeme se jím zde zabývat.

K jednoduššímu objasnění geometrických tvarů molekul dosud známých sloučenin xenonu lze využít modelu VSEPR. Elektronové strukturní vzorce a geometrické tvary základních sloučenin xenonu uvádí tab. 14-1.

<table>
<thead>
<tr>
<th>Sloučenina</th>
<th>Elektronový strukturní vzorec</th>
<th>Geometrický strukturní vzorec</th>
</tr>
</thead>
<tbody>
<tr>
<td>XeF₂</td>
<td>(\text{F} - \text{Xe} - \text{F})</td>
<td>lineární</td>
</tr>
<tr>
<td>XeF₄</td>
<td>(\text{Xe} - \text{F} \cdot \text{F} \cdot \text{F} \cdot \text{F})</td>
<td>čtverec</td>
</tr>
<tr>
<td>XeF₆</td>
<td>(\text{Xe} - \text{F} \cdot \text{F} \cdot \text{F} \cdot \text{F} \cdot \text{F} \cdot \text{F})</td>
<td>deformovaný oktaedr</td>
</tr>
<tr>
<td>XeO₃</td>
<td>(\text{Xe} - \text{O} - \text{O} - \text{O})</td>
<td>trigonální pyramida</td>
</tr>
<tr>
<td>XeO₄</td>
<td>(\text{Xe} \cdot \text{O} \cdot \text{O} \cdot \text{O} \cdot \text{O})</td>
<td>tetaedr</td>
</tr>
<tr>
<td>XeO₅⁻</td>
<td>[(\begin{array}{c} \text{Xe} \ \text{O} \ \text{O} \ \text{O} \ \text{O} \ \text{O} \end{array})]⁻</td>
<td>sklaedr</td>
</tr>
</tbody>
</table>

Tabulka 14-1. Struktura některých sloučenin xenonu

286
Z tabulky vyplývá, že všechny uvedené látky mají nižkomolekulární charakter. Vazby v molekulách jsou kovalentní povahy. Xenoničelárový ion XeO_4^{2-} tvoří s kationty iontovou míšku (např. $\text{Zn}^{2+} \text{XeO}_4^{2-}$ aj.). Tvar molekuly XeF_6 nevyplývá z klasického modelu VSEPR, poněvadž molekula má sedm elektronových párů n a σ.

- Technický význam a použití vzácných plynů

Rozsáhlé upotřebení mají vzácné plynové ve své elementární formě. Uplatňují se zejména v elektrotechnice jako plynné náplně např. helium-neonových laserů, výbojek, Geigerových–Müllerových trubic, žárovek, elektronek atd., v hutnictví a chemii jako ochranné plyny (argon, helium) zabraňující kontaktu látek nejčastěji se vzdušným kyslíkem (vyroba titanu, příprava sloučenin s prvky v nestálých oxidacech stavech apod.). Helium se využívá v atomové a rakettové technice a plni se jím balóny. Radioaktivní radon se používá v onkologii (jako zářič α). Závažné využití mají též vzácné plynové ve vědě a v technickém výzkumu, např. He v kryogenických laboratořích při dosahování extrémně nízkých teplot nebo sloučeniny xenonu (xenoničelány) jako silná oxidovadla při studiu některých oxidace–redukčních dějů 1).

V analytické chemii se používá xenoničelán sodný jako jedna z nejméně rozpustných sodných solí.

1) Produktem redukce xenoničelanů je elementální xenon, který se vyžaduje naprostou indiferecností, takže při oxidacích účinkem xenoničelanů (na rozdíl od prakticky všech ostatních oxidovadel) se do zkoumaného systému nezanáší redukovaná forma oxidovadla.
15 Halogeny

Výrazně nekovové prvky — fluor F, chlór Cl, brom Br, jod J a astat At — tvoří skupinu 7B periodického systému prvků. Elektronové konfigurace valenčních řízek jejich atomů jsou typu $n^2s^2n^p^n$ ($n = 2, 3, 4, 5$). Chemickým chováním se jednotlivé prvky od sebe málo liší. V důsledku sekundární periodicity (str. 162) jsou si chemicky zvláště blízké chlór a jod. Fluor se pro svou extrémní elektronegativitu a nepřítomnost orbitalů d ve valenční sféře vyznačuje určitou specifickostí svých chemických vlastností.

15.1 VAZEBNÉ MOŽNOSTI HALOGENŮ

Konfigurace $n^2s^2n^p^n$ valenční sféry atomů halogenů umožňuje dva principiálně rozdílné způsoby stabilizace při vytváření vazeb s jinými atomy.

První způsob spočívá v tom, že při tvorbě vazby je do prostoru atomu halogenu ve většině nebo menší míře přijímán další elektron a elektronová hustota na atomu limituje ke stavu odpovídajícímu konfiguraci vzácného plynu $n^2s^2n^p^6$. Atom halogenu nabývá oxidacičního číslo $-I$.

\[n^2s^2n^p^0 \quad n^2s^2n^p^1 \quad n^2s^2n^p^2 \quad n^2s^2n^p^3 \quad n^2s^2n^p^4 \quad n^2s^2n^p^5 \quad n^2s^2n^p^6 \]

\[\text{Cl}^0 \quad \text{Cl}^1 \quad \text{Cl}^2 \quad \text{Cl}^3 \quad \text{Cl}^4 \quad \text{Cl}^5 \quad \text{Cl}^6 \]

\[\text{Br}^0 \quad \text{Br}^1 \quad \text{Br}^2 \quad \text{Br}^3 \quad \text{Br}^4 \quad \text{Br}^5 \quad \text{Br}^6 \]

\[I^0 \quad I^1 \quad I^2 \quad I^3 \quad I^4 \quad I^5 \quad I^6 \]

Obr. 15.1. Schematické vyjádření oxidacičních stavů a elektronových konfigurací, v nichž se běžně vyskytují atomy halogenů

Druhý způsob stabilizace je charakterizován tím, že se při tvorbě vazeb naopak spíše zmenšuje (někdy jen formálně) elektronová hustota na atomu halogenu. Vazebnou situací na atomu halogenu pak zjednodušeně popisujeme tak, že mu přisoumává dosažení klidného oxidacičního stavu.

Obě cesty většinou dosahovaných elektronových konfigurací a oxidacičních stavů vyjadřuje schéma na obr. 15.1.

Je třeba upozornit na vyslovenou formálnost tohoto schématu. Zejména klidné oxidaciční stavky halogenů nelze, přesně vzato, charakterizovat uvedenými elektronovými konfiguracemi, neboť pouze představu překryvá AO a HAO zúčastněných atomů a rozmístěním vazebných elektronů do systému vytvořených MO.

1) Astatem se zde pro jeho vzácnost a technicky nevýznamnost a zejména také proto, že jeho chemie dosud není dostatečně prozkoumaná, nebudeme zabývat.

288
Oxidační stav – I

Jestliže se atom halogenu víže s atomem elektropozitivního prvku, je vznik vazby většinou podminěn prostým překrytem orbitalu p, halogenu a vhodného AO nebo HAO vazebného partnera:

![Diagram s orbitaly a vazbou]

Rozhodující vliv na charakter vazby přitom má rozdíl elektronegativit zúčastněných atomů. Je-li tento rozdíl malý, má vazba kovalentní charakter a poměrně malou polaritu. Sdílený elektronový pár vzniklé vazby σ je jen nevýrazně přetažen do prostoru atomu halogenu. Označíme-li halogen symbolem Y a atom vazebného partnera M, zobrazuje vzniklou vazbu jednoduchý elektronový vzorec

$$M^{\text{II}} - Y^{\text{-}}$$

Uspořádání vzorce vyjadřuje, že nevazebné elektronové páry ns^2, np^2 a np^3 v podstatě zůstávají (bez účasti na vazbě) lokalizovány v prostoru atomu halogenu1. Halogenu přisuzujeme oxidační číslo $-I$. Typickými příklady látek s takovýmto typem vazby jsou např. halogenidy nekovů SF_6, TeCl$_4$, CCl$_4$:

![Diagram s halogenidy]

halogenidy a halogenokomplexy nepříliš elektropozitivních kovů, např. TiCl$_4$, [CdBr$_4$]$^{2-}$, [HgI$_2$]$^{2-}$ a HgCl$_2$:

![Diagram s halogenokomplexem]

a halogenovodíky:

$$H - F \quad H - Cl \quad H - Br \quad H - I$$

Jestliže se hodnoty elektronegativity atomů, které se podílejí na vzniku vazby, značně rozdílní, tj. platí-li $X_M \ll X_Y$, převládají ve vznikající vazbě elektrostatické síly. Sdílený elektronový pár je prakticky úplně přetažen na atom halogenu Y a vzniklá vazba má charakter převážně ionový:

$$M^{\text{II}} - Y^{\text{-}}$$

1 Přesně vzato, i tyto atomové orbitály se do jisté míry na vazebné interakci podílejí, ale jejich příspěvek není výrazný a při zjednodušeném výkladu k němu není třeba přihlížet.
Tohoto typu jsou halogenidy všech silně elektropozitivních kovů:

\[
\begin{align*}
\text{Na}^+ & \quad \text{Br}^- & \quad \text{Ca}^{2+} & \quad 2\text{Cl}^- & \quad \text{TI}^+ & \quad \text{F}^- \\
\end{align*}
\]

Oba popsané způsoby tvorby vazby vedou ke zvětšování elektronové hustoty na atomech halogenů. Sklon k vytváření takovýchto vazeb vzrůstá — souhlasně se vzrůstem elektronegativity halogenů — od jodu k fluoru. U fluoru představuje dosažení oxidace čísla —I jedinou možnost vazby na atom libovolného z ostatních prvků.

Kladné oxidační stavy

Tvori-li atomy halogenů (Y = Cl, Br, I) vazbu s atomy kyslíku nebo s atomy jiného, elektronegativnějšího halogenu (Y), mohou v takovémto případě dosáhnout kladných oxidačních čísel.

Platí \(X_2 < X_Y \), resp. \(X_2 < X_Y \). Vznik vazby v takovýchto sloučeninách vysvětlujeme představou hybridizace orbitalů s, p, popř. i d atomů halogenů a překryvem vzniklých HAO s orbitaly atomů obklopujících halogen.

U většiny kysličatých sloučenin halogenů (kysličatých kyselin, jejich soli, oxidů halogenů aj.) v nejednodušším výkladu vazby předpokládáme hybridizaci \(SP^3 \), vedoucí k obvyklé tetraedrické koordinaci středového atomu halogenu, např. \(\text{ClO}_3^- \), \(\text{HIO}_4 \) a \(\text{Cl}_2\text{O}_7^- \):

\[
\begin{align*}
\text{Cl} & \quad \text{I} & \quad \text{O} \\
\text{O} & \quad \text{O} & \quad \text{O} \\
\text{O} & \quad \text{O} & \quad \text{O} \\
\end{align*}
\]

Stejný typ hybridizace lze předpokládat i u niže koordinovaných atomů halogenů, ovšem s tím rozdílem, že jeden, dva nebo i tři HAO středového atomu jsou obsazeny nevazebným elektro- novým párem:

1 volný pár — \(\text{BrO}_3^- \) a \(\text{HIO}_3^- \):

\[
\begin{align*}
\text{Br} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\end{align*}
\]

2 volné páry — \(\text{ClO}_4^- \) a \(\text{HClO}_4:\

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\end{align*}
\]

3 volné páry — \(\text{ClO}^- \) a \(\text{HIO}:

\[
\begin{align*}
[\text{Cl} & \quad \text{O}]^- \\
\text{O} & \quad \text{O} \\
\end{align*}
\]

V jiných případech předpokládáme odlišnou hybridizaci, např. \(SP^2 \) u lomené molekuly \(\text{ClO}_3 \) (zybyl orbitál p, na tomu chloru se zapojují do tvorby dehokalizované vazby π)

\[
\begin{align*}
\text{Cl} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\end{align*}
\]

290
nebo i účast orbitalů d, např. hybridizace SP³D v molekulách interhalogenů typu YZ₂, v polyhalogenidových ióních typu Y₃⁻:

\[
\begin{array}{c}
\text{F} \\
\text{Cl} - F \\
\text{F}
\end{array}
\]

nebo hybridizaci SP³D², např. u jodistanového aniontu a interhalogenových sloučenin typu YZ₃:

\[
\begin{array}{c}
\text{O} \\
\text{F} \\
\text{F} \\
\text{O} \\
\text{O}
\end{array}
\]

Konečně k výkladu struktury interhalogenové sloučeniny IF₆ musíme užít představu, že se do systému hybridizovaných orbitalů s, p a d zapojuje i jeden z vnitřních orbitalů f.

- Ostatní způsoby vazby halogenů

U některých sloučenin halogenů, ať již je v nich halogen v kladném, nebo v záporném oxi-
dačním stavu, pozorujeme relativní zkrácení vazeb proti délka, jež bychom očekávali na základě představ uvedených v obou předchozích odstavech. Je to způsobeno existenci významné interakce π, tedy tvarbou (obvykle delokalizovaných) vazeb π. Proto např. předpokládáme, že krátká a pevná vazba B–F v molekulách BF₃ je vedle interakce σ hybridizovaných orbitalů sp³ tříúrového atolu s orbitály pₓ atomů fluoru (str. 106) podmíněna i delokalizovanou interakcí π dalšího orbitalu p fluoru s nehybridizovaným orbitálem px tříúrového atolu B.

![Diagram](image)

Obdobně je třeba chápat velmi kompaktní tetraedrický chloristanový anion ClO₄⁻ s krátkými vazbami Cl–O jako útvar, který vedle interakce σ čtyř orbitalů sp³ tříúrového atomu chloru s orbitály pₓ čtyř atomů kyslíku vykazuje i interakci π, do níž jsou zapojeny vhodně orientované orbitály p všech čtyř atomů kyslíku a prázdny orbitaly dₓz a dₓ y chloru:

![Diagram](image)
Interakce π je běžným způsobem vazby halogenů v jejich sloučeninách. Při výkladu struktury a reaktivitě mnohých sloučení halogenů se k tomuto způsobu vazby musí přihlédet.

Atomy halogenů v oxidativním stavu — I jsou schopné vytvářet ještě další typ vazby a mohou ve funkci městskových atomů dosáhnout i dvojvažnosti. Příkladem je dimerizační molekula plynného chloridu hliníčekho nebo lineární strukturní motiv v molekule CuBr₂:

\[
\begin{align*}
\text{Al}_2\text{Cl}_6 & \\
\text{CuBr}_2
\end{align*}
\]

Obě vazby vytvářené městskovým atomem halogenu mají charakter interakce π. Druhá vazba vzniká tak, že původně nevazebný elektronový pár atomu halogenu projeví své nukleofilní vlastnosti a vytvoří donor–akceptorovou vazbu s elektrofilním atomem M⁺:

\[
\begin{align*}
\text{Y} & \\
\text{M} & \text{M}⁻
\end{align*}
\]

Schopnost vytvářet městské atomy mají všechny halogeny.

Obdobný charakter jako tvorba městských má i poslední typ vazební interakce, již se mohou účastnit atomy fluoru a chloru. Je o vazbě vodíkovém, městském u fluorovodíku a v menším měří u chlorovodíku. Její podstatu jsem zde již objasnil (str. 148).

15.2 CHEMICKÉ VLASTNOSTI HALOGENŮ

Elementární halogeny patří mezi mimořádně reaktivní látky. Fluor lze označit za nejreaktivnější z prvků vůbec. Mnohé jeho reakce s jinými prvky nebo i sloučeninami jsou vysoko exotermské a mají povahu hoření, někdy dokonce probíhají i explozivně. Z prvků se s fluorom neslučuje pouze dusík; reakce s kyslíkem nastává až vlivem elektrického výboje a také jeho reakce s uhličitem se realizuje až za červeného žáru. Elektopozitivní prvky reagují s fluorom velmi ochotně, avšak některé kovy (měď, nikl) se při reakci pokrývají vlastní fluoridu, která brání dalšímu průběhu reakce. Při všech svých reakcích působí elementární fluor oxidativně (je největším chemickým oxidativním činitel’ vůbec) a sám přehazí do oxidativního stavu — I.

Obdobně, avšak méně výrazné oxidativní působení je typické i pro ostatní halogeny. V řadě F > Cl > Br > I reaktivita i oxidativní schopností klesají. Mnohé prvky již s teplými halogeny nereagují (uhlík s chlorinem, síra s jodem atd.). Také kovy, pokud jsou ušlechetilé, jeví menší sklon reagovat s teplými halogeny. Naopak mnohé méně ušlechetilé kovy sice reagují, ale současně se na svém povrchu pasírnu. Pasivace železa při reakci s chloretem je technicky významná, neboť umožňuje uchovávat bezvodý kapalný chlor v ocelových tlakových nádobách.

Halogeny při reakci s binárními sloučeninami obvykle bud vytěsně elektrokrénativní složku sloučeniny jako prvek, např.:

\[
\begin{align*}
\text{SiO}_2 + 2 \text{F}_2 & = \text{SiF}_4 + \text{O}_2 \\
\text{H}_2\text{S} + \text{Br}_2 & = 2 \text{HBr} + \text{S}
\end{align*}
\]

292
nebo reagují s oběma prvky

\[\text{H}_2\text{S} + 4 \text{F}_2 = 2 \text{HF} + \text{SF}_4 \]

popř. se na molekulu sloučeniny aduji:

\[\text{PCl}_3 + \text{Cl}_2 = \text{PCl}_5 \]
\[\text{SO}_2 + \text{Br}_2 = \text{SO}_2\text{Br}_2 \]
\[\text{CO} + \text{Cl}_2 = \text{COCl}_2 \]

Chlor, brom a jod mohou při reakci s některými sloučeninami přecházet též do kladného oxidacebního stavu, a to buď tak, že jsou touto sloučeninou (silným oxidacebním činidlem) oxidovány, např.

\[3\text{I}_2 + 10 \text{HNO}_3 = 6 \text{HIO}_3 + 10 \text{NO} + 2 \text{H}_2\text{O} \]

aněbo tak, že halogen disproporcionuje. Chlor, brom a jod disproporcionují např. ve vodě podle rovnice typu \(^1\)

\[\text{Cl}_2 + \text{H}_2\text{O} = \text{HCl} + \text{HClO} \]

Čím je halogen težší, tím neochotněji s vodou takto reaguje, tj. tím více je rovnováha uvedené reakce posunuta doleva.

15.3 BINÁRNÍ SLOUČENINY HALOGENŮ

Velká pestrost chemie halogenů se projevuje i ve značné rozmanitosti vlastností binárních sloučenin, které halogeny vytvářejí s jinými prvky. Nejběžnější sloučeniny tohoto typu si nyní podrobněji probereme.

● Halogenovodíky

Halogenovodíky lze poměrně velmi snadno připravit. Nejznámější je vytěsnit je jako těkavé látky z halogenidů působením silných minerálních kyselin:

\[\text{CaF}_2 + 2 \text{H}_2\text{SO}_4 = 2 \text{HF} + \text{CaSO}_4 \]
\[\text{NaCl} + 2 \text{H}_2\text{SO}_4 = \text{HCl} + \text{NaHSO}_4 \]

\(^1\) Zcela odlišná je reakce fluoru s vodou. Probíhá za vytěsnění kyslíku:

\[\text{H}_2\text{O} + \text{F}_2 = 2 \text{HF} + \text{O}_2 \] (směs O₂ a O₃)

Fluor nemůže v tomto případě reagovat shodně s ostatními halogeny, neboť nikdy nevystupuje v kladném oxidacebním stavu.

\(^2\) Vědej tradičních názvů fluorovodík, chlорovodík, bromovodík a jodovodík je přípustné používat pro halogenovodíky i názvy fluorovan, chlóravan, broman a jodan.
Pokud bychom touto cestou chci připravit HBr a HI, musíme k vytěsnění použít minerální kyselinu, která nemá prakticky žádné oxidací účinky (např. H₃PO₄). Nicméně její koncentrovanou kyselinu sirovou, neboť reaguje s uvolňovanými halogenovodíky (HBr a HI) podle rovnic
\[2 \text{HBr} + \text{H}_2\text{SO}_4 = \text{Br}_2 + \text{SO}_2 + 2 \text{H}_2\text{O} \]

Při přípravě bromovodíku i jedovodíku se proto dává přednost hydrolytickým reakcím, např.
\[\text{PBr}_3 + 3 \text{H}_2\text{O} = \text{H}_3\text{PO}_4 + 3 \text{HBr} \]

Přítom bromid fosforový se vyrábí přímo ve vyviječeném halogenovodíku reakce
\[2 \text{P} + 3 \text{Br}_2 = 2 \text{PBr}_3 \]

Obdobně lze získat i jedovodík. K přípravě HF a HCl se obvykle hydrolytické reakce nevolí, protože řada fluoridů a chloridů je takové reakce schopna a spontánně ji podléhá:
\[\text{SiCl}_4 + 3 \text{H}_2\text{O} = \text{H}_2\text{SiO}_3 + 4 \text{HCl} \]

Redukce elementárních halogenů sulfanem je další vhodnou cestou připravy halogenovodíků, jmenovitě HBr a HI:
\[\text{I}_2 + \text{H}_2\text{S} = 2 \text{HI} + \text{S} \]

K přípravě HF může posloužit i termický rozklad hydrogenfluoridů:
\[\text{KHF}_2 = \text{KF} + \text{HF} \]

Všechny halogenovodíky lze získat syntézou z prvků
\[\text{H}_2 + \text{Y}_2 = 2 \text{HY} \quad (\text{Y} = \text{F}, \text{Cl}, \text{Br}, \text{I}) \]

Avšak reakce fluoru s vodíkem probíhá explozivně; u jodu už je naopak vysloveně zvratnou reakcí, s rovnováhou posunutou ve prospěch nesloučených prvků.

Na silné redukovaná mohou halogenosodíky (zejména ve vodném roztoku) působit oxidací. Příkladem je reakce
\[\text{Zn} + 2 \text{HCl} = \text{ZnCl}_2 + \text{H}_2 \]

Oxidujícím činitelem je atom H⁺, který se při tomto procesu redukuje na H⁻. Atomy halogenů v oxidaci stávají -1 se na tomto ději nepodílejí, neboť jejich další redukce již samozřejmě není možná.

Jedovodík, bromovodík a chlorovodík se mohou chovat těž redukčně. Atomy halogenů v oxidaci stávají -1 se přitom oxidují na elementární stav nebo dokonce do oxidacích stáv kladných. Samovolně probíhá oxidace HI vzdušným kyslíkem:
\[4 \text{HI} + \text{O}_2 = 2 \text{I}_2 + 2 \text{H}_2\text{O} \]

Jedovodík se těž oxiduje např. peroxydém vodíku:
\[2 \text{HI} + \text{H}_2\text{O}_2 = 2 \text{H}_2\text{O} + \text{I}_2 \]

K oxidaci chlorovodíku je již z pojetí silnějších oxidovadel, např.
\[16 \text{HCl} + 2 \text{KMnO}_4 = 2 \text{MnCl}_2 + 2 \text{KCl} + 5 \text{Cl}_2 + 8 \text{H}_2\text{O} \]

294
Halogeny

Binární sloučeniny halogenů se všemi prvky s výjimkou vodíku, kyslíku a dusíku označujeme názvem halogenidy. Jsou buď skutečnými (NaCl, CdBr₂, BiI₃ aj.), nebo pouze hypotetickými (SCl₂, TeF₄, SF₆ a j.) solemi halogenovodíků.

Podle charakteru vazby rozlišujeme halogenidy iontové a halogenidy kovalentní.

Do skupiny iontových halogenidů patří halogenidy alkaličkých kovů, hořčíku, kovů alkaličkých zemí, lanthanoidů a některých dalších elektropozitivních kovů. Typickými vlastnostmi iontových halogenidů jsou jejich malá těkavost, křehkost jejich krystalů a elektrická vodivost jejich tavenin.

Kovalentní halogenidy vytvářejí některé ušlechtilé kovy a prvky nekovové. Některé kovalentní halogenidy jsou látky nizkomo molekulární (halogenidy kovů ve vyšších oxidačních stavech, např. TiCl₄, SnCl₄, UF₄, MoF₆, WF₆, a halogenidy všech nekovů a polokovů, např. SF₆, SiF₄, AsF₄, TeBr₄). Jiné jsou vysokomo molekulární látky s lineárními, rovinnými nebo prostorušovými sítěmi kovalentních vazeb (např. AlCl₃, CdCl₂, CuBr₂, BiI₃). Atomy halogenů zastávají v těchto sloučeninách funkci atomů můstkových (str. 292). Společným znakem všech halogenidů je to, že halogeny se v nich vyskytují v oxidačním stavu ─ I. Přitom samostatně platí, že vazba je v halogenidech tím iontovější, čím větší je rozdíl elektronegativit zúčastněných prvků a čím nižší je oxidační stav elektropozitivního prvku ve sloučenině. Proto klesá iontovost např. v této řadě sloučenin:

NaF > NaCl > NaBr > NaI

Platí také tyto příklady relací iontovosti u dvojic sloučenin:

TiCl₄ > Ti₃Cl₆
Cr₃Br₄ > Cr₄Br₄
Pb₄F₄ > Pb₅F₄

Bezvodč binární halogenidy lze připravit chemickými reakcemi několikého typu:

1. Především je možné syntetizovat je přímým sloučením prvků:

Ti + 2 Cl₂ = TiCl₄
S + 3 F₂ = SF₆
2 Fe + 3 Br₂ = 2 FeBr₃
Hg + I₂ = HgI₂

2. Další cesta spočívá v reakci málo ušlechtilých kovů s halogenovodíky podle rovnice

Cd + 2 HCl = CdCl₂ + H₂
Ca + 2 HBr = CaBr₂ + H₂

anebo běžněji rozpuštěním oxidů, hydroxidů či uhlikatana kovů v halogenovodíkových kyselinách:

MgO + 2 HCl = MgCl₂ + H₂O
KOH + H₂ = KI + H₂O
CaCO₃ + 2 HCl = CaCl₂ + H₂O + CO₂

295
3. Pro přípravu málo rozpustných halogenidů (str. 239) lze využít srážecí reakce:

\[\text{AgNO}_3 + \text{NaCl} = \text{AgCl} + \text{NaNO}_3 \]

\[\text{Pb(NO}_3\text{)}_2 + 2 \text{NaI} = \text{PbI}_2 + 2 \text{NaNO}_3 \]

\[\text{HgCl}_2 + 2 \text{NaI} = \text{HgI}_2 + 2 \text{NaCl} \]

4. Technicky významná je příprava halogenidů (nejčastší chloridů) z oxidů kovů tzv. redukční halogenace při zvýšených teplotách. Jako redukovační poutající kyslik se užívá nejčastěji uhli, halogenážním činidlem obvykle bývá sám elementární halogen:

\[\text{Al}_2\text{O}_3 + 3 \text{C} + 3 \text{Cl}_2 = 2 \text{AlCl}_3 + 3 \text{CO} \]

\[\text{SiO}_2 + 2 \text{C} + 2 \text{Cl}_2 = \text{SiCl}_4 + 2 \text{CO} \]

Obě činidla však mohou být přítomna v jediné sloučení — chloridu uhlíčetin — a reakce pak probíhá nápr. podle rovnici:

\[\text{BeO} + \text{CCl}_4 = \text{BeCl}_2 + \text{COCl}_2 \]

\[\text{Cr}_2\text{O}_3 + 3 \text{CCl}_4 = 2 \text{CrCl}_3 + 3 \text{COCl}_2 \]

5. Mnohé z halogenidů lze připravit rozpuštěním kovů, jejich oxidů, hydroxidů a uhličetin v halogenovodíkovech kyselinách pouze v hydraturané formě (\(\text{CoCl}_2\cdot6\text{H}_2\text{O}, \text{NiBr}_2\cdot6\text{H}_2\text{O}, \text{CdCl}_2\cdot4\text{H}_2\text{O}, \text{NiF}_2\cdot3\text{H}_2\text{O} \) aj.). K připravě bezvodých halogenidů může pak posloužit dehydratace těchto hydrátů jejich zahřátím v proudu halogenovodíku nebo chloridu thionylu:

\[\text{CoCl}_2\cdot6\text{H}_2\text{O} + 6 \text{SOCl}_2 = \text{CoCl}_2 + 6 \text{SO}_2 + 12 \text{HCl} \]

\[\text{CuBr}_2\cdot2\text{H}_2\text{O} + 2 \text{SOCl}_2 = \text{CuBr}_2 + 2 \text{SO}_2 + 4 \text{HCl} \]

Některé bezvodé halogenidy (většinou ty, které při stýku s vodou rychle a nevratně hydrolyzují jako nápr. \(\text{AlCl}_3, \text{SnCl}_4\) nebo \(\text{PbCl}_2\)) touto cestou připravit nelze.

Podlechováníkvodě se halogenidy mohou roztřídit do tří skupin:

a) Do prvé skupiny patří halogenidy silně elektropozitivních kovů, které jsou výrazně ionotové a ve vodním roztoku podléhají pouze elektrolytické disociaci (\(\text{NaCl}, \text{KI}, \text{TiBr}, \text{CaCl}_2 \) aj.).

b) Druhou skupinu tvoří halogenidy hydrolyzující. Patří sem mnohé z halogenidů nekovů, polokovů a některých kovů. Elektropozitivní část jejich molekuly je velmi málo bazická (nebo je dokonce kyselá), a podléhá proto hydrolytické reakci. Příkladem jsou reakce těchto halogenidů:

\[\text{TiCl}_4 + 2 \text{H}_2\text{O} = \text{TiO}_2 + 4 \text{HCl} \]

\[\text{BBr}_3 + 3 \text{H}_2\text{O} = \text{H}_3\text{BO}_3 + 3 \text{HBr} \]

\[\text{PI}_3 + 3 \text{H}_2\text{O} = \text{H}_3\text{PO}_3 + 3 \text{HI} \]

c) Některé halogenidy se ve vodě bud jen bez disociace rozpouštějí, nebo se s vodou nemísí a vůbec s tím reagují (\(\text{CCl}_4, \text{SF}_6, \text{SeF}_6, \text{OsF}_6 \) aj.). Hlavní příčinou indiferentnosti těchto halogenidů k vodě je velká aktivita energetického strahu, kterou vyžaduje substituce halogenidových iontů molekulární vody (str. 186).

Oxidačně-redukční vlastnosti halogenidů jsou velmi rozmanité a souvisí většinou se stabilními oxidacími stavů, který vyvolává elektrotytická reakce. Halogenidy prvků v některých oxidacích stavách (třeba i běžných) nelze ve vodě přípravit. Při pokusu o jejich syntézu nastávají vnitřní oxidace-redukce změny, příliš je oxidovan halogen. Proto neexistuje nápr. sloučení \(\text{PbI}_4\) nebo \(\text{CuI}_2\):

\[\text{Pb}^{4+} + 4\text{I}^- = \text{PbI}_2 + 2\text{I}_2 \]

\[2\text{Cu}^{2+} + 4\text{I}^- = \text{2CuI} + 2\text{I}_2 \]

296
Polyhalogenidy

Halogenidové ionty (Y\(^{-}\)), vznikající disociací halogenidů ve vodném roztoku, mají schopnost vytvářet s molekulami halogenů (Y\(_2\)) adukt o složení Y\(_{2n+1}\)⁻, podle obecné rovnice

\[Y^{+} + nY_2 = Y_{2n+1}⁻ \]

Útvar Y\(_{2n+1}\)⁻ se nazývá polyhalogenidový anion. Takto vytváří jodový anion s molekulou jodu např. anion trijodidový:

\[I^{-} + I_2 = I_3^{-} \]

Připojováním dalších molekul I\(_2\) se mohou postupně vytvářet polyjodidové ionty I\(_2\)\(_2\)^{-}, I\(_2\)\(_3\)^{-} a dokonce i I\(_2\)\(_4\)^{-}. Přitom není podmínkou, že se děje účastí pouze atomy téhož halogenu, a jsou možné reakce typu

\[Br^{-} + I_2 = BrI_3 \]

Adorací se mohou i molekuly interhalogenů (str. 298):

\[I^{-} + Cl_ = ICl_ \]

Praktické uplatnění má tvorba polyjodidů zejména v analytické chemii. Vznik polyjodidů umožňuje určit koncentrace jodových kovů elementární jod, který je jinak velmi nesnadný k rozpoznání. Tendence k tvorbě polyhalogenidových iont vzájemně výrazně v řadě F\(^{-}\) < Cl\(^{-}\) < Br\(^{-}\) < I\(^{-}\).

Trihalogenidové ionty mají lineární tvar. Trijodidový ion I\(_3\)^{-} je zobrazen geometrickým vzorcem (včetně nevazebných elektronových párů):

\[[\begin{array}{c}
\cdot \\
\cdot \\
\cdot
\end{array}]
\]

Jeho vazebné uspořádání vyjadřuje elektronový strukturní vzorec

\[[I-I-I]^{-} \]

Polyjodidové ionty I\(_2\)\(_2\)^{-}, I\(_2\)\(_3\)^{-} a I\(_2\)\(_4\)^{-} mají složitější strukturu iomenou.

Tuhé polyhalogenidy alkaličekých kovů jsou snadno rozložitelné iontové sloučeniny. Jsou všemně tmavě zbarvené.

Interhalogeny

Sloučeniny typu YZ mají obdobné vazebné uspořádání jako molekuly halogenů. Avšak kovalentní vazba je v nich porušena polární. Molekuly YZ\(_2\) mají tvar T. Uspořádání molekulu YZ\(_3\) je tetragonálně pyramidální. Existence molekulu YZ\(_4\), porušení překvapuje; na vazbě se pravděpodobně podílejí orbitály f středového atomu a molekula má tvar blízký pentagonální bipyramidě.

Formální oxičení stávajících atometů vytvářejících interhalogeny lze vyjádřit pro jednotlivé typy sloučenin takto:

\[YZ^{-1} \quad Y(Z)^{-1} \\
\]

Všechny interhalogenové sloučeniny jsou nízkomolekulární látky; jsou velmi těžké a zbarvené, jsou žlutě, červeně nebo hnědočerveně, některé jsou však bezbarvé.
Jsou stejně jako elementární halogeny značně reaktivní. Lze je použít jako halogenační činidla:

\[2 \text{V} + 6 \text{Cl}_2 = 2 \text{VCl}_3 + 3 \text{I}_2 \]

\[\text{Mo} + 2 \text{BrF}_3 = \text{MoF}_6 + \text{Br}_2 \]

S vodou reagují tak, že se tvoří halogenovodík HZ a příslušná kyslíkatá kyselina se středovým atomem Y, např.

\[\text{ClF} + \text{H}_2\text{O} = \text{HClO} + \text{HF} \]

\[\text{IF}_3 + 3 \text{H}_2\text{O} = \text{HIO}_3 + 5 \text{HF} \]

S halogenidovými ionty tvoří některé interhalogeny komplexní ionty, v nichž funkci středového atomu zastává halogen:

\[\text{BrF}_3 + \text{F}^- = [\text{BrF}_4]^- \]

\[\text{ICl}_3 + \text{Cl}^- = [\text{ICl}_4]^- \]

Uvedené rovnice znázorňují vznik tetrafluorobromitanového a tetrachlorojoditanového iontu. Tyto částice lze považovat za dálší typ polyhalogenidových iontů (str. 297).

Tabulka 15-1. Známé interhalogenové sloučeniny typu YZₙ

<table>
<thead>
<tr>
<th>Y</th>
<th>n</th>
<th>F</th>
<th>Cl</th>
<th>Br</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>1</td>
<td>F₂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>1</td>
<td>ClF</td>
<td>Cl₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>ClF₃</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>ClF₅</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br</td>
<td>1</td>
<td>BrF</td>
<td>BrCl</td>
<td>Br₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>BrF₃</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>BrF₅</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>IF</td>
<td>ICl</td>
<td>IBr</td>
<td>I₂</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>IF₂</td>
<td>ICl₂</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>IF₃</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>IF₅</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Binární sloučeniny halogenů s kyslíkem

Základní přehled všech sloučenin halogenů s kyslíkem podává tab. 15-2.

Sloučeninu OF₂ je nutné pokládat se zřetelem k relaci elektronegativit obou prvků za *fluorid kyslíku* (tj. O²⁻F²⁻), nikoli za „oxid fluorný“ (tj. FO⁻²⁻). Lítka je plynná, světležluté bary, dosti stálá a má výrazné oxidací vlastnosti. Připravuje se reakcí elementárního fluoru s 2%ním vodným roztokem NaOH:

\[2 \text{F}_2 + 2 \text{NaOH} = 2 \text{NaF} + \text{OF}_2 + \text{H}_2\text{O} \]

298
OF₂ se též lze připravit přímou syntézou z kyslíku a fluoru, když se na jejich sněž působí elektrickým výbojem při nízké teplotě. V tomto případě vznikají vedle OF₂ též další velmi nestálé sloučeniny O₂F₃, O₃F₂ a O₂F₂.

<table>
<thead>
<tr>
<th>Oxidační stav halogenu</th>
<th>F</th>
<th>Cl</th>
<th>Br</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>VII</td>
<td>-</td>
<td>Cl₂O₇</td>
<td>-</td>
<td>(I₂O₇)</td>
</tr>
<tr>
<td>VI</td>
<td>-</td>
<td>Cl₂O₆</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>I₂O₅</td>
</tr>
<tr>
<td>IV</td>
<td>-</td>
<td>Cl₂O₄</td>
<td>Br₂O₃</td>
<td>-</td>
</tr>
<tr>
<td>III</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>II</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>I</td>
<td>-</td>
<td>Cl₂O</td>
<td>Br₂O</td>
<td>-</td>
</tr>
<tr>
<td>-I</td>
<td>OF₂</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Oxid chlorný Cl₂O se nejlépe připravuje působením elementárního chloru na oxid rutnatý za snížené teploty:

\[\text{HgO} + 2 \text{Cl}_2 = \text{Cl}_2\text{O} + \text{HgCl}_2 \]

Je anhydridem kyseliny chlorné. Reakcí s vodou tuto kyselinu poskytuje:

\[\text{Cl}_2\text{O} + \text{H}_2\text{O} = 2 \text{HClO} \]

Molekula Cl₂O má lomenou strukturu s jednoduchými vazbami σ:

\[\begin{array}{c}
\text{O} \\
\text{Cl} \\
\text{Cl}
\end{array} \]

Oxid chlorný je těkavá látka endotermické povahy. Při zahřátí snadno exploduje.

Oxid chloritid člověk jako těkavá látka barvy žlutozelené (plyn) nebo červenohnědá (kapalina). Připravuje se vyčleněním kyseliny chlorového z chlorového draselného kyselinou sírovou a její disproporcionací podle celkové rovnice:

\[3 \text{KClO}_3 + 3 \text{H}_2\text{SO}_4 = 2 \text{ClO}_2 + \text{HClO}_4 + 3 \text{KHSO}_4 + \text{H}_2\text{O} \]

Se zřetelem k explozivnosti ClO₂ je bezpečnější připravovat jej reakcí chlorového draselného se šťávovou kyselinou za přítomností zředěné kyseliny sírové:

\[2 \text{KClO}_3 + 2 \text{H}_2\text{SO}_4 + \text{H}_2\text{C}_2\text{O}_4 = 2 \text{ClO}_2 + 2 \text{CO}_2 + 2 \text{KHSO}_4 + 2 \text{H}_2\text{O} \]

Vzhledným postupem k připravě ClO₂ je též působením elementárního chloru na chlorové stříbrné při zvýšené teplotě:

\[2 \text{AgClO}_2 + \text{Cl}_2 = 2 \text{AgCl} + 2 \text{ClO}_2 + \text{O}_2 \]

nebo oxidace chloritanu sodného chlorem zředěným dusíkem nebo vzduchem:

\[2 \text{NaClO}_2 + 3 \text{H}_2\text{O} + \text{Cl}_2 = 2 \text{ClO}_2 + 2 \text{NaCl} + 6 \text{H}_2\text{O} \]

ClO₂ se dobře rozpuštěl ve vodě, ale nereaguje s ni, vytváří pouze žlutý krystalický hydrát ClO₂·6H₂O. Má silné oxidace účinky a je technicky významnou sloučeninou chloru (str. 308).

Oxid chlorový Cl₂O₄ lze získat působením ozonu na oxid chloridní jako tmavočervenou kapalinu. Tvoří dimerní molekuly. Jeho struktura ani vazba nebyla dosud podrobně objasněna.

Oxid chloridní Cl₂O₃ se nejlépe získá dehydratací kyseliny chloridní účinkem P₂O₅ při nízké teplotě:

\[2 \text{HClO}_₄ + \text{P}_₂\text{O}_₅ \rightarrow \text{Cl}_₂\text{O}_₃ + 2 \text{HPO}_₄ \]

S vodou poskytuje kyselinu chloridní:

\[\text{Cl}_₂\text{O}_₃ + \text{H}_₂\text{O} \rightarrow 2 \text{HClO}_₄ \]

Je tedy jejím anhydridem. Vazebné poměry v jeho molekule vyjadřuje elektronový strukturní vzorec

![Vzorec Cl₂O₃](image)

V můstkovém atomu O je molekula lomená, koordinace na obou atomech Cl je tetraedrická. Přesto, že je Cl₂O₃ relativně stálý, může být iniciován jeho explozivní rozklad. Oxid chloridní působí oxidace.

Oxid bromový Br₂O₃ je po stránce přípravy i struktury obdobou Cl₂O₃. Je však stálý pouze při nízkých teplotách.

Mimořádně nestálý je oxid bromidní Br₂O₅, stejně jako další oxid о složení Br₂O₃. Jejich struktura dosud nebyla přesně popsána.

Nejstálejší ze všech oxidů halogenů je oxid jodidní I₂O₅. Je exoterlickou sloučeninou. Nelze jej připravit syntézou z prvků. Získává se proto termickou dehydratací kyseliny jodidní:

\[2 \text{HJO}_₅ \rightarrow \text{I}_₂\text{O}_₅ + \text{H}_₂\text{O} \]

Je to bílá krystalická látka, rozkládající se na prvky teprve při teplotách nad 350 °C. Významná je jeho reakce s oxidem uhelnatým:

\[\text{I}_₂\text{O}_₅ + 5 \text{CO} \rightarrow \text{I}_₂ + 5 \text{CO}_₂ \]

Využívá se ji ke stanovení malých množství CO. Oxid jodidní má výrazné oxidace vlastnosti. Je silně kyselý, s H₂O poskytuje kyselinu jodidní. Konfiguraci jeho molekuly vystihuje elektronový strukturní vzorec

![Vzorec I₂O₅](image)

Molekula je lomená v místě můstkového atomu O. Na atomy jodu jsou koordinovány tři atomy kyslíku. Obě tyto čtyřatomové skupiny mají tvar trigonální pyramidy.

15.4 TERNÁRNÍ KYSLÍKATÉ SLOUČENINY HALOGENŮ

Do této skupiny látek patří především kyslíkaté kyseliny halogenů a jejich soli. Přehled kyslíkatých kyselin halogenů podíváte tab. 15-3.

<table>
<thead>
<tr>
<th>Oxidační stav</th>
<th>F</th>
<th>Cl</th>
<th>Br</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>VII</td>
<td></td>
<td>HClO₄</td>
<td>HBrO₄</td>
<td>HIO₄, H₂IO₆</td>
</tr>
<tr>
<td>VI</td>
<td></td>
<td></td>
<td>HBrO₃</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td>HClO₃</td>
<td>HBrO₃</td>
<td>HIO₃</td>
</tr>
<tr>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td>HIO₂</td>
</tr>
<tr>
<td>III</td>
<td></td>
<td>HClO₂</td>
<td></td>
<td>HIO</td>
</tr>
<tr>
<td>II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>HClO</td>
<td>HBrO</td>
<td>HIO</td>
</tr>
</tbody>
</table>

V souladu s tím, co jsme uvedli o vazebných možnostech fluoru, z tabulky vidíme, že žádná oxokyselina fluoru neexistuje. Síla kyselin se mění tak, jak v tabulce vyznačují šipky. Nejsilnější kyselinou je HClO₄ nejslabší je HIO.

Nejvýraznější oxidační účinky (posuzováno podle hodnot standardních redoxních potenciálů) pozorujeme u kyselin chlorně a chlornanů. Oxidační působení kyselin velmi závisí na tom, zda je kyselina v systému přítomna v ionové, nebo v kovalentní formě. Například kyselina chloridá ve zředěném vodním roztoku i vodní roztoky chloridánů mají oxidační účinky minimální, neboť látky jsou ionizovány. Koncentrovaná, malo ionizovaná kyselina chloridá se naproti tomu chová jako velmi silně oxidovadlo, zejména k organickým látkám.

Kyselina chlorná a chlornany

Molekula kyseliny chlorné a chlornanový anion mají vazebné uspořádání odpovídající elektronovým vzorcům

\[
\text{Cl}_2 + \text{H}_2\text{O} = \text{HClO} + \text{HCl}
\]

Mezi atomy kyslíku a chloru existuje vedle vazby σ, znázorněné ve vzorcích, i slabá interakce podmíněná přítomností prázdných orbitálů d na atomech chloru. Tato interakce π je výraznější u chlornanového iontu než u kyseliny.

Kyselinu chlornou lze připravit v roztoku nejlépe reakcí chloru s vodou:

\[
\text{Cl}_2 + \text{H}_2\text{O} = \text{HClO} + \text{HCl}
\]

Rovnováha reakce se posouvá doprava tím, že chloridové ionty zprvu disociují do kyseliny chloridové a vodíkové soli (AgCl, PbCl₂, HgO, HgCl₂ aj.). Koncentrovanější roztoky kyseliny chlorné nelze připravit, neboť kyselina je látkou nestálá. Rozkládá se zahříváním, působením světla i zvyšováním koncentrace jejích vodních roztoků.

Kyselina chlorná má silné oxidační účinky. Z hlediska acidobazického je kyselinou velmi slabou.

301
Jeji alkalické soli — chlornany — se nejlépe připravují tak, že do zředěných a vychlazených roztoků hydroxidů alkalických kovů se zavádí elementární chlor. Dojde k disproporcionační reakci

\[\text{Cl}_2 + 2 \text{NaOH} \rightarrow \text{NaCl} + \text{NaClO}_3 + \text{H}_2\text{O} \]

Chlornany mají velmi silné odační účinky, jsou nestálé. Připravime-li je v tuhém stavu (relativně dobře dostupné jsou chlornany Na\textsubscript{5}, K\textsubscript{5}, Ca2+, Sr2+, Ba2+, snadno se rozkládají působením světla a vzdušné vlhkosti, zahrázením disproporcionáží na chlorečan a chlor:

\[3 \text{NaClO}_3 \rightarrow 2 \text{NaCl} + \text{NaClO}_4 \]

- **Kyselina chloritá a chlornitany**

Vazebné uspořádání v molekule kyseliny chloritě a chlornitany v obou iontu zjednodušeně vyjadřuje vzorec

\[
\begin{array}{c}
\text{H} \\
\text{O} \\
\text{Cl} \\
\text{O} \\
\text{O} \\
\end{array}
\]

Kyselina chloritá je velmi nestálá a lze proto připravit pouze její zředěné vodné roztoky. K tomuto účelu může posloužit reakce:

\[\text{Ba(ClO}_3\text{)}_2 + \text{H}_2\text{SO}_4 \rightarrow \text{BaSO}_4 + 2 \text{HClO}_3 \]

Běžnější a poněkud stáléjší jsou soli kyseliny chloritě — chlornitany. Výchozí látkou pro jejich přípravu může být oxid chloritité, který necháme reagovat s vodným roztokem hydroxidu alkalického kovu:

\[2 \text{ClO}_3^- + 2 \text{OH}^- \rightarrow \text{ClO}_2^- + \text{ClO}_3^- + \text{H}_2\text{O} \]

Tvoří se chlornitan a chlorečnan. Oxid chloritité lze na chlornitan redukovat těž peroxidem vodíku nebo zinkovým prachem:

\[2 \text{ClO}_3^- + \text{O}_2 \rightarrow 2 \text{ClO}_2^- + \text{O}_3 \]
\[2 \text{ClO}_3^- + \text{Zn} \rightarrow 2 \text{ClO}_2^- + \text{Zn}^{2+} \]

Kyselina chlorečná a chlorečnanová

Elektronové strukturní vzorce molekuly kyseliny chlorečné a chlorečnanového iontu

\[
\begin{array}{c}
\text{O} \\
\text{Cl} \\
\text{O} \\
\end{array}
\]

svědčí o tom, že v jejich struktuře má atomová skupina ClO\textsubscript{2} tvar pyramidy. Všechny vazby Cl—O jsou výrazně zesíleny a zkráceny interakcí μ zúčastněných atomů.

Kyselina chlorečná je nestálá, nelze připravit její vodné roztoky v koncentraci větší než 40% zní. Vhodnou cestou k připravě vodných roztoků kyseliny jsou reakce:

\[\text{Ba(ClO}_3\text{)}_2 + \text{H}_2\text{SO}_4 \rightarrow \text{BaSO}_4 + 2 \text{HClO}_3 \]
\[2 \text{KClO}_3 + \text{H}_2\text{[SiF}_6\text{]} \rightarrow \text{K}_2\text{[SiF}_6\text{]} + 2 \text{HClO}_3 \]

302
Kyselina chlorová je dosti silnou kyselinou, má výrazné oxidaciční účinky.

Chlorovany lze připravit již uvedenou disproporcionací chlornanu. Výhodnou cestou jejich přípravy je zavádění elementárního chloru do horkého a dostatečně koncentrovaného (20%ného) vodného roztoku hydroxidu alkalického kovu:

\[3 \text{Cl}_2 + 6 \text{KOH} = \text{KClO}_3 + 5 \text{KCl} + 3 \text{H}_2\text{O} \]

Tuhé chlorovany jsou relativně stálé, mají však velmi silné oxidaciční účinky a jejich rozklad nebo oxidace působením může v některých případech proběhnout explozivně. Při zahřátí chlorovany alkaliických kovů disproporcionují: poskytují chloristany a chloridy, popř. výliš teplotě chlorid a kyslík:

\[4 \text{KClO}_3 = 3 \text{KClO}_4 + \text{KCl} \]
\[2 \text{KClO}_3 = 2 \text{KCl} + 3 \text{O}_2 \]

Druhou z těchto reakcí lze urychlit přidávkem MnO_2 jako katalyzátoru a je pak vhodná pro laboratorní přípravu kyslíku.

* Kyselina chloristá a chloristany

Molekula kyseliny chloristé i chloritanové ion jsou tvořeny tetraedrickým přiatiatomovým skeletem ClO_4^-:

\[
\begin{array}{c}
\text{H} \\
\text{O} \\
\text{Cl} \\
\text{O}
\end{array}
\quad
\begin{array}{c}
\text{O} \\
\text{Cl} \\
\text{O}
\end{array}
\quad
\begin{array}{c}
\text{O} \\
\text{Cl} \\
\text{O}
\end{array}
\]

Řád všech vazeb Cl—O je opět zvýšen poměrně velkou interakcí π.

Přesto, že kyselina chloristá je jednou z nejstabilnějších anorganických kyselin, může být ze svých sojí vyčištěna koncentrovanou kyselinou sírovou:

\[\text{KClO}_3 + \text{H}_2\text{SO}_4 = \text{KHSO}_4 + \text{HClO}_4 \]

Rovnováha reakce se musí neustále posouvat doprava oddestilováním kyseliny chloristé při sníženém tlaku.

Kyselina chloristá je jediná z oxokyselin chloru, kterou lze připravit jako chemické individuum. Je to bezbarvá viskózní kapalina. Její monohydrát HClO_4·H_2O je iontová sloučenina o strukturní
H_2O·ClO_4^- (chloritan hydroxonia). Kyselina chloristá je nebezpečná látkou, neboť v koncentrovaném stavu se může při styku s organickými látkami explozivně rozkládat. Koncentrovaná kyselina má silné oxidaciční vlastnosti, které však po zhření kyseliny vodou téměř zanikají. Roztoky kyseliny i jejich soli lze redukovat jen nejstabilnějšími redukčními činidly.

Chloristany lze připravit nekatalyzovaným termickým rozkladem chlorovano podle již uvedené disproporcionační rovnice. Poněvadž na rozdíl od ostatních oxokyselin chloru je kyselina chloristá relativně snadno dostupná, připravují se chloristany reakcí hydroxidů, oxidů nebo uhličitanů kovů s volnou kyselinou:

\[\text{LiOH} + \text{HClO}_4 = \text{LiClO}_4 + \text{H}_2\text{O} \]
\[\text{MgO} + 2 \text{HClO}_4 = \text{Mg(ClO}_4)_2 + \text{H}_2\text{O} \]
\[\text{CuCO}_3 + 2 \text{HClO}_4 = \text{Cu(ClO}_4)_2 + \text{H}_2\text{O} + \text{CO}_2 \]

303
Chloristanný anion jeví vedle své oxidačně-redukční indiferentnosti ve srovnání se všemi ostatními anorganickými ionty pozoruhodně malou snahou koordinovat se jako ligand na ionty kovů.

- **Kyselina bromná, kyselina jodná, bromnany a jodnany**

 Kyselina bromná a kyselina jodná mají stejnou strukturu molekuly jako kyselina chlorná. Jsou velmi slabými kyselinami, mají také poměrně silné oxidační účinky. Vznikají stejně jako kyselina chlorná reakcí bromu, resp. joda s vodou. Tyto reakce však mají rovnováhu posunutou výrazně doleva.

 Bromnany a jodnany lze získat obdobnou reakcí - zajištěním elementárních halogenů do roztoků hydroxidů alkaličních kovů. Bromnany a jodnany jsou nestálé, působí oxidačně i snadno disparitní.

- **Kyselina bromičná a bromičnany**

 Kyselina bromičná je svými vlastnostmi i strukturou obdobou kyseliny chloričné. Připravuje se oxidací bromu účinkem HClO:

 \[
 \text{Br}_2 + 5 \text{HClO} + \text{H}_2\text{O} \rightarrow 2 \text{HBrO}_3 + 5 \text{HCl}
 \]

 Bromičnany alkalických kovů lze připravit obdobně jako chloričné reakcí Br₂ s horkým a dostatečně koncentrovaným roztokem hydroxidu alkalického kovu:

 \[
 3 \text{Br}_2 + 6 \text{KOH} \rightarrow 5 \text{KBr} + \text{KBrO}_3 + 3 \text{H}_2\text{O}
 \]

 Bromčnany působí jako silná oxidovadla a používají se zejména při některých analytických stanoveních:

 \[
 3 \text{AsO}_4^{3-} + \text{BrO}_3^- \rightarrow 3 \text{AsO}_4^{2-} + \text{Br}^-
 \]

- **Kyselina jodičná a jodčnany**

 Kyselina jodičná lze připravit oxidací jodu kyselinou dusičnou nebo jiným silným oxidovadlem:

 \[
 \text{I}_2 + 10 \text{HNO}_3 \rightarrow 6 \text{HIO}_3 + 10 \text{NO} + 2 \text{H}_2\text{O}
 \]

 Také oxid jodičný poskytuje s vodou kyselinu jodičnou.

 Kyselina jodičná je bílá krystalická látku. Je silnou kyselinou a má silné oxidaci účinky.

 Její soli - *jodčnany* - lze získat disparitní jodu v roztocích hydroxidů. Molekuly kyseliny jodičné i jodčnanové anionty jsou vystaveny zeza analogicky jako obdobné sloučeniny chloru.

- **Kyselina bromistá a bromistany**

 Bromistany a *kyselina bromistá* byly připraveny teprve nedávno působením extrémně silných oxidačních činidel na elementární bym v alkalickém prostředí. Jsou relativně silnými sloučeninami; koncentrace HBrO₃ ve vodním roztoku může dosáhnout až 50 %, aniž dojde k jejímu rozkladu. Bromistany lze připravit jako těžké látky. Nepodléhají rozkladu ani při zvýšení teploty na 200 až 300 °C. Oxidační působení kyseliny bromisté a bromistanů je velmi slabé.

- **Kyseliny jodisté a jodistany**

 Kyselina hydrogenjodistá HIO₄ a *jodistanový anion* IO₇⁻ mají stejnou strukturu jako obdobné sloučeniny chloru a bromu.

304
Existuje též kyselina pentahydrogenjodidště H₅I₆ a její soli. Molekula kyselin pentahydrogenjodidště vykazuje oktaedrickou koordinaci atomů O na středovém atomu I:

\[
\begin{align*}
\text{H} & \quad \text{O} \quad \text{I} \\
\text{O} & \quad \text{I} \\
\text{O} & \quad \text{H}
\end{align*}
\]

Kyselinu pentahydrogenjodidště se dá připravit anodickou oxidací kyseliny jodidné; jinou cestou její připravu je rozklad jodidantu barnatého kyselinou sírovou:

\[
\text{Ba}_2\text{[I(OH)}_2\text{]} + 5 \text{H}_2\text{SO}_4 = 5 \text{BaSO}_4 + 2 \text{H}_2\text{I}_5\text{O}_6
\]

Opatrnou dehydrataci H₂IO₆ lze získat HIO₄. Obě kyseliny jsou bílé krystalické a poměrně stálé látky.

Jodidantu se dobře připravují termickým rozkladem (disproporcionací) vhodných jodidů podle rovnice

\[
5 \text{Ba}[\text{IO}_3]_2 = \text{Ba}_2[\text{I(OH)}_2] + 4 \text{I}_2 + 9 \text{O}_2
\]

nebo intenzivní oxidací jodidantu silnými oxidačními činidly, popř. anodickou oxidací.

Kyseliny jodidné a jodidanty mají sklon vytvářet složitější struktury další kondenzací svých stavených jednotek. Může vznikat kyselina tetrahydrogenjodidště:

\[
2 \text{H}_2\text{I}_5\text{O}_6 = \text{H}_4\text{I}_3\text{O}_4 + 3 \text{H}_2\text{O}
\]

Lze připravit i soli kyseliny trihydrogenjodidště (např. Ag₃I₂O₅).

Kyseliny jodidné v tuhém stavu mají silné oxidační vlastnosti. Mnohem menší oxidační účinky vykazují jejich roztoky a roztoky jejich solí.

15.5 VÝROBA A POUŽITÍ TECHNICKÝ VÝZNAMNÝCH SLOUČENIN FLUORU

Minerál kazívec (fluorit) CaF₂ je surovinovou základnou pro výrobu elementárního fluoru a jeho sloučenin.

\[
\text{CaF}_2 \quad \text{fluorit} \quad \text{H}_2\text{SO}_4 \quad \text{HF} \\
\]

- Působení na oxidy, kyseliny
- Oxid, hydroxid, uhlíčitan
- Termický rozklad
- Částečná neutralizace
- Reakce s oxidy, hydroxidy...

Obr. 15-2: Hlavní cesty průmyslové výroby fluoru a jeho sloučenin

305
Elementární fluor se uplatňuje při výrobě některých fluoridů a v menší míře též v metalurgii. Jeho technicky významnými sloučeninami jsou především fluoroovodik a fluoridy. Technologií fluoru a jeho sloučenin lze zjednodušeně vyjádřit schématem uvedeným na obr. 15-2.

- **Výroba fluoroovodíku**

 Zařizováním kázivce s koncentrovanou kyselinou sírovou se uvolňuje plynný fluoroovodík:
 \[\text{CaF}_2 + \text{H}_2\text{SO}_4 = \text{CaSO}_4 + 2 \text{HF} \]

 K uskutečnění reakce lze použít pouze ocelovou nebo olověnou aparaturu\(^1\). Fluoroovodík se může přečíst tak, že jeho částičnou neutralizaci se připraví hydrongendifluorid draselný KHF\(_2\) a ten se tepelně rozloží:
 \[\text{KHF}_2 = \text{KF} + \text{HF} \]

 Fluoroovodík se vyrábí a transportuje nejčastěji ve formě 40%-ního vodního roztoku.

 Je surovinou pro výrobu fluorovaných organických sloučenin, fluoroplastů, freonů, má použití ve sklářství (k lepění a matování skla), v metalurgii a při výrobě některých velmi čistých anorganických sloučenin.

- **Výroba fluoridů**

 Fluoridy a hydrongendifluoridy lze vyrábět úplnou nebo částečnou neutralizací kyseliny fluorovanodivoké oxiidy, hydroxidy nebo uhlíčitany příslušných kovů. Vedle toho lze získat fluoridy zařizováním oxidů a hydroxidů kovů s fluorokřemičitany, fluorohlinitany nebo fluorboritany:
 \[2 \text{B}_2\text{O}_3 + 3 \text{Na}[\text{BF}_4] \rightarrow 4 \text{BF}_3 + 3 \text{NaBO}_2 \]
 \[3 \text{ZrO}_2 + 2 \text{Na}[\text{SiF}_6] \rightarrow 3 \text{ZrF}_4 + 2 \text{Na}_2\text{SiO}_3 \]

 Další možností je přímá syntéza z prvků nebo působení elementárního fluoru na oxid prvků:
 \[\text{S} + 3 \text{F}_2 \rightarrow \text{SF}_3 \]
 \[\text{SO}_2 + 3 \text{F}_2 \rightarrow \text{SF}_6 + \text{O}_2 \]

 Fluoridy se uplatňují při organických syntézách (katalytické působení BF\(_3\) při iontových polymeracích alkenů, Friedelovy–Craftsovy syntézy, fluorace účinkem SF\(_4\), CIF\(_3\), HSO\(_3\)F, AgF\(_2\), CoF\(_3\), NiF\(_3\) aj.), v elektrometalurgii hliníku a dalších kovů, při výrobě mělčeného skla, smaltů a v elektrotechnice (SF\(_4\)).

15.6 **VÝROBA A POUŽITÍ TECHNICKÝ VÝZNAMNÝCH SLOUČENIN CHLORU**

Surovinovou základnu pro výrobu chloru a jeho sloučenin tvoří ložiska halitu, některých dalších chloridů a též mořská voda.

\(^1\) Sklo ani křemen nevyhovuje, protože fluoroovodík s oběma těmito látkami reaguje podle rovnice
\[\text{SiO}_2 + 4 \text{HF} = \text{SiF}_4 + 2 \text{H}_2\text{O} \]
Technicky významnými sloučeninami chloru jsou chlorid sodný, chlorovodík, oxid chlo-
ričitý, chlornany, chloritany, chlorocyan, kyselina chloristá a chloristany. Přehled nejdůležitějších
výrob sloučenin chloru ukazuje schéma na obr. 15-3.

Obr. 15-3. Hlavní cesty průmyslové výroby chloru a jeho sloučenin

- **Výroba chloridu sodného**
 Chlorid sodný je nejznámější dostupná sloučenina chloru. Průmyslově se připravuje čištěním
 minerálu halitu nebo odpadu mořské vody. Podle toho, k jakému účelu je sloučenina dále určena,
 volí se přiměřený stupeň čistoty a rozhoduje se o tom, zda se látka bude izolovat jako individuál,
 nebo zda se pouze bude připravovat její vodný roztok – solanka.
 Chlorid sodný má použití v potravinářském průmyslu, v chladičské technice a zejména
 při výrobě elementárního chluru, hydroxidu sodného, sodných solí a dalších sloučenin chloru.

- **Výroba chlorovodíku**
 Nejstarším technologickým využívaným postupem přípravy chlorovodíku je uskutečnění reakci
 \[
 \text{NaCl} + \text{H}_2\text{SO}_4 = \text{NaHSO}_4 + \text{HCl} \\
 2\text{NaCl} + \text{H}_2\text{SO}_4 = \text{Na}_2\text{SO}_4 + 2\text{HCl}
 \]
Druhý z procesů se obvykle provádí za zvýšené teploty (400 °C). Dnes se chlorovodík vyrábí přímou syntézou z prvků:

\[\text{H}_2 + \text{Cl}_2 = 2 \text{HCl} \]

Buď se využívá přímé reakce vodíku s chlorem, nebo katalyzovaného nízkoteplotního sločování obou prvků. Dalším zdrojem chlorovodíku je příprava chlorovaných uhlovodíků, např. při syntéze chloridu uhlíčitého:

\[\text{CH}_4 + 4 \text{Cl}_2 = \text{CCl}_4 + 4 \text{HCl} \]

Vodný roztok chlorovodíku je v koncentraci asi 36%ní běžným průmyslovým výrobkem známým pod názvem „koncentrovaná kyselina solná“.

Chlorovodík má významné uplatnění v těžkém chemickém průmyslu (výroba chloridů, chlorovaných organických látek, plastů aj.), v průmyslu farmaceutickém, metalextrik a těž v potravinářství.

- **Výroba oxidu chlortičitého**

Při průmyslových postupech výroby oxidu chlortičitého se jako výchozí látku vesměs používá chlorečnan sodný nebo chlorečnan vápenatý a redukují se nejčastěji učincem SO₂, HCl nebo methanolem:

\[2 \text{ClO}_3^- + \text{SO}_2 + \text{H}_2\text{SO}_4 = 2 \text{HSO}_4^- + 2 \text{ClO}_2 \]

Výroba i spotřeba ClO₂ neustále vzrůstá. Oxid chlortičitý se uplatňuje především jako výšečný bělící prostředek v textilním průmyslu a v papírenství. Pro své fungicidní vlastnosti nalezl použití i v potravinářství a při úpravě pitné vody.

- **Výroba chlornanů a chloritanů**

Chlornan sodný se vyrábí reakcí elementárního chloru s vodným roztokem NaOH na normální teploty:

\[\text{Cl}_2 + 2 \text{NaOH} = \text{NaCl} + \text{NaClO} + \text{H}_2\text{O} \]

Proces může být uskutečněn též přímo v elektrolyzéru (při elektrolyze solanky), zajistí-li se kontakt roztoku z prostoru katody (obsahuje NaOH) s chlorem vyvíjejícím se na anodě.

Účinkem elementárního chloru na tuhý Ca(OH)₂ se získá reakční směs komplikovaného složení, která však v podstatě je směsí chloridu a chlornanu vápenatého, ovšem ve formě jejích směšených solí (chlorid-hydroxidů a chlornanů). Nazývá se „chlorové vápno“.

Chloritany se vyrábějí disproporcionací ClO₂ v roztocích hydroxidů alkalických kovů. Výhodné je použit při reakci vhodné redukční čínsidlo. Veškerý ClO₂ je pak převáděn na chlortan. Používají se jako redukční reagent např. saze, probíhá reakce za přítomnosti Ca(OH)₂ podle rovnice

\[4 \text{ClO}_2 + \text{C} + 2 \text{Ca(OH)}_2 + 4 \text{NaOH} = 4 \text{NaClO}_2 + 2 \text{CaCO}_3 + 3 \text{H}_2\text{O} \]

Jak chlornany, tak i chlortany mají (spolu s ClO₂) upotřebení v papírenském a textilním průmyslu (bělení), v těžké anorganické technologii (oxidační a chlorové činnosti), v technologii vody (dezinfekce, odstraňování fenolů) aj.

- **Výroba chlorečnanů**

Při elektrolyze horkého (o teplotě 70 °C) vodného roztoku NaCl vzniká anodickou oxidací chlornanových iontů (vzniklých reakcí Cl₂ a NaOH) chlorečnan. Při jiném technologickém režimu,
udržuje-li se roztok přidáním HCl slabě kyselý, probíhá v celém objemu elektrolýzí redukce

$$3 \text{ClO}^- = \text{ClO}_3^- + 2 \text{Cl}^-$$

Chlorečnany mají významnou uplatnění při výrobě zápalek (KClO₃) a jsou složkou některých bezpečnostních trhavín a tuhých raketonových paliv. V chemickém průmyslu slouží k výrobě Cl₂, chloritanů a chloristanů. Využívají se též jejich herbicidní vlastnosti.

- **Výroba kyseliny chloristé a chloristanů**
 Anodickou oxidací roztoku chlorečnanu sodného se tvoří chloritan:

$$\text{ClO}_3^- + 2 \text{OH}^- = \text{ClO}_4^- + \text{H}_2\text{O} + 2 \text{e}^- \text{ (anoda)}$$

Z roztoku se izoluje krystalizací. Účinkem H₂SO₄ nebo kyseliny hexafluorokřemičité H₂[SiF₆] na NaClO₄ se uvodí kyselina chlorista

$$2 \text{NaClO}_4 + \text{H}_2[\text{SiF}_6] = \text{Na}_2[\text{SiF}_6] + 2 \text{HClO}_4$$

která se za sníženého tlaku odděluje.

Chloristan je významnou složkou tuhých raketonových paliv.

15.7 VÝROBA A POUŽITÍ TECHNICKÝ VÝZNAMNÝCH SLOUČENIN BROMU A JODU

Hlavními zdroji bromu jsou odpadní lvaury po zpracování (krystalizaci) karnašitu a sylvínu, mořská voda a voda z některých ropných ložisek. Zpracováváním těchto surovin se připravuje elementární brom. Postup výroby bromu jsou již uveden (str. 270).

Elementární brom se používá jako přímé bromační činidlo v organické chemii, vyrábí se z něj bromovodík a bromidy.

Obr. 15-4. Hlavní cesty průmyslové výroby bromu a jodu a jejich sloučení

Elementární jod má významné použití v metallurgii (rafinace Ti, Zr, Hf, Si, B aj.), v lékařství a průmyslu léčiv, při výrobě barví a spolu s bromem v průmyslu fotografickém.

Přehled hlavních technologických postupů při výrobě sloučení bromu a jodu uvádí schéma na obr. 15-4.

- **Výroba bromovodíku a bromidů**

K syntéze bromovodíku se využívá jednak přímé složování prvků při teplotě 300 až 400 °C za přítomnosti látek o velkém povrchu (keramických materiálů, křemeliny), jednak bromace uhlovodíků.

Hlavní užití má bromovodík v některých organických technologiích (příprava bromovaných derivátů ve farmaceutickém a v barvářském průmyslu).

Bromidy se připravují stejnými postupy jako fluoridy nebo chloridy. Jsou důležitou látkou uplatňující se v fotografickém průmyslu. Mnohé kovalentní bromidy se užívají jako bromační činidla při organických syntézách.

- **Výroba jadrovodíku a jodidů**

Jadrovodík se vyrábí přímou syntézou z prvků, hydrolýzou intermediárně vznikajících jodidů kovů a též reakcí jodu se sulfanem.

Jodidy lze připravit přímou syntézou z prvků a též neutralizací vodného roztoku jadrovodíku.

Jadrovodík a jodidy mají stejné upotřebení jako obdobné sloučeniny bromu.

- **Výroba ostatních sloučení bromu a jodu**

Oxosoučeniny bromu a jodu mají v technické praxi mnohem menší význam než obdobné součeniny chloru.

Bromosany, jodanany, bromičany a jodičany se ziskávají stejnými postupy jako analogické součeniny chloru. Vedle toho se tyto látky připravují z prvků jejich oxidací chlotrem ve vodném roztoku, např.

\[I_2 + 5 Cl_2 + 6 H_2O = 2 HIO_3 + 10 HCl \]

nebo z bromidů a jodidů (v tavenině) např. působením chlorovodíku:

\[KBr + KClO_3 = KBrO_3 + KCl \]

Jodanany se vyvážejí oxidací jodičanů chlortem podle rovnice

\[NaIO_3 + Cl_2 + 4 NaOH = Na_3HIO_6 + 2 NaCl + H_2O \]

nebo anodickou oxidací jodičanů.
16 Kyslík

Kyslík je prvním prvktm skupiny 6B periodického systému prvků. Jeho atomy mají elektronovou konfiguraci valenční sféry 2s² 2p⁴. Velká elektro negativita kyslíku a také nepřítomnost orbitalů d v jeho valenční sféře v tiskne jeho chemii charakteristickou poměrnou jednoduchost a vyhraněnost. Po mnoha stránkách se kyslík liší od homologických prvků S, Se a Te, které jako skupina tzv. chalcopyritu jsou umístěny v periodické tabulce prvků pod ním.

16.1 VZEBNÉ MOŽNOSTI KYSÍČKA

Energeticky nejvýhodnější způsob vazby atomu kyslíku spočívá ve vytvoření takových vazebných poměrů, které ve větši nebo méně míře znamenají přenos elektronové hustoty do prostoru tohoto atomu a dosažení elektronové konfigurace 2s² 2p⁶. Atomu kyslíku je třeba při takovém způsobu vazby přisoudit záporný oxidační stav −II (event. −I u peroxosolubin s vazbou O −O).

Jen zcela výjimečně při vytváření vazeb kyslíku s elektronegativnějším partnerem (fluorem) dochází ke změně elektronové hustoty na atomu kyslíku, který tak formálně dosahuje kladného oxidačního stavu.

- Záporné oxidační stavy kyslíku

Slučeniny kyslíku s vyslovenou elektropozitivními prvky se vyznačují iontovou vazbou. Atom kyslíku je v těchto látkách přítomen jako anion O²⁻, elektropozitivní prvek vystupuje jako kation. Látky tohoto typu, např. K₂O nebo CaO, mohou být vyjádřeny elektronovými strukturními vzorcemi

\[2K^+ \cdot O^{2-} \quad \text{Ca}^{2+} \cdot O^{2-} \]

Pokud vazebný partner kyslíku není natolik elektropozitivní, aby vznikla iontová vazba, tvoří se mezi zůstáními atomy vazba kovalentní. Podle počtu jiných atomů, které se koordinují na atom kyslíku, a podle jejich kvality mohou nastat tyto situace:

a) Kyslík je koordinován na jediný atom, který je schopen vytvořit pouze vazbu typu σ.

\[H - O \]

\[O - O \]

311

b) Na atomu kyslíku je koordinován jiný atom. Ten je vedle vazby σ schopen i výrazně interakce π s atomem kyslíku. Aby mohla nastat tato situace, musí mít atom poutající se ke kyslíku orbitál typu p nebo d schopný překrytu se založenými orbitály 2pₓ, resp. 2pₖ, atomu kyslíku. Příkladem je vazba C=O v molekule CO₂ a v ketonech nebo vazba O=O v ozonu apod.

Vazba π je podmíněna překryvem orbitálů typu p na obou zúčastněných atomech. Pokud jsou na atomu koordinovaném na kyslík k dispozici prázdné orbitaly d, vytváří se vazba π donací elektronového páru z orbitálu 2p kyslíku do orbitálu d jeho vazebného partnera. Příkladem je vazba Cl=O v chloristanovém iontu (str. 290 a 291), v oxidu chloridu (str. 290), v chlorečnanovém aniontu (str. 302) apod.

Nejmenší částý je případ, kdy na atomu koordinovaném na kyslík je situace příznivá pro vytvoření dokonce dvou vazeb typu π. Kyslík se s takovýmto atomem poutá trojnou vazbou. Příkladem je molekula oxidu uhelnatého (str. 95):
c) Na atom kyslíku jsou koordinovány dva atomy a kyslík s nimi tvoří pouze vazby typu \(\sigma \).

Nejjičnějším příkladem je molekula vody, jejíž vazebné poměry jsme uvedli již dříve (str. 222). Obdobné vazebné uspořádání se vyskytuje i u molekuly oxidu chlorného \(\text{Cl}_2\text{O} \) (str. 299).

\[\text{O} \quad \text{H} \quad \text{H} \]

\[\text{O} \quad \text{Cl} \quad \text{Cl} \]

d) Na atom kyslíku jsou koordinovány dva atomy a kyslík s nimi tvoří vedle vazeb \(\sigma \) i delokalizovanou vazbu \(\pi \). Příklad takovéto molekuly jsme již poznali u molekuly ozonu \(\text{O}_3 \) (str. 272).
c) Na atom kyslíku jsou koordinovány tři atomy a kyslík se s nimi poutá trojicí vazeb σ. Takovéto vazebné poměry nastávají např. v hydroxoniovém iontu H_2O^+. Vazby se vytvářejí překryvem HAO kyslíku s orbitaly $1s$ vodíku:

![Diagram]

f) Na kyslíkový atom jsou tetraedricky koordinovány čtyři atomy a kyslík se k nim poutá čtveřici vazeb σ. Tato vazebná situace je málo běžná. Předpokládáme ji ve struktuře ZnO, Al$_2$O$_3$ a u některých dalších sloučení. Na každý atom kyslíku jsou v mřížce takovýchto látok koordinovány čtyři jiné atomy (ve schématu jsou označeny Me):

![Diagram]

- **Kladné oxidace stavy kyslíku**

Jak již bylo uvedeno, kladné oxidace stavy atomu kyslíku nejsou běžné. Za sloučeniny, v nichž je kyslík prokazatelně v kladném oxidace stave, považujeme fluoridy kyslíku O_2F_3 a OF_3, dále tři AgOF_3 a O_3PtF_6. Kyslík je v těchto látkách poután kovalentními vazbami, ačkoli elektronové páry, způsobující jeho vazby, jsou většinou přítomny vazebním partnerem kyslíku.

16.2 **CHEMICKÉ VLASTNOSTI KYSÍLU**

Elementární kyslík se blíží svou reaktivitou halogenům. Chová se jako výrazné oxidační činidlo. Oxidační působí jak při styku s jinými plynnými látkami (sloučování vodíku s kyslíkem, oxidu dusnatého s kyslíkem apod.), tak i při styku s látkami kapalinými a tuhými (například ka-

314
16.3 BINÁRNÍ SLOUČENINY KYSLÍKU

Nejvýznamnější binární sloučeninou kyslíku je voda. Podrobný výklad jejích vlastností, technického uplatnění i použití jsou již uvedeny (str. 226). Z dalších binárních sloučenin jsou významné oxidy prvků, peroxidy vodíku a peroxosoučeniny.

Kyslík je součástí nepřebytné řady ternárních sloučenin. Jim však budeme věnovat pozornost při výkladu chemie v nich obsažených klíčových prvků.

- Oxidy

Všechny prvky (s výjimkou lehkých vzácných plynů) tvoří s kyslíkem oxidy. Lze je připravovat buď přímým sloučením z prvků, nebo rozlišněním nepřímými chemickými cestami.

Příklady nejběžnějších chemických reakcí vedoucích ke vzniku oxidů:

a) Sloučení prvků

\[4 \text{Li} + \text{O}_2 = 2 \text{Li}_2\text{O} \]
\[\text{S} + \text{O}_2 = \text{SO}_2 \]

b) Sloučení prvků s kyslíkem vůdčeným v jiné sloučenině

\[\text{CdO} + \text{C} = \text{Cd} + \text{CO} \]
\[\text{Na}_2\text{O}_2 + 2 \text{Na} = 2 \text{Na}_2\text{O} \]
\[\text{S} + 4 \text{HNO}_3 = \text{SO}_2 + 4 \text{NO}_2 + 2 \text{H}_2\text{O} \]

c) Redukce vyššího oxida

\[\text{WO}_3 + \text{H}_2 = \text{WO}_2 + \text{H}_2\text{O} \]
\[\text{Fe}_2\text{O}_3 + \text{CO} = 2 \text{FeO} + \text{CO}_2 \]

d) Termický rozklad kyslíkaté sloučeniny

\[(\text{NH}_4)_2\text{Cr}_2\text{O}_7 = \text{Cr}_2\text{O}_3 + 4 \text{H}_2\text{O} + \text{N}_2 \]
\[\text{Fe}_2(\text{SO}_4)_3 = \text{Fe}_2\text{O}_3 + 3 \text{SO}_3 \]
\[\text{NH}_4\text{NO}_3 = \text{N}_2 + 2 \text{H}_2\text{O} \]
\[\text{CaCO}_3 = \text{CaO} + \text{CO}_2 \]

e) Dehydratace kyselin a hydroxidů (termicky nebo dehydratačním činidlem)

\[2 \text{HIO}_3 = \text{I}_2 + \text{H}_2\text{O} \]
\[2 \text{HClO}_4 + \text{P}_2\text{O}_5 = \text{Cl}_2\text{O}_7 + 2 \text{HPO}_3 \]
f) Hydrolyza sloučenin

\[
\begin{align*}
\text{WC} &= 2 \text{H}_2 \text{O} = \text{WO}_2 + 4 \text{HCl} \\
2 \text{Bi(NO}_3)_3 &+ 3 \text{H}_2 \text{O} = \text{Bi}_2 \text{O}_3 + 6 \text{HNO}_3
\end{align*}
\]

Podle struktury a vazby lze oxidy rozdělit na dvě skupiny:

a) Oxidy iontové, které obsahují anionty \(\text{O}^{2-} \) tvořící se soubohem kationtů iontovou mříží.

b) Oxidy kovalentní, jež jsou buď vystaveny z jednotlivých molekul (nízkomolekulární oxidy), anebo mají polymerický charakter (vysokomolekulární oxidy).

Převážné iontový charakter mají oxidy alkašických kovů, kovů alkašických zemin a oxidu lanthanoidů i některých dalších elektropozitivních kovů. Typickou vlastností iontových oxidů je malá těkavost a zejména značná bazicitina. Anión \(\text{O}^{2-} \), vstupující při rozpouštění iontových oxidů do vodného roztoku, je silná zásada. Přijímá proton od molekuly vody a zvyšuje koncentraci iontů \(\text{OH}^- \) v roztoku:

\[
\text{O}^{2-} + \text{H}_2 \text{O} = 2 \text{OH}^-
\]

Kovalentní vazbu a nízkomolekulární charakter mají prakticky všechny oxidy nekovů a těž oxidy kovů ve vysokých oxidačních stavech. Příkladem jsou sloučeniny \(\text{Cl}_2 \text{O}, \text{ClO}_2, \text{I}_2 \text{O}_5, \text{NO}, \text{NO}_2, \text{CO}, \text{CO}_2, \text{P}_2 \text{O}_{10}, \text{P}_2 \text{O}_5, \text{SO}_2, \text{popř. Mn}_2 \text{O}_7, \text{OsO}_4 \) apod. Většinou jsou to oxidy silně kyselé. Při rozpouštění ve vodě přijímají molekuly vody. Vzniklé molekuly oxokyselin ovšem okamžitě ve větši či menši míře (podle sily kyseliny) uvolňují protony a zvyšují koncentraci iontů \(\text{H}_3\text{O}^- \) v roztoku. U silně kyselého \(\text{Mn}_2\text{O}_7 \), probíhají např. tyto typické reakce:

\[
\begin{align*}
\text{Mn}_2\text{O}_7 + \text{H}_2 \text{O} &= 2 \text{HMnO}_4 \\
\text{HMnO}_4 + \text{H}_2 \text{O} &= \text{Mn}_2 \text{O}_4^- + \text{H}_3\text{O}^+
\end{align*}
\]

Některé z nízkomolekulárních oxidů jsou naproti tomu acidobazicky značně indiferrentní a s vodou acidobazicky nereagují (\(\text{CO}, \text{ClO}_2 \) aj.). Všechny nízkomolekulární oxidy jsou velmi těkavé, mnohé z nich jsou za běžných podmínek kapaliny nebo i plyny.

Polymerní oxid y mají kovalentními vazbami vytvořenou lineární (\(\text{HeO}, \text{SnO}_2, \text{CrO}_3 \) aj.), vrstevnatou (\(\text{SnO}, \text{PbO}, \text{MoO}_3 \) aj.) nebo prostorovou (\(\text{Cu}_2\text{O}, \text{Al}_2\text{O}_3, \text{TiO}_2, \text{SiO}_2, \text{WO}_3 \) aj.) struktuру.

Některé z těchto oxidů jsou amfoteré; polymerní oxidy kovů ve vysokém oxidačním stavu (\(\text{CrO}_3, \text{MoO}_3 \) aj.) i některé polymerní oxidy polokovů a nekovů (\(\text{SeO}_2, \text{SO}_3 \) aj.) jsou kyselé).

Typickým znakem polymerních oxidů, zejména těch, jejichž síť kovalentních vazeb je prostorová, je velmi malá těkavost a mnohdy i značná tvrdost.

** Peroxid vodíku**

Peroxid vodíku \(\text{H}_2\text{O}_2 \) je nízkomolekulární látkou s elektronovým strukturním vzorcem

\[
\begin{array}{c}
\text{H} \\
\text{O} \\
\text{O} \\
\text{H}
\end{array}
\]

Molekula je lomená a její atomy navic neleží v jedné rovině. Všechny vazby v molekule jsou řádu 1 a mají charakter \(\sigma \).

1) Přehled a rozšíření rozbor acidobazických vlastností oxosoloučenin a hydroxosoloučenin byl uveden v kap. 12 (str. 256). Acidobazické vlastnosti oxidů se řídí všemi těmito uvedenými zákonitostmi.
H₂O₂ je bezbarvá kapalina podobná vodě (bod tání −1 °C), je termodynamicky nestálá a již před bodem varu se rozkládá podle rovnice

\[2 \text{H}_2\text{O}_2 = 2\text{H}_2\text{O} + \text{O}_2 \]

Za laboratorní teploty probíhá rozklad pomalu, ale může být urychlén přítomností rozptýlených elementárních kovů (např. platiny), MnO₂ apod. Přidavkem kyselin (např. H₂SO₄, H₃PO₄), acetonilidu a jiných organických látek jej lze naopak zpomalit. Velmi koncentrovaný roztok peroxydového vodíku se může rozložit explozivně.

Vhodnou cestou k přípravě peroxydového vodíku je reakce peroxydového barnatého se zředěnou kyselinou sírovou:

\[\text{BaO}_2 + \text{H}_2\text{SO}_4 = \text{BaSO}_4 + \text{H}_2\text{O}_2 \]

Získá se zředěný vodný roztok H₂O₂. Také hydrolyzou peroxydsilicenů, např. kyseliny peroxydsírové, se získají vodné roztoky H₂O₂.

\[\text{H}_2\text{SiO}_4 + 2 \text{H}_2\text{O} = 2 \text{H}_2\text{SO}_4 + \text{H}_2\text{O}_2 \]

Peroxyd vodíku má značné oxidační schopnosti jak v kyselém, tak i v zásaditém prostředí. Dokladem tétoho jeho vlastnosti mohou být reakce probíhající podle rovnice

\[\text{SO}_3^{2−} + \text{H}_2\text{O}_2 = \text{SO}_4^{2−} + \text{H}_2\text{O} \]

\[2\text{I}^{−} + \text{H}_2\text{O}_2 + 2\text{H}_3\text{O}^{+} = \text{I}_2 + 4\text{H}_2\text{O} \]

\[\text{AsO}_5^{3−} + \text{H}_2\text{O}_2 = \text{AsO}_4^{3−} + \text{H}_2\text{O} \]

K některým oxidovadlím se však může \(\text{H}_2\text{O}_2 \) chovat jako látku redukující:

\[\text{Cl}_2 + \text{H}_2\text{O}_2 = 2\text{HCl} + \text{O}_2 \]

\[\text{BrO}^{−} + \text{H}_2\text{O}_2 = \text{Br}^{+} + \text{H}_2\text{O} + \text{O}_2 \]

\[\text{Ag}_2\text{O} + \text{H}_2\text{O}_2 = 2\text{Ag} + \text{H}_2\text{O} + \text{O}_2 \]

Podle acidity prostředí, ve kterém reakce probíhá, se může peroxydová vodík dosahovat protičidelných oxidační- redukčních změn:

\[2[\text{Cr(OH)}_2]^{−} + 3 \text{H}_2\text{O}_2 + 2\text{OH}^{−} \xrightarrow{\text{zásadité prostředí}} 2\text{CrO}_4^{2−} + 8\text{H}_2\text{O} \]

\[2\text{CrO}_4^{2−} + 3 \text{H}_2\text{O}_2 + 10\text{H}_3\text{O}^{+} \xrightarrow{\text{kyselé prostředí}} 2\text{Cr}^{3+} + 18\text{H}_2\text{O} + 3\text{O}_2 \]

Z acidobazického hlediska je \(\text{H}_2\text{O}_2 \) velmi slabá kyselina, jeho kyselost je jen o málo větší než kyselost vody.

● Peroxydy

Peroxydy jsou solemi peroxydového vodíku. Můžeme je připravit jeho neutralizací hydroxydů alkaličních kovů a kovů alkaličních zemí. Jsou to iontové sloučeniny. Peroxid sodný a peroxyd barnatý mají elektronově strukturální vzorce

\[2\text{Na}^{+} [\text{O}−\text{O}]^{2−} \quad \text{Ba}^{2+} [\text{O}−\text{O}]^{2−} \]

Peroxydy připravené neutralizací ve vodním roztoku krystalizují hydratované (např. Na₂O₂, 8H₂O). Bezvode se připraví přímou reakcí uvedených elektropozitivních kovů (s výjimkou Li) s kyslíkem:

\[2\text{Na} + \text{O}_2 = \text{Na}_2\text{O}_2 \]

\[\text{Ba} + \text{O}_2 = \text{BaO}_2 \]
V některých případech lze vhodným postupem dosáhnout jen částečné neutralizace peroxidu vodíku a přípravit hydrogenperoxidy typu $\text{M}\text{H}_2\text{O}_5$ (např. NaH_2O_5).

Peroxidy jiných kovů než alkalických a alkalických zemin jsou méně běžné.

- **Peroxidy a ozonidy**

 Dalšími složeními obsahujícími v aniontu pouze kyselkové atomy jsou tzv. peroxidy (s aniontem O_2^-) a ozonidy (s aniontem O_3^-).

 Peroxidy se připravují působením kyslíku na těžší alkalické kovy (K, Rb, Cs). Anion O_2^- má stejnou strukturu jako molekula kyslíku, však o jeden elektron, umístěný do protivazebného orbitálu, bohatší (str. 93).

 Ozonidy lze připravit působením ozonu (nebo ozonizovaného kyslíku) na suché hydroxydy alkalických kovů. Obsahují anion O_3^-, jehož struktura je shodná se strukturou ozonu (str. 272), avšak obsahuje navíc elektron umístěný do delokalizovaného protivazebného orbitálu typu π.

 Hydroxydy i ozonidy jsou látky nestálé, snadno odštěpují kyslik, působí oxidace.

- **Peroxosoučeniny**

 Názvem peroxosoučeniny se označují všechny látky, v jejichž struktuře se objevuje dvojice sletězených atomů kyslíku, tedy strukturní motiv $\text{O}^{-}\text{O}^-\text{O}$ (atomy kyslíku jsou v oxidačním stavu -1).

 Běžná je tvorba takových aniontů oxokyselin síry, dusíku, uhliku, boru a dalších prvků, které mají nahrazen atom O$^{-1}$I peroxidickou skupinou O$^{-2}$II, např.

 \[
 \begin{align*}
 \text{H} & \quad \text{O} \quad \text{S} \quad \text{O} \quad \text{O} \\
 \text{O} & \quad \text{O} \quad \text{O} \quad \text{O} \quad \text{S} \quad \text{O} \quad \text{H} \\
 \text{O} & \quad \text{I} \\
 \text{H} & \\
 \text{kyšelina} & \quad \text{peroxosoučena} & \quad \text{kyšelina} & \quad \text{peroxosoučena}
 \end{align*}
 \]

 Peroxodereivaty kyseliny sírové a sianit a kyseliny borité a boritanů patří k nejstarším a mají uplatněni i v technické praxi. O přípravě látek tohoto typu se postupně zmínime při výkladu chemie jejich středových atomů.

- **Peroxohydráty**

 Od skupiny peroxosoučenin je těžko odlišit tzv. peroxohydráty — látky, které obsahují ve své krysalidické struktuře jen velmi volně použité molekuly peroxidu vodíku. Jde o analogie velmi běžných hydrátů anorganických solí. Město molecule vody (nebo někdy spolu s ním) jsou v peroxohydrátech přítomni jako solvatující částice molekuly H_2O. Jako příklad lze uvést tyto látky: NaBO_2, H_2O_5, H_2O_6, Na_2SiO_3, H_2O_2, H_2O_5 nebo NaH_2O_5. H_2O_2.

16.4 VÝROBA A POUŽITÍ TECHNICKÝ VÝZNAMNÝCH SLOUČENIN KYSLÍKA

Vede nejvýznamnější složení kyslíku s vodíkem — vody — se v chemickém průmyslu a v technice vůbec uplatňují peroxid vodíku, peroxosoučeniny, peroxohydráty a zejména řada oxidů.

Technický význam však má i elementární kyslík, a to buď jako chemické individuum, nebo

1) Patří mezi ně i již uvedené peroxidy a hydrogenperoxidy.
jako přirozená směs s dusíkem — vzdych. Kromě velmi závažného využití v oblasti energetiky má důležité upotřebení především v metalurgii a v chemických provozech (prážení rud, výroba a čištění kovů, výroba oxidů, výroba základních anorganických i organicích sloučenin atd.). Kyslíko-vodíkový nebo kyslíko-acetylénový plamen je nedocenitelný při výrobě kovových součástek a konstrukcí (svařování, řezání kovů), při výrobě předmětů z těžkoavtělných nekovaných materiálů, při výrobě syntetických drahokamů apod.

- Výroba peroxidu vodíku

Spočívá v přípravě kyseliny peroxodisírové, resp. jejich soli, a v hydrolyze téhoto látky. Roztok kyseliny peroxodisírové nebo její (nejčastěji amonné) soli se získává anodickou oxidací slanových iontů:

\[2 \text{SO}_4^{2-} = \text{S}_2\text{O}_8^{2-} + 2 e^- \]

(anoda Pt)

Úplná hydrolyza peroxodisieranového iontu při zvýšené teplotě probíhá podle již uvedené rovnice (str. 317). Peroxid vodíku se z vodného roztoku oddělí destilačí za sníženého tlaku.

Vedle popsaného způsobu přípravy H₂O₂ byly v souvislosti s jeho použitím jako složky raketových paliv rozpracovány metody jeho přímé syntézy z prvků v tichém elektrickém výboji.

Využívá se též organická reakce, při níž oxidací dihydroxyanthracenu vzniká kyslíkem bezvodné anthracinon a peroxyd vodíku. Anthracinon se pak hydrogenuje vodíkem zpět na dihydroxyanthracen. Peroxid vodíku se z reakční směsi extrahuje vodou a zahustuje za sníženého tlaku.

Peroxid vodíku se distribuuje a používá nejčastěji ve formě asi 30%ho roztoku ve vodě nebo ve formě tlučené sloučeniny s močovinou. Slouží k bělení některých organických látek a přírodních materiálů, k oxidacím a k přípravě peroxosilicátu a peroxohydrátů (prací prášky) a též jako antiseptikum. V koncentrované formě se používá jako složka některých kapalných raketových paliv.

- Výroba oxidů

Četné oxidy se uplatňují jako meziproducty při výrobě základních anorganických látek, jako oxidáci prostředky, pigmenty, přísydy do skle, smaltů, glazur, keramiky a jako součást stavebních materiálů.

Jednou z neočekávaných aplikací oxidů je jejich použití v chemii příslušných výrobků.
17 Chalkogeny

Síra S je druhým, selen Se třetím a tellur Te čtvrtým prvkem skupiny 16B periodického soustavy. Velmi často se označují názvem chalkogeny.1)

Stejně jako prvky skupiny 15B, kyslík O, vykazují chalkogeny elektronovou konfiguraci valenční sféry ns^2np^n (n = 3, 4, 5). Na rozdíl od kyslíku však u síry, selenu a telluru tvoří jejich valenční sferu též orbitaly nd. I když orbitaly nd v základním stavu atomů chalkogenů nejsou obsazeny elektrony, mohou se v důsledku svého nepříliš velkého energetického odstupu od orbitalů ns a np často v tvorbě vazeb. Tím jsou podstatně obohaceny vazebné možnosti chalkogenů ve srovnání s kyslíkem. Zatímco kyslík prostřednictvím svého jediného orbitalu s a tří orbitalů p ve valenční sféře může dosáhnout nejvyšší čtyřvazností, je u síry, selenu a telluru běžné i šestičtvrťnost jejich atomů, neboť do tvorbě vazeb se vedle orbitalů s a p zapojují i dva orbitaly d.

Mění se hodnoty elektronegativity u atomů S, Se a Te (ve srovnání s kyslíkem) se projevují menším sklonem chalkogenů k tvorbě iontových vazeb. Naopak velmi pevně je chemické kovalentních teršiních oksidacíních chalkogenů, zejména síry.

U řady chalkogenidů kovů se do jisté míry uplatňuje kovová vazba, přičemž nesestřimo-metricní a poruchy krystalové mřížky chalkogenidů kovů dodávají v některých případech těmto látkám vlastnosti polovodičů.

17.1 VAZEBNÉ MOŽNOSTI CHALKOGENŮ

Stejně jako u těžkých halogenů existují i u chalkogenů dva formálně rozdílné způsoby vazby jejich atomů ve sloučeninách.

Atomy elektropositivnějších prvků při vzniku vazeb s atomy chalkogenů přenášejí, resp. posouvají sdílené elektronové páry do prostoru atomů chalkogenů. Atomy chalkogenů tak s těmito prvky vytvářejí buď přímo iontovou vazbu (s anionty S^{2-}, Se^{2-}, Te^{2-}), nebo se sice poutají kovalentně, ale se zřetelným posunem elektronové hustoty k atomu chalkogenu. V obojím případě se atomům chalkogenů přizpůsobuje oxidaceční číslo $-II$.

Atomy elektronegativnějších prvků (kyslík, halogeny) vytvářejí s atomy chalkogenů kovalentní vazby, v nichž sdílené elektronové páry jsou více či méně odesouzeny z prostoru atomů chalko-

\[
\begin{align*}
S^{2-} & \quad S^{2-} \\
Se^{2-} & \quad Se^{2-} \\
Te^{2-} & \quad Te^{2-}
\end{align*}
\]

Obr. 17.1. Schematické vyjádření oxidacečních stavů a elektronových konfigurací, v nichž se běžně vyskytují atomy chalkogenů

1) Název „chalkogeny“ (rudotvorné, z řeck.) se obvykle používá jen pro trojici prvků S, Se a Te, ale někdy se do skupiny chalkogenů řadí i kyslík.
genů k jejich elektronegativnějším partnerům. Vazebné poměry atomů chalkogenů za těchto okolností vyjadřujeme kladným oxidacním číslem.

Běžné oxiadací stavby dosahovány jsou souřad, selenu a tellurem a jim formálně odpovídající elektronové konfigurace ukazuje schéma na obr. 17-1. Nejsou v něm však zaznamenány takové oxiadací stavby, které vykazují chalkogeny ve sloučeninách s vazbami chalkogen—chalkogen, tj. oxiadací stavy 1 (např. v S₂Cl₂), V (v S₂Fe₃) a -1 (v FeS₂).

Srovnaní-li vyskyt kladných a záporných oxiadacích stavů u kyslíku na jedné straně a sily, selenu a telluru na straně druhé, zjišťujeme, že je zde situace velmi obdobné té, kterou jsme poznali při porovnávání fluoru s ostatními halogeny. Pro kyslík i fluor je charakteristické, že se vyskytují pouze v záporných oxiadacích stavech. U chalkogenů, stejně jako u těžších halogenů, je síce vyskyt v záporných oxiadacích stavech rovněž běžné, ale objevují se u nich i velmi střídlo oxiadací stavy kladné.

- Záporné oxiadací stavby

Binární iontové sloučeniny tvoří chalkogeny výhradně s elektropozitivními kovy (alkalickými kovy a kovy alkalických zemí), avšak i u nich, zejména v případě seleňu a telluridů, je charakter vazby na rozhraní mezi iontovým a kovalentním.

V binárních sloučeninách s ostatními prvky se vytvářejí převážně kovalentní vazby a vazebné možnosti chalkogenů jsou pak obdobné jako u atomu kyslíku:

a) Atom chalkogenu je vztán k jedinému atomu. Vazba je zprostředkována vazbou σ vznikoucí překryvem AO nebo HAO vazebného partneře s orbitálem p, chalkogenu. Příkladem je anion HS⁻ o struktuře

\[\text{H} \quad \text{S}^{-} \]

V některých případech může být vzniklá vazba σ provázena interakcí π mezi orbitálem p chalkogenu a orbitálem p nebo d vazebného partneře. Nejběžnějším příkladem je vazba v molekule CS₂. Tendence k takovéto tvorbě násobných vazeb klesá v řadě S > Se > Te. Trojná vazba, tj. vazba σ a dvě vazebné interakce typu π, se již nevyskytuje ani u atomů sily. Nasobnou vazbu v molekule CS₂ lze vyjádřit tímto schematickým nákresem:
b) Atom chalkogenu se poutá k cíce než jednomu vazebnému partneru vazbami σ. Tuto situaci pozorujeme např. v molekule H$_2$S (H$_2$Se, H$_2$Te):

Vysvětlujeme ji představou překryvu dvou orbitalů 3p chalkogenu s orbitály 1s dvojice atomů vodíku. Poněvadž vazebný úhel v molekule H$_2$S je blízký pravému úhlu (str. 326), nezaváděme představu hybridizace. Jiným příkladem je vazebné uspořádání sulfonového iontu H$_3$S$^+$, v němž na atom síry jsou koordinovány tři atomy vodíku poutané vazbou σ:

V krystalových mřížkách může být koordinace atomů S$^{\text{VII}}$, Se$^{\text{IV}}$ a Te$^{\text{IV}}$ ještě vyšší — obvykle čtyřmi nebo šesti vazebnými partnery (tetraedrické, resp. oktaedrické uspořádání). Při vzniku každého takového strukturního uspořádání předpokládáme příslušnou hybridizaci na atomech chalkogenů s účastí orbitalů s, p, popř. i d. Pro atomy chalkogenů v záporném oxidačním stavu a s vazností vyšší než 1 je charakteristická nepřímocnost interakcí typu π.

- **Kladné oxidační stavy**

 Chalkogeny poutané k elektronegativním atomům nabhývají formálně kladných oxidačních stavů, avšak vzniklé složeniny jsou vždy látky kovalentní. Na tvorbě vazeb se podílejí hybridizované nebo i nehybridizované orbitály s, p a d atomů chalkogenů. Některé typické vazebné poměry si zmyne ukážeme na příkladech běžných složení chalkogenů.
a) Oxidační stav II
Vyskytuje se např. v molekule chloridu sírnatého (dichlorsulfanu) \(\text{SCl}_2 \). Lomený tvar této molekuly vysvětluje představu hybridizace \(\text{SP}^3 \) středového atomu síry a překryvem dvou z hybridních orbitálů s \(\text{AO} \) chloru za vzniku vazeb \(\sigma \):

![Diagram](attachment:image.png)

Molekula je izoelektronová a vazebně shodná např. s molekulou \(\text{Cl}_2\text{O} \). Nevykazuje interakci \(\pi \) mezi zůstávajícími atomy. U ostatních sloučenin síry, selenu a telluru v oxidačním stavu II, jež mají analogické stéchiometry sloučení [např. \(\text{SF}_2, \text{SeY}_2, \text{TeY}_2; \ Y = \text{halogen} \)], předpokládáme obdobnou strukturu.

b) Oxidační stav IV
Je velmi častý u sloučenin síry, selenu i telluru a může být realizován několikrát způsobem.

V oxidu síře 1,95% se např. základní systém vazeb \(\sigma \) vytváří hybridizací \(\text{SP}^2 \) na středovém atomu síry. Jeden z tří vzniklých HAO je obsazen nevazebným elektronovým párem, druhé dva zprostředkovávají vazby \(\sigma \) s atomy kyslíku. Vedle toho se ovšem tvoří i vazby \(\pi \). Na jejich vzniku mají podíl orbitály 2p obou atomů kyslíku, orientované kolmo na rovinu molekuly, a dále zbylé nehybridizované orbitály 3p atomu síry. Do značné míry přispívají k tvorbě interakce \(\pi \) i dva z pěti orbitálů 3d atomu síry. Je možné vyslovit předpoklad o další hybridizaci \(\text{PD}^2 \) a tvorbě vazeb v molekule \(\text{SO}_2 \) vyjádřit názorně tímto nákresem:

![Diagram](attachment:image.png)

Pozoruhodné odlišné uspořádání vazeb nacházíme u zdánlivě analogické sloučeniny, oxidu seleńitěho \(\text{SeO}_2 \). Bylo již všimáno, že látka má polymerní strukturu, kterou lze nejlepší vyjádřit vzorcem

\[
\text{O} - \text{Se} - \text{O} - \text{Se} - \text{O} - \text{Se} - \text{O} - \text{Se}.
\]

Vazebné úhly v lomeném těžci této látky lze objasnit pouze předpokladem hybridizace \(\text{SP}^2 \) na atomu Se. Dva z atomů kyslíku se spojí překryvem s hybridními orbitaly sp\(^2\). Zbylý orbital \(\text{sp}^2 \) atomu selenu je obsazen nevazebným elektronovým párem. Třetí atom kyslíku je poután
Hybridizace SP^3 na středovém atomu síry v oxidačním stavu IV se uplatňuje např. v sířičitanovém iontu a v molekule kyseliny sířičité. Obě tyto částice jsou proto odvozeny od tvaru tetraedru a jsou vyjádřeny elektronovými strukturami vzorci

\[
\begin{align*}
\text{H} & \quad \text{S} \quad \text{H} \\
\text{O} & \quad \text{O} \\
\end{align*}
\]

s jedním nevazebným elektronovým párem na atomu síry. Vazby jsou provázeny delokalizovanou vazbou π, podmíněnou donací nevazebných elektronových párů atomů kysličky do orbitalů d síry.

V molekule SF_4 se orbitaly d síry dokonce přímo podílejí na tvorbě vazeb σ. Na středovém atomu předpokládáme hybridizaci SP^3D, jež znamená vytvoření konfigurace s jedním nevazebným elektronovým párem a s tvořením deformovaného tetraedru:

\[
\begin{align*}
\text{F} & \quad \text{F} \\
\text{S} & \\
\text{F} & \quad \text{F} \\
\end{align*}
\]

c) *Oxidační stav VI*

Realizuje se nejčastěji dvojím způsobem: bud s účasti, nebo bez účasti orbitálů d atomu chlorkenu na tvorbě vazeb σ.

První případ (bez účasti orbitálů d na vazbách σ) nastává např. u síranového iontu nebo u molekuly kyseliny sírové. Orbitály s a p atomu síry hybridizují (SP^3) a překryvem s AO kysličky tvoří čtvercové vazeb σ s tetraedrickým uspořádáním v prostoru. Interakcí orbitalu p u kysličku s orbitály d středového atomu vzniká delokalizovaný systém vazeb π (stejně jako u izoelektronového iontu ClO_4^-, str. 291):

\[
\begin{align*}
\text{O} & \quad \text{S} \quad \text{O} \\
\text{O} & \quad \text{O} \\
\end{align*}
\]

324
Druhý případ (s účasti orbitalů d na tvorbě vazeb) si můžeme ukázat na příkladu oktaedrické molekuly SF₆ s hybridizací SP³D² nebo na molekule kyseliny hexahydrogentelluurové H₆TeO₆:

Prakticky všechny sloučeniny chalkogenů obsahují jejich atomy v některém z vazebních uspořádání, jež jsou právě popsány. Dokonce i nejběžnější oxidační stav je I (S₂O₃, H₂S₂O₇, H₂Se₂O₇, ...), I (S₂Cl₂, Se₂Br₂, ...) a V (Te₂F₁₀) jsou realizovány atomy chalkogenů ve vazebné situaci prakticky shodné s uvedenými způsoby vazeb a pouze přítomnost přímé vazby chalkogen—chalkogen v těchto sloučeninách je příčinou jejich formálně odloučeného oxidačního stavu.

17.2 CHEMICKÉ VLASTNOSTI SÍRY, SELENU A TELLURU

Chalkogeny jsou velmi reaktivní prvky. Přímo se sloučují s většinou ostatních prvků (zejména s kovy, ale též i s halogeny a kyslíkem). Mnohé z těchto reakcí jsou silně exothermické a mají velmi rychlý průběh.

Elementární chalkogeny působí spíše oxidace, samy přítom přechází do oxidaceho stavu II. Silná oxidovadla (z prvků především kyslík a halogeny) je převádějí do oxidacech stavů kladných. Sloučení chalkogenů s kyslíkem probíhá až při vyzrání teplotě.

Vede tvorba binárních sloučenin je pro chalkogeny (stejně jako pro těžší halogeny) typická tvorba ternárních kyslikatých sloučenin. Obeváží chemie síry je pestrá, především v důsledku existence rozšířené skupiny oxokyselin, v nichž se vyskytují ve vzájemně vazbě atomy síry často i v rozdílných oxidacech stavů. Přesnost této skupiny sloučenin je ještě zvyšována tím, že atomy síry jeví poměrně výraznou tendencí k vzájemnému spojování za tvorby několikačlenných řetězců.

Elementární chalkogeny nereagují s vodou, rozpuštějí se pouze v oxidujících kyselinách.

17.3 BINÁRNÍ SLOUČENINY CHALKOGENŮ

Binární sloučeniny chalkogenů s ostatními prvky můžeme formálně rozdělit do dvou skupin:

a) Sloučeniny, v nichž chalkogen dosahuje záporného oxidaceho stavu (II) a je sloučen s prvkem o srovnatelné nebo menší elektronegativitě. Patří sem sloučeniny chalkogenů s vodíkem s kovy a málo elektronegativními někdy.

b) Sloučeniny, ve kterých jsou chalkogeny v kladných oxidacech stavech (II, IV, VI) a jejich vazebnými partnery jsou prvky elektronegativnější. Tuto situaci nalézame výhradně u sloučenin chalkogenů s kyslíkem a s halogeny.
● Sloučeniny síry, selenu a telluru s vodíkem

Sulfan H_2S (sirovodík), selan H_2Se (selenovodík) a tellan H_2Te (tellurovodík) jsou plynné látky tvořené jednoduchými molekulami s těsně pravouhým uspořádáním jednoduchých vazeb:

H \quad S \quad \text{H}$

H \quad Se \quad \text{H}$

H \quad Te \quad \text{H}$

$\angle\text{HSH} = 92,2^\circ$ \quad $\angle\text{HSeH} = 91,0^\circ$ \quad $\angle\text{HTeH} = 89,5^\circ$

Výklad vazby v těchto sloučeninách je již uveden (str. 322). Mezi molekulamichalkogenovodíků prakticky úplně chybí vazba vodíkovým můstkem. Molekuly vody se napouk vzbou vodíkovým můstkem poutají, a proto v řadě jinak izostrukturních látek H_2O, H_2S, H_2Se, H_2Te pozorujeme vyrazný rozdíl v těžkosti, mezi vodou na jedné straně a ostatními chalkogenovodíky na straně druhé (str. 150).

Sulfan, selan a tellan lze připravit těmito způsoby:

A. půinou syntézou z prvků

$\text{H}_2 + \text{Se} = \text{H}_2\text{Se}$

(tellan takto připravit nelze);

B. hydrolyzou některých sulfidů, selenidů nebo telluridů, např.

$\text{Al}_2\text{Te}_3 + 6 \text{H}_2\text{O} = 3 \text{H}_2\text{Te} + 2 \text{Al(OH)}_3$

C. reakcí sulfidů, selenidů nebo telluridů s vodnými roztoky neoxidujících kyselin

$\text{FeS} + 2 \text{HCl} = \text{H}_2\text{S} + \text{FeCl}_2$

Poslední způsob, prováděný v Kippově přístroji, je nejbežnější metodou laboratorní připravy sulfanu.

Všechny tři chalkogenovodíky se od sebe liší stabilitou. Sulfan je jen slabě exotermická poměrně stálá sloučenina, kdežto selan i tellan jsou látky endotermické a mnohem méně stálé.

Všechny chalkogenovodíky po zapálení na vzduchu hoří za vzniku vody a oxidu sířitého, resp. oxidu seleníčitého nebo telluričitého. Oxidují se i dalšími oxidovadly, jako jsou např. halogeny, peroxyd vodíku, koncentrovaná kyselina sírová nebo kyselina dusičná:

$\text{H}_2\text{S} + \text{Br}_2 = 2 \text{HBr} + \text{S}$

$\text{H}_2\text{Se} + \text{H}_2\text{SO}_4 = \text{Se} + \text{SO}_2 + 2 \text{H}_2\text{O}$

$3 \text{H}_2\text{S} + 2 \text{HNO}_3 = 3 \text{S} + 2 \text{NO} + 4 \text{H}_2\text{O}$

Chalkogenovodíky se velmi dobře rozpouštějí ve vodě za vzniku roztoků, které se běžně nazývají roztok kyseliny sirovodíkové, selenovodíkové, tellurovodíkové. Sulfan je v vodním roztoku slabou kyselinou ($K_{\text{H}_2\text{S}} \approx 10^{-7}$), selan a tellan jsou kyseliny poněkud silnější ($K_{\text{H}_2\text{Se}} \approx 10^{-4}$, $K_{\text{H}_2\text{Te}} \approx 10^{-3}$). Vodné roztoky chalkogenovodíků se samovolně zvolna oxidují vzdušným kyslíkem za tvorby elementární síry, selenu a telluru, popř. za tvorby polysulfidových, polyselenidových a polytelluridových iontů:

$2 \text{H}_2\text{Se} + \text{O}_2 = 2 \text{H}_2\text{O} + 2\text{Se}$

$\text{Se} + 2 \text{H}_2\text{Se} + \text{H}_2\text{O} = \text{H}_2\text{Se}_2^+ + \text{H}_3\text{O}^+$

326
Především u síry se vedle běžného sulfanu H₂S vyskytuje relativně nestálé kapalné nebo tuhé látky obecněho vzorce H₂Sn, tzv. polysulfany. Mají řetězovitou nevětvenou strukturu. V případě pentasulfanu se např. předpokládá konfigurace

\[H - S - S - S - S - S - H \]

- Sulfdy, selenidy a telluridy

Oba protony H⁺ formálně přítomné v molekulách chalkogenovodíků mohou být nahrazeny jiným elektropozitivním prvkem. Takto odvezené sloučeniny označujeme názvem chalkogenidy. Jsou formálně nebo i skutečněolem příslušného chalkogenovodíku.

Jenom v případě, kdy vazebným partnerem chalkogenu je kov z levého dolního rohu periodické tabulky prvků, vyzařující se malou elektronezávitostí, můžeme se takovéto sloučeniny předpokládat výraznější uplatnění iontové vazby (K₂S, Rb₂Te aj.). V ostatních případech má vazba v chalkogenidech polárně kovalentní charakter (Al₂S₃, As₂Se₃ aj.). Některé chalkogenidy vykazují též výraznější uplatnění vazby kovové (Cr₂S₃, Ti₂Se₃ aj.).

Prakticky všechny chalkogenidy jsou tuhé látky, vesmíř málo těkavé, protože je tvoří buď iontová místa, nebo kovalentní mřížka polymerního charakteru. U chalkogenidů pozorujeme velmi často odchyly od jejich teoretické stoichiometrické složení, které jsou důsledkem přítomnosti mřížkových porů (některé atomy v mřížce chybějí) nebo přítomnosti polychalkogenidových iontů (např. S₇²⁻) v mřížce apod.

Výjimkou chalkogenidů alkaličtých kovů jsou všechny ostatní sulfdy, selenidy a telluridy ve vodě nerozpuštěné.1) Sražení nerozpuštěných sulfdů z vodných roztoků spolu s jejich snadnou identifikovatelností (podle barvy sraženiny, podle hodnoty pH roztoku, z něhož se vyložuje, a podle dalších reakcí sraženiny) se stalá základem klasického analytického postupu, sloužícího k důkazu přítomnosti kationtů kovů ve vodných roztocích.

Pro rozpuštěné chalkogenidy je charakteristickým rysem hydrolýza chalkogenidového aniontu. Nejvíce hydrolyzují sulfdy, neboť anion S²⁻ je odvozen od slabší kyseliny než anionty Se²⁻ a Te²⁻. Hydrolýzu aniontu S²⁻, provázenou vzájemem hodnoty pH vodného roztoku, znázorňuje rovnice

\[S^{2-} + H_2O = HS^- + OH^- \]

Zejměna v okyslených roztocích dochází k další protonizaci hydrogensulfdových iontů za tvorbu molekul H₂S:

\[HS^- + H_2O^- = H_2S + H_2O \]

Mezi běžné cesty přípravy chalkogenidů patří:

A. sražení z vodných roztoků příslušných rozpuštěných soli účinkem chalkogenovodíka nebo rozpuštěného chalkogenídu

\[Cu^{2+} + H_2S + 2 H_2O = CuS + 2 H_2O^+ \]
\[Zn^{2+} + S^{2-} = ZnS \]

B. syntéza z prvků

\[Hg + S = HgS \]
\[2 Al + 3 Se = Al₂Se₃ \]
\[Cd + Te = CdTe \]

1) Sulfdy kovů alkaličtých zemin a některých dalších kovů vstupují do roztoku tím, že hydrolyzují.
C. reakce kotu s chalkogenovodíkem

\[2 \text{Ag} + \text{H}_2\text{S} = \text{Ag}_2\text{S} + \text{H}_2 \]
\[\text{Pb} + \text{H}_2\text{Se} = \text{PbSe} + \text{H}_2 \]

D. redukce oksidoučených chalkogenů (nejčastěji siránů)

\[\text{CaSO}_4 + 4\text{C} = \text{Ca} + 4\text{CO} \]

Typickou chemickou vlastností všech chalkogenidů je jejich poměrně snadná oxidovatebnost. V technické praxi se využívá především proces oxidace sulfidických rud některých kovů. Pražením na vzduchu se ukáže u technicky významné procesy, např.

\[\text{Cu}_2\text{S} + 2\text{O}_2 = 2\text{CuO} + \text{SO}_2 \]
\[2\text{PbS} + 3\text{O}_2 = 2\text{PbO} + 2\text{SO}_2 \]
\[\text{HgS} + \text{O}_2 = \text{Hg} + \text{SO}_2 \]

Pozvolná oxidace vlhkých tuhých sulfidů vzdušným kyslíkem vede ke tvorbě siránů:

\[\text{BaS}(s) + 2\text{O}_2(g) = \text{BaSO}_4(s) \]

Silná oxidovadla oxidují chalkogenidy v suspenzi anebo v roztoku až na volné ooxyselyny:

\[\text{ZnS} + 10\text{HNO}_3 = \text{Zn(NO}_3)_2 + \text{H}_2\text{SO}_4 + 8\text{NO}_2 + 4\text{H}_2\text{O} \]

Oxidačním tavením chalkogenidů vznikají soli oxyselyny:

\[\text{CaTe} + 2\text{KNO}_3 = \text{K}_2\text{TeO}_3 + 2\text{NO} + \text{CaO} \]

Existují i hydrogenchalkogenidy kovů. Tyto látky s aniony HS\(^-\), HSe\(^-\) a HTe\(^-\) jsou běžné v roztocích. V tuhém skupenství se z volných roztoků daří připravit prakticky jen hydrogenchalkogenidy alkaličtých kovů a kovů alkaličtých zemin (NaHS, Ca(HSe)_2 aj.). Z ostatních systémů se využívají opět pouze nerozpustné chalkogenidy kovů.

Reakce chalkogenidů s volnými chalkogeny vede ke vzniku tzv. polychalkogenidů:

\[\text{Na}_4\text{S} + x\text{S} = \text{Na}_{4+x}\text{S}_x, \quad (x = 1, 2, 3, \ldots) \]
\[\text{NiSe} + \text{Se} = \text{NiSe}_2 \]

Právě tak lze v některých případech získat polychalkogenidy, použije-li se při termické syntéze z prvků přebytek chalkogenu:

\[\text{Co} + 2\text{S} = \text{Co}_2\text{S}_2 \]

Aniony typu \(\text{S}_2\text{S}^2^-\), \(\text{S}_3\text{S}^2^-\) atd. se nazývají polysulfidové (anion disulfidový, trisulfidový atd.) a po- važují se za odvozené od molekul polysulfanů (resp. obdobné polyselenanů a polytellanů) heterolytickým odštěpením obou protonů
\(\text{H}^+\). Mají řetězovité nevětvené uspořádání jako např. trisulfidový anion

\[
\begin{array}{c}
\text{S} \\
\text{S} \\
\text{S}
\end{array}
\]

Polychalkogenidy mohou na rozdíl od prostých chalkogenidů působit v roztoku oxidace. V chemické praxi nacházíme použití polysulfidů alkaličtých kovů a polysulfid amonýn jako činidlo rozpuštějící sulfidy některých kovů za tvorby thiosoli:
As₂S₃ + 3 S₂O₇⁻ = 2 AsS₂O₅⁻ + (3x - 5)S
SnS + S₂O₇⁻ = SnS₂O₅⁻ + (x - 2)S

(Vyložená elementární síra se opět rozpustí v roztoku.)

- Oxidy síry

Síra vystaví k kyslíkem vedle nebněhoho a nestálého S₂O dvojici oxidů SO₂ a SO₃.
Oxid sířitý SO₃ vzniká jednak přímým sloučováním síry s kyslíkem (hoření síry na vzduchu):

S + O₂ = SO₂

jednak oxidací sulfidů nebo polysulfidů vzdušným kyslíkem (pražením na vzduchu):

2 CuS + 3 O₂ = 2 CuO + 2 SO₂
4 Fe₃S₄ + 11 O₂ = 2 Fe₂O₃ + 8 SO₂

Obě tyto cesty se využívají při průmyslové výrobě SO₂. V laboratorním měřítku se SO₂ nejčastěji připravuje redukci koncentrované kyseliny sírové ušlechtilým kovem podle rovnice

Cu + 2 H₂SO₄ = CuSO₄ + SO₂ + 2 H₂O

anem tak, že se v roztoku sířičitanu uvolní těžkým silného mineralní kyseliny kyselina sířitá H₂SO₃, která se samovolně stěpí na SO₂ a H₂O:

Na₂SO₃ + H₂SO₄ = Na₂SO₄ + H₂O + SO₂

Oxid sířitý je nízkomolekulární plynová látku, lze jej však snadno kapalnou. Vazbu v jeho molekule jsou již popsal dříve (str. 322).

SO₂ má nevýrazné kyselé vlastnosti, ve vodném roztoku příjímá molekulu vody a vzniká kyselnina sířitá disociuje:

SO₂ + H₂O = HSO₃⁻ + H₃O⁺

Kapalný SO₂ je vytéctněm rozpouštědlem pro řadu polárních anorganických sloučenin.

Oxid sířitý má redukční vlastnosti, oxiduje se dosti ochotně na síraný nebo kyselinu sírovou:

5 SO₂ + 2 MnO₄⁻ + 6 H₂O = 2 Mn²⁺ + 5 SO₄²⁻ + 4 H₃O⁺
3 SO₂ + 2 HNO₃ + 2 H₂O = 3 H₂SO₄ + 2 NO

K velmi silně redukujícím látkám se SO₂ může chovat jako oxidovadlo:

SO₂ + 2 C = 2 CO + S
SO₂ + 2 H₂ = S + 2 H₂O

Oxid sírový SO₃ lze připravit oxidací síry nebo SO₂ elementárním kyslíkem:

2 SO₂ + O₂ = 2 SO₃

Reakce je exothermický děj, avšak má značné velkou hmotnou aktivaci energie. Zvýšení teploty příběh reakce podporuje, ale současně posouvá její rovnováhu doleva. Proto se při průmyslové realizaci tohoto děje musí využívat katalytický vliv některých látek (oxidů dusíku, oxidu vanácičného, v laboratorním měřítku i elementární platiny).

Pro přípravu SO₃ v laboratorním měřítku může posloužit též rozklad některých sificar:

Fe₂(SO₃)₃ = Fe₂O₃ + 3 SO₃

329
Plynný oxid sírový je tvořen jednoduchými molekulami \(\text{SO}_2 \), které mají planární trojúhelníkový tvar s hybridizací \(\text{SP}^2 \) na středovém atome síry a s výraznou interakcí tří vazeb \(\sigma \). V tuhé fázi je \(\text{SO}_3 \) tvořen jednak (přímo po zkondenzování) cyklickými trimerami molekulami \(\text{SO}_3 \), jednak (po delší době) lineárními nevětvenými řetězci \(\text{SO}_3 \),

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\ldots & \quad \text{O} \\
\text{S} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{O}
\end{align*}
\]

Koordinace čtyř atomů kyslíku na atomech síry je v těchto strukturách vždy tetraedrická (hybridizace \(\text{SP}^3 \)). Dva ze čtyř atomů kyslíku jsou místkové a jsou použity prakticky jen dvojici vazeb \(\sigma \), zbytek dvou atoný kyslík jsou jednouvazně (koncové) a jejich vazeb \(\sigma \) ke středovému atomu \(S \) je provázena slabší vazbou vzniklou interakcí zaplněných orbitalů p kyslíku s prázdnými orbitály d atomu síry.

Oxid sírový je silně kyselý. S vodou poskytuje kyselinu sírovou.

Oxidační schopnosti oxidu sírového jsou značné, ale nejsou extrémní, neboť oxidační stav VI s formálně dosaženou konfigurací \(\text{S}^{6+} \) je u síry běžný a relativně stálý.

- **Oxidy selenu a telluru**

Stálými a laboratorní syntézou doby dosažitelnými oxidy selenu a telluru jsou \(\text{SeO}_2 \), \(\text{SeO}_3 \) a \(\text{TeO}_2 \).

Oxid seleničitý \(\text{SeO}_2 \) snadno vzniká spalováním selenu. Je bezbarvý a dobře sublimuje. Na rozdíl od \(\text{SO}_2 \), který má molekulární strukturu, je \(\text{SeO}_2 \) látkou polymerní; jeho elektronový strukturní vzorec je \(\text{Se} = \text{O} \). Je to velmi dobrá oxidace vodu.

Oxid seleničitý \(\text{SeO}_3 \) je látkou kyselého povahy, s vodou poskytuje kyselinu seleničitou. Na rozdíl od \(\text{SO}_2 \) má rychle výraznější oxidace účinky.

Oxid telluričitý \(\text{TeO}_2 \) lze nejlépe připravit spalováním elementárního telluru na vzduchu nebo přímo v kyslíku. Je bezbarvý, jeho kovalentní krystalická struktura má charakter prostorovéhopolymeru. V důsledku toho se špatně rozpouští ve vodě. Je však rozpustný v roztocích silných zásad (tvoří se telluřát). Má slabé kyselé charakter.

Oxid selenový \(\text{SeO}_3 \) se tvoří vedle \(\text{SeO}_2 \) působením tichého elektrického výboje na směs par selenu a kyslíku. Laboratorně nejlepe získan dehydrující kyseliny selénové:

\[
2 \text{H}_2\text{SeO}_4 + \text{P}_2\text{O}_{10} = 4 \text{HPO}_3 + 2 \text{SeO}_3
\]

Je to bezbarvá třída látky, s kyselkou bezvětvenou strukturovou oxidu sírového. \(\text{SeO}_3 \) je velmi silně kyselý, s vodou poskytuje kyselinu selenovou. Má výrazné oxidace účinky.

Nejněžnější oxidu a dozi, látkou látkou je **oxid telluróvaný** \(\text{TeO}_3 \). Lze jej připravit jako oranžovou polymerní látku termickou dehydratací kyseliny hexahydrogenteellurové:

\[
\text{H}_6\text{TeO}_6 = \text{TeO}_3 + 3 \text{H}_2\text{O}
\]

- **Halogenidy síry, selenu a telluru**

Přehled běžnějších binárních sloučenin halogenů s chalogeny podává tab. 17-1.

Valná část uvedených halogenů se může připravit přímou syntézou z prvků ve vhodném stechiometrickém poměru a za vhodných reakčních podmínek. Mnohé z těchto látek jsou dozi látky. Výjimečně stálý je fluorid sírový \(\text{SF}_6 \), který se dokonce nehydrolyzuje vodou. Stálý je též
<table>
<thead>
<tr>
<th>Složení a struktura sloučeniny</th>
<th>S</th>
<th>Se</th>
<th>Te</th>
</tr>
</thead>
<tbody>
<tr>
<td>XY₆</td>
<td>S₂F₆</td>
<td>SeF₆</td>
<td>TeF₆</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X₂Y₁₀</td>
<td>S₂F₁₀</td>
<td></td>
<td>Te₂F₁₀</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XY₄</td>
<td>SCl₄</td>
<td>SeCl₄</td>
<td>TeCl₄</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XY₂</td>
<td>SBr₂</td>
<td></td>
<td>TeBr₂</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X₂Y₃</td>
<td>S₂F₃</td>
<td></td>
<td>Te₂F₃</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X₂Y₅</td>
<td>S₂Cl₂</td>
<td></td>
<td>Te₂Cl₂</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dichlordisulfan S₂Cl₂, který má použití v technické praxi jako rozpouštědlo síry (při vulkanizaci kanček) a chlorační čimtidlo při přípravě některých chloridů.

Halogenidy chalcogenů jsou většinou nižšímolekulární látky s polárními kovalentními vazbami a se strukturou uvedenou zdjednodušeně v prvním sloupci tab 17-1.

17.4 TERNÁRNÍ KYSLIKATÉ SLOUČENINY SÍRY

Řadíme mezi ně především všechny kyslikaté kyseliny síry, jejich soli a halogeny těchto kyselin. Mimo to existuje řada dalších ternárních sloučenin síry, z nichž některé poznáme při výkladu chemie jiných prvků.

<table>
<thead>
<tr>
<th>Skupina</th>
<th>Stechionometrický vzorec, název</th>
<th>Elektronový strukturní vzorec*)</th>
<th>Oxidační stavy atomů S</th>
<th>Stabilita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kyseliny sírové</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂SO₃</td>
<td>iO⁻</td>
<td>SIV</td>
<td>Stále pouze ve vodném roztoku a ve formě soli</td>
<td></td>
</tr>
<tr>
<td>Kyselina stříčkata</td>
<td>H → O ← S ← O ← H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₄SO₄</td>
<td>iO⁻ iO⁻ iO⁻</td>
<td>SIV</td>
<td>Stále jako chemické individuum, v roztoku i ve formě soli</td>
<td></td>
</tr>
<tr>
<td>Kyselina sírová</td>
<td>H → O ← S ← O ← H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂S₃O₃</td>
<td>iO⁻ iO⁻ iO⁻</td>
<td>SIV</td>
<td>Stále jako chemické individuum a ve formě soli</td>
<td></td>
</tr>
<tr>
<td>Kyselina disírová</td>
<td>H → O ← S ← O ← H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂S₂O₄</td>
<td>iO⁻ iO⁻ iO⁻</td>
<td>SIV</td>
<td>Stále pouze ve vodném roztoku a ve formě soli</td>
<td></td>
</tr>
<tr>
<td>Kyselina disířčetá</td>
<td>H → O ← S ← O ← H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂S₂O₃</td>
<td>iO⁻ iO⁻</td>
<td>SIV</td>
<td>Zcela nestálá, existuje pouze ve vodném roztoku</td>
<td></td>
</tr>
<tr>
<td>Kyselina thiobiřčetá</td>
<td>H → O ← S ← O ← H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂S₂O₃</td>
<td>iO⁻ iO⁻</td>
<td>SIV</td>
<td>Jako individuum stále pouze při nízkých teplotách, zcela stálé jsou její soli</td>
<td></td>
</tr>
<tr>
<td>Kyselina thiobiřová</td>
<td>H → O ← S ← O ← H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂S₂O₄</td>
<td>iO⁻ iO⁻ iO⁻</td>
<td>***)</td>
<td>Stále jsou pouze její soli</td>
<td></td>
</tr>
<tr>
<td>Kyselina dithionová</td>
<td>H → O ← 2 ← O ← H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂S₄O₆</td>
<td>0 až 4 iO⁻ iO⁻ iO⁻ iO⁻</td>
<td>***)</td>
<td>Stále v roztoku a ve formě soli</td>
<td></td>
</tr>
<tr>
<td>Kyseliny polythionové</td>
<td>H → O ← S ← S ← S ← O ← H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n = 2 až 6)</td>
<td>iO⁻ iO⁻ iO⁻ iO⁻</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
U většiny popsaných kyselin dochází nejen k tvorbě vazeb σ, ale též k interakci π mezi středovými atomy siry a je obklopujícími atomy kysíku (\(O^{\text{\(=\)}}\)) nebo siry (\(S^{=\text{\(=\)}}\)). Jak jsme již dříve ukázali (str. 234), jde většinou o zpětnou donaci nevazebných elektronových páru \(\pi\) atomu O (nebo S) do orbitálů \(\sigma\) středových atomů S\(^{VI}\) nebo S\(^{V}\). Koordinace na středovém atomu je buď tetraedrická (nemá-li atom siry nevazebný elektronový pár), nebo trigonální pyramidální (je-li nevazebný elektronový pár přítomen).

Kyselina sřetězová a sířetínova

Existenci molekul **kyseliny sřetězové** \(H_2SO_4\) předpokládáme ve vodném roztoku oxidu sřetězového. Je pravděpodobné, že jen malá část molekuly \(SO_2\) skutečně přechází na kyselinu, většina jich je přítomna ve formě hydrátů \(SO_2\cdot nH_2O\). Přitom kyselost kyseliny sřetězové, resp. hydrátů \(SO_2\cdot nH_2O\) je malá. Je vyjádřena rovnicemi:

\[
\begin{align*}
H_2SO_4 + H_2O & \rightarrow HSO_4^- + H_3O^+ \\
SO_2 \cdot xH_2O & \rightarrow HSO_3^- + H_3O^+ + (x-2)H_2O
\end{align*}
\]

jejichž rovnováha je posunuta doleva. Vznikající hydrogensířetínanový ion \(HSO_3^-\) je opět velmi slabá kyselina. Může se dobazicí reagovat s molekulami vody podle rovnic

\[
HSO_3^- + H_2O \rightarrow SO_3^{\text{\(=\)}} + H_3O^+
\]

avšak zcela přehloubě zleva doprava tato reakce se dosáhne jen v alkalickém vodním roztoku. Běžnými a stabilními látkami jsou **sířetínova a hydrogenzsířetínova**. Sycením roztoků hydroxidů nebo uhlíčitanů kovů oxidem sřetězovým připravíme nejpřev doméněně:**

\[
\begin{align*}
NaOH + SO_2 & \rightarrow NaHSO_3 \\
CaCO_3 + 2SO_2 + H_2O & \rightarrow Ca(\text{HSO}_3)^2 + CO_2
\end{align*}
\]
Neutralizaci roztoku hydrogensilicítanu stechiomетrickým množstvím hydroxidu se pak získá siličitan:

\[
\text{NaHSO}_3 + \text{NaOH} = \text{Na}_2\text{SO}_3 + \text{H}_2\text{O} \\
\text{Ca(HSO)}_3 + \text{Ca(OH)}_2 = 2\text{CaSO}_3 + 2\text{H}_2\text{O}
\]

Siličitany a hydrogensilicítanu alkalických kovů, kovů alkalických zemin a dalších bazických kationů jsou ve vodě dobře rozpustně a stejně jako oxid siličitý nebo hydráát oxidu siličitých mají výrazně redukční účinky. Zvláště silně redukční působení vodních roztoků hydrogensilicítanů se vysvětluje přítomností tautomerní formy hydrogensilicítanového iontu s vazbou \(S-H \):

\[
\begin{bmatrix}
\text{I}^-
\text{I}^-
\text{I}^-
\text{I}^-
\text{I}^-
\end{bmatrix}
\begin{bmatrix}
\text{I}^-
\text{I}^-
\text{I}^-
\text{I}^-
\text{I}^-
\end{bmatrix}
\begin{bmatrix}
\text{S}^-
\text{S}^-
\text{S}^-
\text{S}^-
\text{S}^-
\end{bmatrix}
\begin{bmatrix}
\text{H}^+
\text{H}^+
\text{H}^+
\text{H}^+
\text{H}^+
\end{bmatrix}
\]

Produktem oxidace siličitanů i hydrogensilicítanů jsou síraný:

\[
5\text{HSO}_3^- + 2\text{MnO}_4^- + 3\text{H}_2\text{O}^+ = 5\text{SO}_4^{2-} + 2\text{Mn}^{2+} + 4\text{H}_2\text{O} \\
\text{SO}_3^{2-} + 3\text{H}_2\text{O} + \text{I}_2 = \text{SO}_4^{2-} + 2\text{H}_3\text{O}^+ + 2\text{I}^-
\]

Zahříváním siličitanů se buď získají oxidy

\[
\text{Al}_2(\text{SO}_4)_3 = \text{Al}_2\text{O}_3 + 3\text{SO}_2 \\
\text{MgSO}_3 = \text{MgO} + \text{SO}_2
\]

nebo nastává disproporcionace:

\[
4\text{K}_2\text{SO}_3 = 3\text{K}_2\text{O} + \text{K}_2\text{S}
\]

Zahřívání hydrogensilicítanů nebo i pokus o jejich krystalizaci z vodního roztoku vedou ke vzniku disilicítanů (\(S_2\text{O}_5^{2-} \)):

\[
2\text{KHSO}_3 = \text{K}_2\text{S}_2\text{O}_3 + \text{H}_2\text{O}
\]

Obdobně i sycením vodního roztoku hydrogensilicítanu oxidem siličitým se získá roztok disilicítanu (s převažujícím obsahem hydrogensilicítanových iontů):

\[
\text{HSO}_3^- + \text{SO}_2 = \text{HS}_2\text{O}_5^-
\]

V koncentrovaných roztocích jsou přítomny těží ionty

\[
\begin{bmatrix}
\text{I}^-
\text{I}^-
\text{I}^-
\text{I}^-
\text{I}^-
\end{bmatrix}
\begin{bmatrix}
\text{I}^-
\text{I}^-
\text{I}^-
\text{I}^-
\text{I}^-
\end{bmatrix}
\begin{bmatrix}
\text{S}^-
\text{S}^-
\text{S}^-
\text{S}^-
\text{S}^-
\end{bmatrix}
\begin{bmatrix}
\text{O}^-
\text{O}^-
\text{O}^-
\text{O}^-
\text{O}^-
\end{bmatrix}
\begin{bmatrix}
\text{H}^+
\text{H}^+
\text{H}^+
\text{H}^+
\text{H}^+
\end{bmatrix}
\]

Kyselina disilicítní je stálá jen v roztoku. Její soli mají velmi silné redukční účinky.

- Kyselina sírová a síraný

Kyselina sírová je velmi stálá chemická sloučenina. Za normální teploty je kapalná, má velkou hustotu a je značně viskózní. Vzniká reakcí oxidu sírového s vodou:

\[
\text{SO}_3 + \text{H}_2\text{O} = \text{H}_2\text{SO}_4
\]

324
Reakce je silně exotermická, probíhá velmi prudce až explozivně za vzniku mlhy kyseliny sírové.
Kyselina sírová se mísí s vodou v každém poměru, je silnou kyselinou a ve vodě ionizuje:
\[\text{H}_2\text{SO}_4 + \text{H}_2\text{O} = \text{HSO}_4^- + \text{H}_3\text{O}^+ \]

Rovnováha děje je posunuta prakticky úplně doprava \((K_{\text{H}_2\text{SO}_4} > 1)\). Anion \(\text{HSO}_4^-\) má též kyselé vlastnosti a je schopen obdobné reakce:
\[\text{HSO}_4^- + \text{H}_2\text{O} = \text{SO}_4^{2-} + \text{H}_3\text{O}^+ \]

Tento proces však již zdaleka není spontánní.

Jako všechny silné kyseliny tvoří \(\text{H}_2\text{SO}_4\) s vodou azeotropickou směs \((98,3\% \text{mír} \text{H}_2\text{SO}_4, \text{bod varu} 338^\circ\text{C})\). V čisté koncentrované kyselině sírové dochází k autoionizaci:
\[\text{H}_2\text{SO}_4 + \text{H}_2\text{SO}_4 = \text{H}_3\text{SO}_4^- + \text{HSO}_4^- \]

Vedle toho se kondenzací reakci tvoří v omezené míře molekuly kyseliny disírové:
\[\text{H}_2\text{SO}_4 + \text{H}_2\text{SO}_4 = \text{H}_3\text{S}_2\text{O}_4^- + \text{H}_2\text{O} \]

Obdobně vzniká kyselina disírová i při rozpuštění \(\text{SO}_3\) v koncentrované \(\text{H}_2\text{SO}_4\):
\[\text{SO}_3 + \text{H}_2\text{SO}_4 = \text{H}_3\text{SO}_4^- \]

Přitom se pravděpodobně tvoří též molekuly dalších kyselin polysořivých – trísírové \(\text{H}_2\text{S}_2\text{O}_{10}\) a tetrasisórové \(\text{H}_3\text{S}_2\text{O}_{13}\). Roztok \(\text{SO}_3\) v koncentrované \(\text{H}_2\text{SO}_4\) se nazývá oleum.

Koncentrovaná kyselina sírová má poměrně výrazné oxiдаční účinky. Oxiduje některé elementární ušlechtilé kovy:
\[\text{Hg} + 2\text{H}_2\text{SO}_4 = \text{HgSO}_4^- + \text{SO}_2 + 2\text{H}_2\text{O} \]

nekovy
\[\text{C} + 2\text{H}_2\text{SO}_4 = 2\text{SO}_2 + \text{CO}_2 + 2\text{H}_2\text{O} \]

i mnohé sloučeniny:
\[\text{H}_2\text{S} + \text{H}_2\text{SO}_4 = \text{S} + \text{SO}_2 + 2\text{H}_2\text{O} \]
\[2\text{HI} + \text{H}_2\text{SO}_4 = \text{I}_2 + \text{SO}_2 + 2\text{H}_2\text{O} \]

Vodné roztoky kyseliny sírové naproti tomu již nemají schopnost oxidovat látky v důsledku redukčního děje \(8\text{H}^+ + \text{SO}_4^{2-} \rightarrow \text{S} + 4\text{H}_2\text{O}\) a jako roztoky všech silných kyselin působí „oxidačně“ (zejména na neušlechtilé kovy) pouze prostřednictvím redukce protonů \(\text{H}^+ \rightarrow \text{H}_2\text{O}\):
\[\text{Zn} + \text{H}_2\text{SO}_4 = \text{ZnSO}_4 + \text{H}_2 \]

Stejně jako kyselina chloridová má i kyselina sírová charakteristické mimořádně silné dehydratační schopnosti. Používá se proto jako dehydratační činidlo vhodné zejména pro sušení plynů.
Technický význam kyseliny sírové je mimořádný.
Kyselina sírová je kyselinou dvojasytnou, a proto vytváří dvě řady soli: sůlony a hydrogensíranony. Elektronové strukturní vzorce stranového a hydrogenálního iontu:

\[
\begin{pmatrix}
\text{O} & \text{S} & \text{O} \\
\text{O} & \text{S} & \text{O} & \text{H} \\
\text{O} & \text{O} \\
\end{pmatrix}
\]

335
ukazuji (podle metody VSEPR) na tetraedrickou koordinaci čtyř atomů kyslíku na atomu síry. Stejně jako v kyselině sírové jsou vazby S–O typu α provázkány u obou aniontů čtvrťovou interakcí π.

Síran
je připravit úplnou neutralizaci kyseliny sírové
\[2 \text{KOH} + \text{H}_2\text{SO}_4 = \text{K}_2\text{SO}_4 + 2 \text{H}_2\text{O} \]
její reakcí s neúčelnými kovy nebo oxidy kovů
\[\text{Cd} + \text{H}_2\text{SO}_4 = \text{CdSO}_4 + \text{H}_2 \]
\[\text{CuO} + \text{H}_2\text{SO}_4 = \text{CuSO}_4 + \text{H}_2\text{O} \]
a vytěsněním slabších kyselin z jejich soli:
\[\text{CaCO}_3 + \text{H}_2\text{SO}_4 = \text{CaSO}_4 + \text{H}_2\text{O} + \text{CO}_2 \]
\[\text{CaCl}_2 + \text{H}_2\text{SO}_4 = \text{CaSO}_4 + 2 \text{HCl} \]

Zahříváním některých síranů (např. síranů alkalických kovů) se nejdříve dosáhne jejich roztažení. Avšak všechny síranu se dřív nebo později zvýšenou teplotou rozkládají na oxid kovu a SO₂, popř. na oxid kovu a směs SO₃ a O₂.

Hydrogensíran vznikají částečnou neutralizací kyseliny sírové
\[\text{H}_2\text{SO}_4 + \text{KOH} = \text{KHSO}_4 + \text{H}_2\text{O} \]
její reakcí se síranu
\[\text{H}_2\text{SO}_4 + \text{Na}_2\text{SO}_4 = \text{2NaHSO}_4 \]
a podobně Běžné jsou pouze hydrogensíran alkaličních kovů. Zahříváním hydrogensíranů lze připravit disírany:
\[2 \text{NaHSO}_4 = \text{Na}_2\text{S}_2\text{O}_7 + \text{H}_2\text{O} \]

Kyseliny s vazbou S−S

Do této skupiny látek patří vedle již uvedené kyseliny disířeté [str. 334] především tzv. thiokyseliny síry – tj. kyselina thiosířetá H₂S₂O₇ a kyselina thiosírovná H₂S₂O₅.

Jak ukazuje tab. 17-2, jsou atomové konfigurace těchto kyselin shodné se strukturou kyseliny sířeté a kyseliny sírové až na to, že jeden z atomů kyslíku v jejich molekule je nahrazen tzv. thiosírovnou, tj. atomem síry v oxičeném stavu – II. Obě kyseliny jsou velmi nestálé. Kyselina thiosírová je silnou kyselinou.

Pozoruhodnou stavbou se vyznačují soli kyselin thiosírové – thiosíranů. Technicky nejvýznamnější z nich je thiosíran sodný Na₃S₂O₆, který se připraví např. oxidací polysulfidů vzdušným kyslíkem
\[2 \text{Na}_2\text{S}_2 + 3 \text{O}_2 = 2 \text{Na}_3\text{S}_2\text{O}_6 \]
nebo reakcí roztoků hydrogensířetého a hydrogensířetitého
\[2 \text{HS}^- + 4 \text{HSO}_3^- = 3 \text{S}_2\text{O}_7^{2-} + 3 \text{H}_2\text{O} \]
či reakcí práškové síry s roztokem sířetitého za horčíka:
\[\text{S} + \text{SO}_3^{2-} = \text{S}_2\text{O}_7^{2-} \]
Thiosirány jsou stálé, mají redukční schopnosti, silnými oxidovadly, např. chlorem, se oxidují na síran a slabá oxidovadla, např. jod, je převádějí na tetrationány:

\[
\begin{align*}
S_2O_7^{2-} + 4Cl_2 + 10OH^- &= 2SO_4^{2-} + 8Cl^- + 5H_2O \\
2S_2O_3^{2-} + I_2 &= S_4O_6^{2-} + 2I^-
\end{align*}
\]

Účinkem silných minerálních kyselin se thiosírany ve vodném roztoku rozkládají na SO2 a S:

\[
S_2O_3^{2-} + 2H_2O^+ = 3H_2O + SO_2 + S
\]

Významná je též schopnost thiosíranových iontů vystupovat jako ligandy v některých koordinačních složeních:

\[
Ag^+ + 2S_2O_3^{2-} = [Ag(S_2O_3)_2]^-
\]

Mezi kyselinou sírou s vazbou S-S je třeba řadit též všechny tzv. kyseliny polythionové typu H2S2O6 (n = 2 až 6).

Nejnižší z nich (n = 2) je kyselina dithionová H2S2O6, která existuje pouze v roztoku a ve formě pomerančově stálých solí – dithionátů. Přípraví se reakci vodní suspenze oxidu manganičitého s oxidem sířitém

\[
MnO_2 + 2SO_2 = MnS_2O_6
\]

Ostatní kyseliny polythionové H2S2O6 (n = 3 až 6) mají ve svých molekulách řetězec tři až šest atombů síry (tab. 17-2). Tvoří se v roztoku při zavádění H2S a SO2 do studené vody. Stálejší než tyto kyseliny jsou opět jejich soli. Příkladem přípravy tetrationanů je již uvedená oxidace thiosíraná jedem.

Do skupiny kyselin s vazbou S-S patří též hypotetická kyselina dithionová H2S2O4, která byla prokázána pouze ve formě solí – dithionátů. Lze je připravit redukci vodného roztoku hydrogeniščitanu elementárním zinkem za přítomnosti SO2:

\[
2NaHSO_3 + SO_2 + Zn = ZnSO_3 + Na_2S_2O_4 + H_2O
\]

Dithionátové sloučeniny jsou výrazné redukční prostředky, které mají použití v technické praxi.

- Peroxokyseliny síry

Jako u všech peroxyokyseliních sloučenin (str. 318) je i pro peroxyokyseliny síry charakteristická přítomnost strukturního motivu \(\big\|\big\|\big\|\big\|\big\|\) v jejich molekule.

Stálé a běžné jsou pouze dvě z těchto kyselin, odvozené formálně od kyseliny sírové a disírové.

Kyselinu peroxyosirotovou H2SO3 je možno připravit reakcí peroxydové vodivku s koncentrovanou kyselinou sírovou

\[
H_2O_2 + H_2SO_4 = H_2O + H_2SO_3
\]

nebo kyselinou chlorosirotovou:

\[
H_2O_2 + ClSO_2H = HCl + H_2SO_3
\]

Je velmi silnou kyselinou, má výrazné oxidační vlastnosti. Vystupuje obvykle jako kyselina jednosezná. Ve vodném roztoku se štěpí podle rovnice

\[
H_2SO_3 + H_2O = H_2SO_4 + H_2O_2
\]

Jeji soli jsou nestálé.
Kyselina peroxodesírová H₂S₂O₅ se získává anodickou oxidací silně koncentrovaných roztoků kyseliny sírové nebo reakcí kyseliny peroxosírové s kyselinou chlorosírovou:

\[\text{H}_2\text{SO}_4 + \text{ClSO}_3\text{H} = \text{H}_2\text{S}_2\text{O}_8 + \text{HCl} \]

Je to silná kyselina zřetelných oxidačních vlastností; je dvojsytná. Ve vodném roztoku se rozpadá na kyselinu peroxosírovou a kyselinu sírovou:

\[\text{H}_2\text{S}_2\text{O}_8 + \text{H}_2\text{O} = \text{H}_2\text{SO}_5 + \text{H}_2\text{SO}_4 \]

Jeji soli – peroxidisóny – jsou stálé a technicky významné látky. Patří k nejsilnějším oxidačním činidlům, schopným uskutečnit např. oxidace Mn⁷⁺ → Mn⁵⁺, N⁻⁻⁻ → N⁰⁺:

\[\begin{align*}
5 \text{S}_2\text{O}_5²⁻ + 2 \text{Mn}^{⁷⁺} + 24 \text{H}_2\text{O} & = 2 \text{MnO}_4⁻ + 10 \text{SO}_4²⁻ + 16 \text{H}_2\text{O}⁺ \\
3 (\text{NH}_4)_2\text{S}_2\text{O}_8 + 8 \text{NH}_3 & = \text{N}_2 + 6\left(\text{NH}_4\right)_2\text{SO}_4
\end{align*} \]

Prvá z obou reakcí však probíhá pouze za katalytického účinku soli těžkých kovů, především soli stříbrných.

- **Halogenidy kyselin síry**

Mezi termální kyslikaté sloučeniny síry řadíme tzv. halogenidy kyselin síry, jejichž vznik si formálně můžeme představovat jako nahrazení jedné nebo dvou skupin OH v molekule kyseliny atomem halogenu v oxidačním stavu –I.

Tabulka 17-3. Halogenidy kyselin síry

<table>
<thead>
<tr>
<th>Výchozí kyselina</th>
<th>Vzorec</th>
<th>Elektronový strukturní vzorec</th>
<th>Oxidační stav atomu S</th>
<th>Stabilita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kyselina sířitá</td>
<td>SO₂Y</td>
<td>(\text{Y} \quad \text{S} \quad \text{O})</td>
<td>(S^{⁴⁺})</td>
<td>Pouze Y = F, Cl, Br. Plyně, resp. kapalné látky</td>
</tr>
<tr>
<td></td>
<td>halogenid thionylu, dihalogenid-oxid sířitý</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kyselina sírová</td>
<td>HSO₃Y</td>
<td>(\text{Y} \quad \text{O} \quad \text{H})</td>
<td>(S^{⁶⁺})</td>
<td>Pouze Y = F, Cl. Kapalné látky</td>
</tr>
<tr>
<td></td>
<td>kyselina halogenosírová</td>
<td>(\text{O} \quad \text{O})</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SO₂Y₂</td>
<td>(\text{Y} \quad \text{Y} \quad \text{S} \quad \text{O})</td>
<td>(S^{⁶⁺})</td>
<td>Pouze Y = F, Cl. Plyně a kapalné látky</td>
</tr>
</tbody>
</table>

Dostatečně stálé a technicky významné jsou pouze halogenidy kyseliny sířité a kyseliny sírové. Jejich přehled je uveden v tab. 17-3. Vazby S–O v molekulách halogenidů kyselin síry jsou tvořeny též interakcí \(\pi \), která je příčinou jejich zkrácení a zpevnění. Technický význam a použití mají pouze chlorosoučinniny všech tří uvedených typů a kyselina fluorosírová.
Chlorid thionylu SOCl₂ se vyrábí jako bezbarvá kapalina reakcími oxidu sirového a dichlor-disulfanu, resp. dichlorsulfanu:

\[
\begin{align*}
\text{SO}_3 + \text{S}_2\text{Cl}_2 &= \text{SOCl}_2 + \text{SO}_2 + \text{S} \\
\text{SO}_3 + \text{Cl}_2 &= \text{SOCl}_2 + \text{SO}_2
\end{align*}
\]

Kapalný **chlorid sulphurylu** SO₂Cl₂ se vyrábí reakcí

\[
\text{SO}_2 + \text{Cl}_2 = \text{SO}_2\text{Cl}_2
\]

katalyzovanou kařtem nebo aktivním uhliem.

Kyselina chlorosirová HSO₃Cl je průmyslově připravována syntézou

\[
\text{SO}_3 + \text{HCl} = \text{HSO}_3\text{Cl}
\]

Všechny uvedené solučeniny se velmi snadno hydrolyzují:

\[
\begin{align*}
\text{SOCl}_2 + \text{H}_2\text{O} &= \text{SO}_2 + 2\text{HCl} \\
\text{SO}_2\text{Cl}_2 + 2\text{H}_2\text{O} &= \text{H}_2\text{SO}_4 + 2\text{HCl} \\
\text{HSO}_3\text{Cl} + \text{H}_2\text{O} &= \text{H}_2\text{SO}_4 + \text{HCl}
\end{align*}
\]

Kyselina fluorosirová HSO₃F se získá reakcí plynného HF s kapalným SO₃

\[
\text{HF} + \text{SO}_3 = \text{HSO}_3\text{F}
\]

nebo reakcí KHF₂ s olejem:

\[
2\text{KHF}_2 + 4\text{SO}_3 + 2\text{H}_2\text{SO}_4 = 4\text{HSO}_3\text{F} + 2\text{KHSO}_4
\]

Kyselina fluorosirová se jen zvolná hydrolyzuje vodou, je stálá, její molekuly ani při teplotě 800 °C nepodléhají termickému rozkladu.

17.5 TERNÁRNÍ KYSÍLKATÉ SLOUČENINY SELENU A TELLURU

K významnějším látkám tohoto typu patří kysílkaté kyseliny seレン a telluru a jejich soli a halogenidy.

- **Kysílkaté kyseliny seレン a telluru, jejich soli**

Na rozdíl od poměrně velmi pestrého souboru kysílkatých kyselin síry jsou u seレンu a telluru běžné pouze kyseliny s oxidací štěrkového atoru IV a VI.

Kyselina seleniťitá H₂SeO₃ je bezbarvá krystalická látku, řadící se mezi slabší dvojseptyné kyseliny. Lze ji získat oxidací elementárního seレンu kyselinou dusičnou:

\[
3\text{Se} + 4\text{HNO}_3 + \text{H}_2\text{O} = 3\text{H}_2\text{SeO}_3 + 4\text{NO}
\]

Na rozdíl od kyselin siřičité jeví kyselina seleniťitá spíše oxidační vlastnosti:

\[
\begin{align*}
\text{H}_2\text{SeO}_3 + 2\text{H}_2\text{SO}_4 &= \text{Se} + 2\text{H}_2\text{SO}_4 + \text{H}_2\text{O} \\
\text{H}_2\text{SeO}_3 + 4\text{HI} &= \text{Se} + 2\text{I}_2 + 3\text{H}_2\text{O}
\end{align*}
\]

Jeji soli – jmenovitě *seleniťitan y* a *hydrogenseleniťitan y* alkaličních kovů – jsou stálé, ve vodě dobře rozpustné látky. Byla též prokázána existence kyseliny diseleniťité a diseleniťitanů.

Kyselina telluriťitá H₂TeO₃ je známá pouze ve vodném roztoku. Jako chemické individuun

339
ji nelze připravit. Existují však její soli, dokonce i v polykondenzované formě jako tetratelluričitany (K₂Te₂O₅) nebo hexatelluričitany (K₂Te₃O₇) aj.

Kyselina selenová H₂SeO₄ může být připravena působením silních oxidáčních činidel na kyselinu seleničitou nebo oxid selenišťý:

\[5 \text{H}_2\text{SeO}_3 + 2 \text{HClO}_3 = 5 \text{H}_2\text{SeO}_4 + \text{Cl}_2 + \text{H}_2\text{O}\]

Právě tak lze oxidací seleničitanů připravit soli této silné dvojjsyté kyseliny — selenanoly:

\[\text{SeO}_3^{2-} + \text{Cl}_2 + 2 \text{OH}^- = \text{SeO}_2^{3-} + 2 \text{Cl}^- + \text{H}_2\text{O}\]

Kyselina selenová má značné oxidáční účinky, je silnějším oxidovadlem než kyselina sírová. Oxiduje chloridy na elementární chlor, a proto její směs s kyselinou chlorovodíkovou rozpouští zlato a platnu. Svou strukturou je obdobná kyselině sírové a také selenanové anion je izostrukturní s anionem síranovým.

Kyselina hexahydrogentellurová H₄TeO₆ je strukturně odlišná od kyseliny sírové i kyseliny selenové, její elektronový strukturní vzorec jsme již uvedli (str. 325). Lze ji připravit oxidací telluru, oxidu telluričitého nebo telluru silnými oxidáčními činidly. Je kyselinou velmi slabou. Běžně jsou její soli — _tetrahydrogentellurany_ (H₄TeO₆⁻), lze připravit i tellurany typu M₂TeO₄.

Halogenid-oxide selenu a telluru

Jsou méně běžně než obdobné sloučeniny sýry. Dosavadní experimentální výzkum v této oblasti vedl sice k zjištění existence řady různých sloučenin tohoto typu, mnohdy s velmi komplikovanou polyjaderovou strukturou (Te₆O₁₀Cl₂, Se₆O₁₀F₄), avšak jejich stabilita a význam jsou malé.

Jednoduchou stochiometrií, jež je analogií stochiometrii obdobných sloučenin sýry, vylučuje pouze halogenidy selenyflu (SeOF₃, SeOCl₂ a SeOBr₂) a fluorid selenonylu SeO₂F₂. Ze sloučenin telluru se k nim řadí jen nestálý TeOBr₂.

17.6 VÝROBA A POUŽITÍ TECHNICKÝ VÝZNAMNÝCH SLOUČENIN SÍRY

Surovinovou základnou pro výrobu síry a jejích sloučenin tvoří především sulfidické a polysulfidické rudy, surové elementární síra, uhli, ropa, zemní plyn a v neposlední řadě též síran.

Elementární síra se uplatňuje jako vulkanizační přísada v gumárnictví a využívá se při přípravě některých barví ve, zápalek, farmaceutických preparátů a insekticidů. Surová elementární síra slouží k výrobě kyseliní sírové a sulfidu uhličitého.

Přehled hlavních technologických využívaných syntéz sloučenin síry podává schéma na obr. 17-2. Výrobu některých dalších sloučenin síry (např. CS₂) poznáme při výkladu chemie jiných prvků.

Výroba oxidu sifíčitého

Oxid sifíčitý vzniká při pražení sulfidů, resp. polysulfidů, např.

\[4 \text{FeS}_2 + 11 \text{O}_2 = 2 \text{Fe}_2\text{O}_3 + 8 \text{SO}_2\]

Získává se též spalováním surové síry nebo sulfanu, získaného při výrobě svítípnut z uhli, z ropy nebo zemního plynu:

\[2 \text{H}_2\text{S} + 3 \text{O}_2 = 2 \text{H}_2\text{O} + 2 \text{SO}_2\]

Méně běžná je výroba SO₂ ze slánků jejich redukcí uhlíkem (oxidem uhelnatým):

\[2 \text{CaSO}_4 + C = 2 \text{CaO} + \text{CO}_2 + 2 \text{SO}_2\]
Zkapalněný a přečištěný SO₂ má použití jako účinný redukční prostředek (k bělení), náplň chladicích zařízení aj. Zejména však je meziproduktem v technologii ostatních významných sloučenin síry (H₂SO₄, SO₃, Na₂SO₄, S₂Cl₂, SO₃Cl₂ atd.) a v technologii organických sirné sloučenin.

Obr. 17-2. Hlavní cesty průmyslové výroby síry a jejích sloučenin

Zakončení

Exhalace SO₂ ve spalinách (při spalování uhlí pro energetické účely) však těžce poškozuje přirodní prostředí a představují prostě přílišné řešitelný ekologický problém.

- **Výroba kyseliny sírové**

 Formální chemismus výroby kyseliny sírové spočívá v oxidaci připraveného SO₃ na SO₄ a v hydrataci oxidu sírového na H₂SO₄. Chemicky se může tento proces uskutečňovat dvojím postupem – kontaktním (70% výrob) a nitrovním (30%).
Kontaktní způsob spočívá v oxidaci přečištěného plynného SO₂ na SO₃ heterogenně katalyzovaným slučováním se vzdušným kyslíkem. Podstatu katalytického děje jsme již uvedli (str. 203). Vzniklý plynný SO₃ se absorbove v 98%ni H₂SO₄ tvoří se kyselina disirová, resp. trisirová:

\[\text{H}_2\text{SO}_4 + \text{SO}_3 = \text{H}_2\text{S}_2\text{O}_7 \]
\[\text{H}_2\text{S}_2\text{O}_7 + \text{SO}_3 = \text{H}_2\text{S}_3\text{O}_8 \]

Ředěném vzniklého roztoku (olea) vodou⁵) se získává koncentrovaná kyselina sirová (96%ni až 98%ni):

\[\text{H}_2\text{S}_2\text{O}_7 + \text{H}_2\text{O} = 2\text{H}_2\text{SO}_4 \]

Přímé slučování SO₃ a H₂O není možné, neboť uvedenou reakci vzniká obtížně kondenzovatelný aerosol kyseliny sirové.

Nitrosní způsob výroby kyseliny sirové je v podstatě homogenně katalyzovaný proces.

Funční přenásěče kyslíku při oxid dusičtý

\[\text{NO}_2 + \text{H}_2\text{O} + \text{SO}_3 = \text{H}_2\text{SO}_4 + \text{NO} \]

ktorý se po redukci na NO znovu samovolně kyslíkem oxiduje:

\[2\text{NO} + \text{O}_2 = 2\text{NO}_2 \]

Skutečný mechanismus těchto dějů je však mnohem složitější. Významným, relativně stálým mezioluminem vystupujícím v tomto procesu je především hydrogensáčití nitrosyłu, tzv. kyselina nitroxylírová.

V minulosti byl nitrosní proces technicky realizován tzv. komorovým způsobem, který se dnes již prakticky nefunguje. Uplatňuje se tzv. světlý nitrosní způsob. Jeho velkou předností ve srovnání s kontaktním způsobem je nečetivost na noční stopy přímětné v oxidu sířitém. Takto vyrobená kyselina má 76%ni koncentraci a je méně čistá než kyselina připravená kontaktní metodou, je však relativně laciná a vhodná především pro použití při výrobě hnojiv.

Kyselina sirová patří k nejdůležitějším a nejúčelnějším anorganickým chemikáliím. Má rozsáhlé použití v chemickém průmyslu (hnojiva, výbušniny, plastické hmyty a syntetická vlákna, lečiva, barviva, pigmenty aj.), dále v hutnictví, při výrobě a provozu olovených akumulátorů i v řadě dalších oblastí.

- Výroba oxidu sirového

Průmyslovým zdrojem SO₃ je oleum připravené při kontaktním způsobu výroby H₂SO₄. SO₃ se může z olea uvolnit destilací. V kapalné formě jako trimerní (SO₃)₃ se stabilizuje přidavkem B₂O₅, TiCl₄ nebo některých dalších látek.

Má významné technické využití při výrobě kyseliny chlorosirové a kyseliny fluorosirové a v organické syntéze (sulfonace organických látek, výroba barviv, léčiv apod.).

- Výroba sulfanu

Sulfan H₂S je vedlejším produktem při výrobě svitiplynu a při zpracování ropy obsahující sīru, popř. při čištění zemního plynu (str. 274).

Zkapalněný v tlakových nádobách se používá především při srážení nerezpustných sulfidů těžkých kovů a k výrobě dalších sloučenin síry (H₂SO₄, Na₃S₂O₅ aj.) a síry elementární.

⁵) Kapalné a dobře manipulovatelné je oleum pouze při obsahu SO₃ kolem 20 a 69%. Oleum s jiným podílem SO₃ je za normální teploty tuhé.
• Výroba kyseliny chlorosirové
Kyselina chlorosirová se získává reakcí plynného chlorovodíku s oxidem sirovým
\[\text{HCl} + \text{SO}_3 = \text{HSO}_3\text{Cl} \]
nebo reakcí koncentrované kyseliny sirové s PCl₃:
\[\text{H}_2\text{SO}_4 + \text{PCl}_3 = \text{HSO}_3\text{Cl} + \text{POCl}_3 + \text{HCl} \]
Má použití v průmyslové organické syntéze jako sulfonační, sulfochlorační, chlorační a kondenzační činidlo. Upatnila se též ve vojenství jako dýmotvorná látka.

• Výroba sířičitanů
Zaváděním SO₂ do roztoku uhličitanu sodného se vyrábí hydrogensířičitan sodný:
\[2\text{SO}_2 + \text{Na}_2\text{CO}_3 + \text{H}_2\text{O} = 2\text{NaHSO}_3 + \text{CO}_2 \]
Neutralizací roztoku NaHSO₃ ekvivalentním množstvím Na₂CO₃ se vyrábí sířičitan sodný:
\[2\text{NaHSO}_3 + \text{Na}_2\text{CO}_3 = 2\text{Na}_2\text{SO}_3 + \text{CO}_2 + \text{H}_2\text{O} \]
Disířičitan se vyrábějí buď sycením roztoku sířičitanů oxidem sířežitým za tepla podle rovnice
\[\text{SO}_3^{2-} + \text{SO}_2 = \text{S}_2\text{O}_3^{2-} \]
nebo reakcí plynného SO₃ s krystalickým uhličitanem sodným:
\[2\text{SO}_2 + \text{Na}_2\text{CO}_3 = \text{Na}_2\text{S}_2\text{O}_3 + \text{CO}_2 \]
Všechny sířičitany se technicky využívají jako látky redukující (bělící) a sulfonační v barářském, textilním a papírenském průmyslu, ve farmaci a jako komplexotvorné látky v průmyslu fotografickém.

• Výroba sulfidu sodného
Na₂S se vyrábí redukcí siranu sodného uhličitkem při vysokých teplotách:
\[\text{Na}_2\text{SO}_4 + 4\text{C} = \text{Na}_2\text{S} + 4\text{CO} \]
Potřebný Na₂SO₄ se získá neutralizací techniké H₂SO₄ nebo konverzi sádrovce CaSO₄.2H₂O.
Sulfid sodný se používá především v textilním průmyslu (výroba viskózových vláken, návin celulosy, orgaických barvírů), v koželužství, při srážení nerozpuštěných sulfidů těžkých kovů (např. i v potravinářství) a podé.

• Výroba thiosíranu sodného
Průmyslově užívanou cestou k připravě thiosíranu sodného je rozpuštění síry ve vroucím roztoku Na₂SO₃ (za zvýšeného tlaku)
\[\text{Na}_2\text{SO}_3 + \text{S} = \text{Na}_2\text{S}_2\text{O}_3 \]
popt. reakce sulfidu (hydrogensulfidu) s hydrogensířičitanem za obdobných podmínek:
\[2\text{HS}^- + 4\text{HSO}_3^- = 3\text{S}_2\text{O}_3^{2-} + 3\text{H}_2\text{O} \]
Thiosíran sodný má značné upotřebení opět v textilním průmyslu a v koželužství, dále ve fotografické technice (ustalovače) atd.
- **Výroba chloridů a chlorid-oxidů síry**
 Přímou, katalyzovanou (např. I₂, FeCl₃) reakcí síry s chlorem při teplotě 80 až 120 °C se vyrábí dichloridisulfan:
 \[2S + Cl₂ = S₂Cl₂ \]
Používá se v gumárenství (při vulkanizaci kaučuku) a při některých organických i anorganických syntézách.

 Jako chlorovátní, sulfonační, sulfochlorovátní a kondenzační činidla, popř. jako rozpouštědla slouží dichlorid-oxid sirový (chlorid sulfurylu) a dichlorid-oxid sířečitý (chlorid thionylu), které se vyrábějí reakcími
 \[\text{SO}_2 + \text{Cl}_2 = \text{SO}_2\text{Cl}_2 \]
 \[\text{S}_2\text{Cl}_2 + \text{SO}_3 = \text{SO}_2 + \text{S} + \text{SOCl}_2 \]

- **Výroba peroxosíranů**
 Peroxosírany se vyrábějí anodickou oxidací roztoku kyseliny sírové nebo síranů. Peroxosírany jsou silně oxidující látky a uplatňují se jako součástí bělících a pracích prostředků; jsou též mezistupněm při výrobě H₂O₂.

- **Technický význam selenu a telluru**

 Oba prvky mají upotřebení především v elementární formě, zejména v elektrotechnice (selenové fotoelektrické články, usměrňovače aj.), v ocelářství (k legování kovů), v gumárenství, ve farmaci, v průmyslu keramickém a sklařském a v reprodukční technice. Selenidy a telluridy mnohých kovů mají vlastnosti polovodičů a jsou využívány při výrobě elektrotechnických a optoelektronických součástek a prvků.

 Výroba selenu a telluru již byla popsána (str. 276); selenidy a telluridy kovů, užívané v elektrotechnice, se připravují převážně přímou syntézou z velmi čistých prvků.
18 Dusík a fosfor

Dusík \(\text{N} \) a fosfor \(\text{P} \) jsou prvky skupiny \(5B \) periodické soustavy. Jejich atomy mají v základním stavu elektronovou konfiguraci valenční sféry \(ns^2np^3 \) (\(n = 2 \), resp. \(3 \)).

Oba prvky jsou nekovy. U fosforu však již lze nalézt některé vlastnosti svědčící o tom, že v periodickém systému stojí velmi blízko u rozhraní mezi nekovy a kovy.

Chemie dusíku a fosforu si jsou poměrně blízké. Zásadní rozdíl je však v tom, že fosfor může na rozdíl od dusíku zapojit do tvorby vazeb též orbitály 3d svých atomů. Především z této okolnosti vyplyvají rozdíly ve stabilitě některých oxidačních stavů a způsobu vazby u obou prvků.

18.1 VZÁEZNÉ MOŽNOSTI DUSÍKU A FOSFORU

Formálními přesuny elektronů lze nalézt a vyjádřit některé možné mezní elektronové konfigurace valenční sféry atomů dusíku a fosforu ve sloučeném stavu (obr. 18-1).

\[
\begin{array}{c|c|c|c|c|c}
ns^0np^0 & ns^2np^0 & ns^2np^3 & ns^2np^6 \\
N & N^0 & N^4 & N^{10} \\
5 & 2 & 3 & 6 \\
\end{array}
\]

Obr. 18-1. Schematické vyjádření oxidačních stavů a elektronových konfigurací, v něčem se vyskytují atomy dusíku a fosforu

Dosažení maximálního záporného oxidačního stavu – III tedy vyžaduje přijetí tří elektronů; dosažení kladných oxidačních stavů III a V je podmíněno održením tří, resp. pěti elektronů. Taxové počty přesouvajících elektronů jsou příliš velké, aby mohly být při vytváření vazeb atomů dusíku a fosforu s ostatními prvky skutečně realizovány. Elektronegativita dusíku (3,0) a fosforu (2,1) brání spontánnímu přesunu elektronové hustoty z těchto atomů při vytváření vazeb s jinými elektronegativnějšími prvky, ale není dost velká, aby dusík nebo fosfor mohl při vazbě s elektropozitivními prvky „plétanou“ vazebné elektrony do oblasti své valenční sféry. Atomy dusíku a fosforu jsou proto ve většině svých sloučení zapojeny do systému kovalentních vazeb a jednoatomové ionty prakticky netvoří. Dostí běžně se u dusíku, ale i u fosforu vyskytuje vazby homonukleární. Pestré možností vazebných situací u obou prvků je velmi značná. Dusík i fosfor se proto vyskytují prakticky ve všech oxidačních stavech od –III do V.

- Záporné oxidační stavy

Záporné oxidační stavy se realizují při vazebném partnerství dusíku nebo fosforu s elektropozitivními prvkými.

Jen při vazbě dusíku s nejelektronegativnějšími kovy můžeme předpokládat skutečnou existenci iontů \(N^{2-} \) v krystalové mřížce vzniklých sloučení. I v těchto situacích je však v látkách prokazatelně přítomna zřetelná kovalentní interakce. Ve všech ostatních případech prevládá kovalentní charakter vazby nad iontovým.
Záporné oxidační stavy přisuzujeme dusíku a fosforu též v jejich sloučeninách s vodíkem (NH₃, PH₃, N₂H₄, P₂H₆) a ve sloučeninách odvozených (amidech, imidech, nitridech, organických aminech atd.). Zejména ve skupině odvozených sloučení je záporný oxidační stav atomu N nebo P dosti často realizován současnou tvorbou kovalentních a iontových vazeb. Vzniklé ionty jsou samozřejmě vicatomové. Tak např. v amidech elektropozitivní kovů se vyskytují ionty NH₂ se strukturou
\[
\begin{array}{c}
 \text{N} \\
 \text{H}
\end{array}
\]
Atom dusíku je sice kovalentně poután ke dvěma atomům vodíku, ale amidový ion jako celek je iontově vázan na katijont např. alkalického kovu. Obdobná situace je u imidů. Imid vápenatý má elektronový strukturní vzorec
\[
\text{Ca}^{2+} \left[\begin{array}{c}
 \text{N} \\
 \text{H}
\end{array} \right]^{2-}
\]
Také soli amonné a fosforové, např. NH₄Cl a PH₄Br, s elektronovými strukturními vzorcemi
\[
\begin{array}{c}
 \text{H} \\
 \text{N} \\
 \text{H} \\
 \text{Cl} \\
 \text{H}
\end{array}
\quad \begin{array}{c}
 \text{H} \\
 \text{P} \\
 \text{H} \\
 \text{Br} \\
 \text{H}
\end{array}
\]
vykazují z hlediska atomů N a P vazebné poměry uvedeného druhu.

Vedle maximálního záporného oxidačního stavu –III se u obou prvků vyskytují též oxidační stavy –I a –II. Našležáme je v takových sloučeninách dusíku a fosforu s elektropozitivními prvky, v nichž existuji též homonukleární vazby N—N nebo P—P, např. v hydrazinu nebo difosanu:

\[
\begin{array}{c}
 \text{N} \\
 \text{H} \\
 \text{H}
\end{array}
\quad \begin{array}{c}
 \text{P} \\
 \text{H} \\
 \text{H}
\end{array}
\]
Dále se s nimi setkáváme ve sloučeninách, u nichž došlo k substituci kovalentně poutané elektropozitivní skupiny skupinou elektronegativnější (nahrzení atomu H ve molekule NH₃ skupinou OH), např. u hydroxylaminu:

\[
\begin{array}{c}
 \text{N} \\
 \text{O} \\
 \text{H}
\end{array}
\]
Koordinace na atomech N a P ve všech uvedených vazebných stavech charakterizovaných záporným oxidačním článkem je – přihlázíme-li k prostorové lokalizaci nevazebných elektronových párů – nejčastěji tetraedrická (hybridizace SP³ na středovém atomu) nebo je tetraedrické koordinaci blízká, např. v molekule fosfanu PH₃, (hybridizace P³ na středovém atomu).

U dusíku se výjimečně (např. v některých nitridech) vyskytuje koordinace trigonální (hybridizace SP² a nevazebný elektronový pár ve zbylém orbitálu pₓ na atomu N). U fosforu, také zcela výjimečně, se v jeho záporných oxidačních stavech vyskytuje i koordinace trigonálně bipyramidální a oktaedrická. Jejich existence je důsledkem zapojení prázných orbitalů 3d atomu fosforu do tvorby vazeb.
Kladné oxidace stavy

Proměnlivé vazebné poměry ve sloučeninách obou prvků s elektronegativnějšími prvky lze charakterizovat těmito pravidly:
1. Ú dusiku i fosforu jsou realizovatelné všechny kladné oxidace stavy v rozmezí od I do V.

Příklady sloučenin uvádí tab. 18.1.

Tabulka 18.1. Příklady sloučenin a částic s atomy N a P v kladných oxidacích stavech

<table>
<thead>
<tr>
<th>Oxidační stav</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 2O 4</td>
<td>NO</td>
<td>HNO 2</td>
<td>N 2O 5</td>
<td>N 2O 4</td>
<td>NO 3</td>
</tr>
<tr>
<td>N 2O 3</td>
<td>NO 2</td>
<td>HNO 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P 2O 5</td>
<td>H 3PO 4</td>
<td>H 3PO 4</td>
<td>H 3PO 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P 2O 3</td>
<td>PCl 3</td>
<td>PO 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCl 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) Vysloveně formálně vypočtené oxidace stavy.

Tabulka 18.2. Příklady sloučenin a částic s různou vazností atomů N a P

<table>
<thead>
<tr>
<th>Vaznost</th>
<th>N</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>\N=O</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>\N</td>
<td>\O</td>
</tr>
</tbody>
</table>

*) V dusičnanovém iontu je přítomna delokalizovaná vazba π.
2. Počet sálenných elektronových párů, tedy vaznost atomů N a P, se sloučeninách s kladným oxidacním stavem nabývá u dusíku hodnot 2 a 3, u fosforu hodnot od 3 do 6. Příklady jsou uvedeny v tab. 18.2.

3. Tvorba lokalizovaných násobných (dvojných a trojných) vazeb je charakteristická zejména pro dusík, např.

\[\text{N} = \text{N} \quad |\text{N} = \text{N}| \]

Na tvorbě vazby \(\pi \) se podílejí orbitály p dusíku. U fosforu se vyskytuje tvorba vazby \(\pi \) méně často a obvykle bývá velmi nevýrazná. Účastní se ji orbitály 3d atomu fosforu:

\[\text{H} - \text{O} - \text{P} - \text{O} - \text{H} \]

4. Poměrně slabá delokalizovaná interakce \(\pi \) se vyskytuje jak u dusíku, tak i u fosforu. U atomu dusíku je opět podmíneňa účastí jeho orbitalu p\(\pi \), např. v dusičnanovém iontu

\[
\begin{bmatrix}
0 & \pi \\
6 & \pi \\
6 & \pi \\
\end{bmatrix}
\]

u atomu fosforu je interakce \(\pi \) podmíněna přítomností jeho orbitalů 3d, např. v iontu fosforečnanovém PO\(\text{I}^- \)

\[
\begin{bmatrix}
0 & \pi \\
6 & \pi \\
6 & \pi \\
\end{bmatrix}^3
\]

S ohledem lze říci, že atomy dusíku i fosforu v kladných oxidacních stavech tvoří kovalentní vazby \(\sigma \) překryvem svých orbitalů s a p s AO vazebních partnerů (hybridizace na atomech N a P je SP\(^3\) nebo SP\(^3\)) a při tom mají vaznost menší než 4 nebo právě 4 (u fosforu). Mimoto se u fosforu mohou na tvorbě vazeb \(\sigma \) podílet též jeho orbitaly 3d a atomy fosforu mohou dosahovat vaznosti.
18.2 CHEMICKÉ VLASTNOSTI DUSÍKU A FOSFORU

Elementární dusík, tvořený molekulami N₂, s elektronovým strukturním vzorcem \(\text{IN\equiv N} \), má značně velkou hodnotu energie vazby. Molekuly dusíku proto jeví minimální tendencí k štěpení a plyný dusík je pozoruhodně chemicky inertní. Neslouží se za běžného podmíněn ani s velmi reaktivními prvky. Výjimkou jsou reakce dusíku s lithiem, hořčíkem a vápníkem, které probíhají při laboratorním nebo jen místo zvýšené teplotě:

\[
6\text{Li} + N_2 = 2\text{Li}_3N
\]

Za extrémního zvýšení tlaku a zejména teploty anebo při spoluúčasti katalyzátoru může dusík reagovat s takovými prvky, jako je vodík, kyslík apod. Zejména reakce dusíku s vodíkem, vedoucí ke vzniku amoniaku, je v průmyslové praxi podstatou technologie velmi náročné jak z technického, tak i z bezpečnostního hlediska.

V této souvislosti je zajímavé, že některé mikroorganismy, např. baktérie rodu \(\text{Azotobacter} \) žijící na kořenových mohou vytvořit dusík. Reakce s kyslíkem (na vzduchu je samozřejmě), s halogeny, s kyslíkem, s kyslíkem, s halogeny, s kyslíkem, s kyslíkem, s halogeny.

Jiné chemické vlastnosti ziská plyný dusík, jestliže se elektrickým výbojem atomizuje (nebo převede-li se jeho molekula do excitovaného stavu). Atomární dusík spontánně reaguje s mnoha prvky a sloučeninami.

Chemické chování elementárního fosforu je protikladem inertnosti molekulárního dusíku. Fosfor je zejména ve své nejreaktivnější bílé modifikaci vystaven z tetraedrických molekul \(P_4 \) – neobyčejně reaktivní. Reaguje s kyslíkem (na vzduchu je samozřejmě), s halogeny, s kyslíkem, s kyslíkem, s halogeny.

Při činu velké reaktivity bílého fosforu je poměrně značné prutí vazeb v molekule \(P_4 \) (str. 279) a z toho plynoucí ochota bílého fosforu k reorganizaci vazeb a k vytvoření stálezího vazebného uspořádání. Ostatní modifikace fosforu jsou méně reaktivní, neboť mají polymerní (str. 280) charakter a hodnota jejich vazebné energie je poměrně větší.

18.3 BINÁRNÍ SLOUČENINY DUSÍKU

Mezi nejvýznamnější binární sloučeniny dusíku patří amoniak, hydrazin a azolimid, tedy sloučeniny dusíku s vodíkem, jejich soli, tj. nitridy, amidy, imidy a azidy, jejich halogenderiváty (halogenidy dusíku), dále oxid dusíku a sloučeniny dusíku s chlorkem.

1) Amidy a imidy jsou, přesně vzato, termální sloučeniny. Z klasifikačních důvodů se však řadíme sem.
Sloučeniny dusíku s vodíkem

Nejběžnější sloučeninou dusíku s vodíkem je amoniak (azan). Jeho molekuly mají tvar trigonální pyramidy. Vazbu si lze zjednodušit objasnit představou hybridizace SP³ na středovém atomu (jeden ze čtyř vzniklých HAO je obsazen nevazebným elektronovým párem).

Amoniak je plynná nízkomolekulární látka. V kapalném amoniaku existují vazby vodičovým můstekem.

Vyrábí se katalyzovanou syntézou z prvků:

\[\text{N}_2 + 3 \text{H}_2 = 2 \text{NH}_3 \]

Významný je i postup, při němž se amoniak uvoľňuje z amončích solí silnou netěkavou bází:

\[\text{NH}_4\text{Cl} + \text{NaOH} = \text{NH}_3 + \text{NaCl} + \text{H}_2\text{O} \]

Tvoří se těž hydrolýzou nitridů elektropozitivních kovů:

\[\text{Li}_3\text{N} + 3\text{H}_2\text{O} = 3\text{LiOH} + \text{NH}_3 \]

V přírodě vzniká při rozkladu dusíkatých organických látek. Stejného původu je i amoniak, který se uvoľňuje při suché destilaci uhlí (vyroba svítitelného a koksu).

Amoniak je výrazně bazický. Volný elektronový pár je schopen zachytit proton (vzniká amončí ion), popř. jinou elektrofílní částici:

\[
\begin{align*}
\text{H} & \quad \text{H} \\
\text{H} & \quad \text{H} \\
\text{H} & \quad \text{H} \\
\end{align*}
\]

\[
\begin{align*}
\text{H} & \quad \text{F} \\
\text{F} & \quad \text{F} \\
\text{F} & \quad \text{F} \\
\end{align*}
\]

\[
\begin{align*}
\text{H} & \quad \text{NH}_3 \\
\text{H} & \quad \text{NH}_3 \\
\end{align*}
\]

Amoniak se rozpouští velmi dobře ve vodě. Jeho molekuly poskytují s vodou monohydrát \(\text{NH}_3\cdot\text{H}_2\text{O} \) s vodíkovou vazbou mezi dusíkem a kyslíkem:

\[
\begin{align*}
\text{H} & \quad \text{H} \\
\text{H} & \quad \text{H} \\
\text{H} & \quad \text{H} \\
\end{align*}
\]

Existuje i obdobně vázaný hemihydrát \(\text{NH}_3\cdot\frac{1}{2}\text{H}_2\text{O} \). Monohydrát amoniaku částečně ionizuje na \(\text{NH}_4^\text{+} \) a \(\text{OH}^- \) podle rovnovážné reakce

\[
\text{NH}_3\cdot\text{H}_2\text{O} = \text{NH}_4^\text{+} + \text{OH}^- \]

její rovnováha je posunuta doleva. Vodný roztok amoniaku, nazývaný roztok „hydroxidu amoného“, nabývá vlivem rostoucí koncentrace iontů OH\(^-\) bazické reakce. Je třeba zdůraznit, že ve
vodném roztoku nejsou přítomny žádné skutečné molekuly „hydroxidu amoného“ NH₄OH. Látka s takovýmto funkčním vzorcem neexistuje. Jedinými reálnými neutrálními částicemi obsaženými ve vodném roztoku NH₃ jsou vedle samostatných molekul NH₃ a H₂O pouze jejich adukty, tj. hydráty amoníaku.

Průběh ionizačních dějů v roztoku amoniaku může být podpořen přidáváním kyselin do roztoku. Dochází k neutralizační reakci a v roztoku se tvoří amonná slíka:

\[
\text{NH}_3 + \text{H}_2\text{O} + \text{HCl} = \text{NH}_4\text{Cl} + \text{H}_2\text{O}
\]

Právě tak může být obdobná reakce uskutečněna v plyně fázi reakce NH₃ s plynnou kyselinou látkou (např. chlorovodíkem):

\[
\text{NH}_3(g) + \text{HCl}(g) = \text{NH}_4\text{Cl}(s)
\]

Amonné (azaniové) soli jsou však lesklé sloučeniny, obsahující tetraedrický amonový (azaniový) kation NH₄⁺. Některé z nich jsou technicky velmi významné.

Tendence k oxidacné redukci změní je u amoniaku i u jeho protonizované forma, tj. amonného iontu, velmi malá. Při zvýšené teplotě a tlaku na některé látky (např. oxidy kovů) redukují:

\[
\begin{align*}
3 \text{NiO} + 2 \text{NH}_3 &= 3 \text{Ni} + 3 \text{H}_2\text{O} + \text{N}_2 \\
2 \text{NH}_3 + 3 \text{Cl}_2 &= \text{N}_2 + 6 \text{HCl}
\end{align*}
\]

Amoniak se též oxiduje halogény, např. chlorem

\[
2 \text{NH}_3 + 3 \text{Cl}_2 = \text{N}_2 + 6 \text{HCl}
\]

nebo kyslíkem:

\[
4 \text{NH}_3 + 3 \text{O}_2 = 2 \text{N}_2 + 6 \text{H}_2\text{O}
\]

Katalyzované spalování kyslíkem se vzduchem vede ke vzniku oxidů dusíku, např.

\[
4 \text{NH}_3 + 5 \text{O}_2 = 4 \text{NO} + 6 \text{H}_2\text{O}
\]

Příkladem oxidaceho působení amoniaku je jeho reakce s alkalicemi kovy a kovy alkalicích zemín, kdy vedle amidů těchto kovů vzniká též vodík:

\[
2 \text{K} + 2 \text{NH}_3 = 2 \text{KNH}_2 + \text{H}_2
\]

Další sloučeninou dusíku s vodíkem je hydrazin N₂H₄ (diazam). Uspořádání jeho molekuly může být vyjadřeno elektronovým strukturním vzorcem a vzorcem geometrickým s charakteristikou jednoduchou kovalentní vazbou N—N:

\[
\text{H} \quad \text{N} \quad \text{H} \\
\text{H} \quad \text{N} \quad \text{H}
\]

\[
\text{H}_2\text{N} \quad \text{N} \quad \text{H}_2
\]

Hydrazin je nizkomolekulární bezbarvá kapalina. Připravuje se reakcí chloranu alkalickeho kovu s amoniakem ve vodném roztoku. Předpokládá se, že meziproduktem reakce je chlormin NH₂Cl:

\[
\text{NH}_3 + \text{ClO}^- = \text{NH}_2\text{Cl} + \text{OH}^-
\]
Ten v dalším kroku reaguje takto:

\[\text{NH}_2\text{Cl} + \text{NH}_3 + \text{OH}^- = \text{N}_2\text{H}_4 + \text{Cl}^- + \text{H}_2\text{O} \]

Reakce se uskutečňuje za přítomnosti želatiny nebo klínu, jež vážou přítomné stopy těžkých kovů. Jinak by reakce pod katalytickým vlivem těchto iонтů směřovala k tvorbě elementárního dusíku:

\[2\text{NH}_2\text{Cl} + \text{ClO}^- + 2\text{OH}^- = \text{N}_2 + 3\text{Cl}^- + 3\text{H}_2\text{O} \]

Obdobně lze hydrazin připravit reakcí chloraminu s močovinou nebo reakcí chloru s amoniakem za přítomnosti ketonů.

Z acidobazického hlediska je hydrazin zásadou, je poněkud méně bazický než amoniak. S vodou vytváří stejně jako amoniak hydráty, z nichž nejstabilnější je \textit{monohydrát} \text{N}_2\text{H}_4\cdot\text{H}_2\text{O}. Molekuly hydrazinu jsou schopné až dvojnásobné protonizace. Tvoří se tak postupně i\textit{onty hydrazin}i\textit{d}i\textit{z}i\textit{nu} (1+) a \textit{hydrazin}i\textit{d}i\textit{z}i\textit{nu} (2+):

\[
\text{[NH}_2\text{NH}_3\text{]}^+ \quad \text{[NH}_2\text{NH}_3\text{]}^{2+}
\]

Existují (ze zda analogicky jako amonné soli) i soli \textit{hydrazin}u (\textit{diazania}), např. \text{N}_2\text{H}_4\text{Cl}, a jsou poměrně stálé.

Hydrazin je výrazně silnějším redukčním prostředkem než amoniak (zejména v zásadním prostředí). Při svém redukčním působení - kterého se v technické praxi často využívá (pokovovací lázně, organická syntéza) - se hydrazin oxiduje na elementární dusík:

\[2\text{Ni}^{2+} + \text{N}_2\text{H}_4 + 4\text{OH}^- = 2\text{Ni} + \text{N}_2 + 4\text{H}_2\text{O} \]

Reakce hydrazinu s kyslíkem (spalováním) i s chlorem jsou obdobou reakcí amoniaku:

\[\text{N}_2\text{H}_4 + \text{O}_2 = \text{N}_2 + 2\text{H}_2\text{O} \]
\[\text{N}_2\text{H}_4 + 2\text{Cl}_2 = \text{N}_2 + 4\text{HCl} \]

Třetí sloučeninou dusíku a vodíku je \textit{azoxid} (\textit{trinitrid vodíku}). Je to opět nízkomolekulární kapalná látka, jejíž vazebné uspořádání charakterizuje elektronový strukturní vzorec:

\[\text{H} \quad \text{N=NN} \]

Trocíce atomů dusíku je lineární, úhel \(\text{HNN} \) je 110°. Řad vazby středového atomu dusíku s atomem dusíku poutající vodík je nižší než řad vazby s koncovým atomem N. Tato skutečnost z uvedeného elektronového strukturního vzorce nevyplývá.

Azoxid může být syntetizován opatrnou reakcí hydrazinu s dusítanem (kyselinou dusítou)

\[\text{N}_2\text{H}_4 + \text{HNO}_2 = \text{HNO}_3 + 2\text{H}_2\text{O} \]

nebo ještě lépe reakcí plynného \(\text{N}_2\text{O} \) s roztaženým \(\text{NaNH}_2 \):

\[\text{NaN}_2\text{O} + \text{NaNH}_2 = \text{NaN}_3 + \text{H}_2\text{O} \]

Vzniklý azid sodný \(\text{NaN}_3 \) lze kyselinami rozložit za uvolňování \(\text{HN}_3 \).

Azoid k se spaluje, při stáři s horkými předměty snadno exploduje, má jak odsadační, tak i redukční účinky a je velmi slabou kyselinou. Vlastnostmi jeho soli - azidů - se budeme zabývat později.

\textit{Hydroxylamin} \(\text{NH}_2\text{OH} \) je derivátem amoniaku. Odvozujeme jej prostou náhradou atomu \textit{H}
v molekule NH₃ skupinou OH. Vazebné uspořádání jeho molekuly je vyjádřeno elektronovým strukturálním vzorcem

\[H - N - O - H \]

Připraví se katodickou redukcí kyseliny dusičné nebo dusitanu, popř. jejich redukcí účinkem hydrogensulfidu nebo dalších redukovaných. Je to velmi nestálá, snadno tající bílá krystalková látk. Má výraznou redukční, ale i mírně oxidační účinek. Je slabé zásaditý, a proto tvoří s kyselinami hydrroxylamonné soli, např. chlorid hydrroxylamonné \(\text{[NH}_3\text{OH]}^+ \text{Cl}^- \).

Nachází uplatnění v organické syntéze, důležité jsou některé jeho organické deriváty.

- Amidy, imidy a nitridy

Formální náhradou jednoho atomu vodíku v molekule NH₃ elektropozitivním (obvykle alkalickeho) kovem dospíváme ke vzorců MNH₂. Látky tohoto typu se nazývají amidy (azanidy).

Amidy alkalickeh kovů lze připravit reakcí plynného NH₃ s roztaženým alkalickeho kovem nebo rozpuštěním alkalickeho kovu za laboratorní teploty v kapalném amoniaku:

\[2 \text{Na} + 2 \text{NH}_3 \rightarrow 2 \text{NaNH}_2 + \text{H}_2 \]

Amidy alkalickeh kovů mají iontový charakter vazby (str. 346).

Amidy ostatních kovů se připravují konverzi amidů alkalickeh kovů se solemi kovů v kapalném amoniaku. Amidy elektropozitivních kovů jsou silně bazické látky, s vodou reagují podle rovnice

\[\text{NaNH}_2 + \text{H}_2 \text{O} = \text{NaOH} + \text{NH}_3 \]

Používají se v organické syntéze a při připravě azidů (str. 354).

Zařízením amidů se dostává tvoří imidy \(\text{[azanidy]}^2 \):

\[\text{Sr(NH}_2\text{)}_2 = \text{SrNH} + \text{NH}_3 \]

Jsou většinou zbarvené žluté. Mají iontovou mřížku (str. 346) s charakteristickým aniontem NH²⁻.

Binární sloučeniny kovů s dusíkem v oxidačním stavu -III se nazývají nitridy. Formálně je můžeme považovat za soli vzniklé úplnou náhradou všech atomů vodíku v molekule NH₃ příslušným kovem. Pouze nitridy je nejlepší elektropozitivních kovů mají výraznější iontový charakter (str. 345), ostatní nitridy je třeba považovat za kovalentní sloučeniny s polymerní strukturou (např. nitrid boritý BN). Některé nitridy mají intersticíální charakter, to znamená, že kationty kovů jsou uspořádány do původní kovové mřížky a atomy N⁻³ jsou vymezeny v tzv. intersticíálních polohách. Tyto posledně uvedené nitridy mají často nestochiometrické složení. Mnohé z nitridů (zejména ty, které se vyznačují tvrdostí, elektrickou vodivostí, např. chemickou inertností) mají významné použití v laboratorní i průmyslové chemické a technické praxi.

Nitridy iontového charakteru se vodou hydrolyzují:

\[\text{Ca}_3\text{N}_2 + 6 \text{H}_2\text{O} = 3 \text{Ca(OH)}_2 + 2 \text{NH}_3 \]

Intersticíální nitridy a polymerní kovalentní nitridy hydrolyze ani při zvýšené teplotě nepodléhají.

Nitridy lze připravit reakcí dusíku s kovy při běžných teplotách (viz poznámka na str. 195)

\[3 \text{Mg} + \text{N}_2 = \text{Mg}_3\text{N}_2 \]
nebo při teplotě výrazněji zvýšené:

$$2\,\text{Al} + \text{N}_2 = 2\,\text{AlN}$$

Vznikají těž rozkladem amidů nebo imidů

$$3\,\text{CaNH} = \text{Ca}_3\text{N}_2 + \text{NH}_3$$

popř. zahříváním kovů, jejich oxidů nebo halogenidů v proudu amoniaku:

$$4\,\text{WO}_3 + 8\,\text{NH}_3 = 2\,\text{W}_2\text{N}_3 + 12\,\text{H}_2\text{O} + \text{N}_2$$
$$\text{CrCl}_3 + \text{NH}_3 = \text{CrN} + 3\,\text{HCl}$$

Vedle amidů, imidů a nitridů elektropozitných prvků existují i další kovalentní složeniny, v nichž při úlohu elektropozitní části molekuly celá skupina atomů. Jsou známy např. amidy, imidy a nitidy některých anorganických kyselin. Jejich vzorce odvodíme nahrazáním skupiny OH skupinou NH$_2$ dvou skupin OH nebo jednoho konečného atomu O skupinou NH, popř. tři skupin OH či jedné skupiny OH a jednoho atomu O atomem N. Jako příklad takovýchto lze uvést vzorce amiderivátů, imiderivátů a nitridoderivátů kyselin sírové:

- kyselina amidostružová
- diamid kyseliny sírové (diamid sulfuryla)
- imid kyseliny sírové (imid sulfuryla)

- Hydrazidy a azidy

Substicí atomu vodíku v molekule hydrazinu alkalickým kovem dospíváme ke vzorcům hydrazidů (diazamidů). Toto cestou lze také hydrazidy skutečně připravit:

$$2\,\text{N}_2\text{H}_4 + 2\,\text{Na} = 2\,\text{Na}_2\text{H}_3 + \text{H}_2$$

Dáležitější a běžnější než hydrazidy jsou v chemické praxi soli azoimidu, tzv. azidy (tri-nitridy), formálně nebo skutečně obsahují ion N$_3$.

Azidy alkalických kovů lze připravit zvážením N$_2$O do roztaveného amidiu:

$$\text{NaNH}_2 + \text{N}_2\text{O} = \text{NaN}_3 + \text{H}_2\text{O}$$

Ostatní kovalentní azidy se připravují konverzi azidu sodného se solí kovu ve vodním roztoku. Jak jsme již uvedli, iontové azidy jsou poměrně stálé, kdežto kovalentní azidy těžkých kovů.
a amonie jsou explozivní. Azid olovnatý Pb(N₃)₂ se používá jako třáskavina k náplni rozboušek. Azidy kovů se rozpustnosti ve vodě i krystalickou strukturou podobají obdobným chloridům.

- **Sloučeniny dusíku s halogeny**

 Soubor těchto sloučenin je dosti pestrý. Lze je (alespoň formálně) považovat za deriváty sloučenin dusíku s vodíkem. Jejich přehled podívá tab. 18-3.

 Tabulka 18-3. Přehled sloučenin dusíku s halogeny

<table>
<thead>
<tr>
<th>Deriváty amoniaku</th>
<th>F</th>
<th>Cl</th>
<th>Br</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₃F₂</td>
<td>NH₃Cl</td>
<td>NH₃Br</td>
<td>NH₃I</td>
<td></td>
</tr>
<tr>
<td>NH₃F₂</td>
<td>NHCl₂</td>
<td>NHBr₂</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>NF₃</td>
<td>NCl₃</td>
<td>NBr₃</td>
<td>NCl₃ NH₃</td>
<td></td>
</tr>
<tr>
<td>Existují též: NFCl₂, NF₃Cl, NBrF₂ ...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 Deriváty hydrazinu
 | N₂F₃ | - | - | - |
 | (N₂F₃) | | | |

 Deriváty azoumídu
 | FN₃ | ClN₃ | BrN₃ | 1N₃ |

 *) Některé z uvedených látek jsou těsnou, přesto je účelně zabývat se jimi na tomto místě.

- **Oxidy dusíku**

 Dusík vytváří s kyslíkem pět poměrně stálých oxidů. Nabývá v nich kladných oxidačních staven 1 až V.

 Oxid dusík N₂O je plynná látku. Jeho molekuly se vyznačují charakteristickou násobnou vazbou N≡N a mají lineární tvar:

 \[
 \overline{\text{N}=\text{N}=\overline{\text{O}}}
 \]

 Uvedené struktura molekuly lépe odpovídá název *azooxid*. Lze jej připravit zahříváním kryštatického NH₄NO₃:

 \[
 \text{NH}_4\text{NO}_3(s) = \text{N}_2\text{O}(g) + 2\text{H}_2\text{O}(g)
 \]

 Není jedovatý, ale vdechován způsobuje zpočátku eufórii a ve větší dávce působí jako narkotikum. Pro tyto vlastnosti se používá v lékařství.

 Acidobazicky je značně indifferenční, rozpoznavat se ve vodě, ale nepodléhá přitom žádné chemické reakci ani ionizaci. Látky s výraznou afinitou ke kyslíku jsou shopné oxidu dusíkem kyslík odebrat a spalovat se v něm, např.

 \[
 \text{N}_2\text{O} + \text{H}_2 = \text{N}_2 + \text{H}_2\text{O}
 \]

 \[
 3\text{N}_2\text{O} + 2\text{NH}_3 = 4\text{N}_2 + 3\text{H}_2\text{O}
 \]

 Obě uvedené reakce jsou exotermické a probíhají při vhodném poměru reaktantů explozivně.

 Oxid dusíkatý NO je bezbarvý plen. Vzdušná v jeho molekule vystihuje diagram MO hodný s diagramem částice O₂⁺ (str. 93). V protivazebném orbitálu π* je umístěn jeden nepárový elektron. Řád vazby v molekule NO je proto 2,5. Spinová interakce nepárových elektronů na jednotlivých
molekulách NO způsobuje, že molekuly při nižších teplotách (po zkapaní) částečně dimeruji.

Oxid dusnatý lze připravit redukcí středně koncentrované (asi 20%ní) kyseliny dusičné ušlechtilými kovy, např. mědě nebo rtuti:

$$8 \text{HNO}_3 + 3 \text{Cu} \rightarrow 3 \text{Cu(NO}_3)_2 + 4 \text{H}_2\text{O} + 2 \text{NO}$$

Průmyslově se NO (potřebný pro výrobu HNO₃) připravuje spalováním NH₃ za katalytického působení platiny nebo její slitiny s rhodiumem:

$$4 \text{NH}_3 + 5 \text{O}_2 \rightarrow 4 \text{NO} + 6 \text{H}_2\text{O}$$

Acidobazické chování oxidu dusnatého k protickým rozpouštědlům je velmi nevýrazné (malá rozpustnost ve vodě, bez chemické reakce). Molekula NO poměrně snadno ztrácí nepárový elektron a mění se tak na nitrosoylkový kation NO⁺. Ten je izoelektronový s částicemi CO a CN⁻ a stejně jako ony může vystupovat v úloze ligandum. Vznikající vazba mezi středovým atomem a skupinou NO jako ligandem má charakter σ a π a bývá výsledkem současné donace a akceptace elektroňového obalu. Podle Lewisovy teorie kyselin a zásad je tedy částice NO současně kyselinou i zásadou.

Samotný nitrosoylkový kation existuje i v některých svých solích, jež tvoří s anionty silných kyselin, např. NO₃⁻, NO₂⁻, NO₂⁺, NO₂⁻, NO₂⁻, NO₂⁻, NO₂⁻, NO₂⁻, NO₂⁻, NO₂⁻. Tyto soli se však snadno rozkládají vodou:

$$\text{NO}^+ + 2 \text{H}_2\text{O} \rightarrow \text{H}_3\text{O}^+ + \text{HNO}_2$$

Oxid dusnatý je schopen oxidace i redukce. Samovolně a spontánně podléhá oxidací vzdušným kyslíkem na oxid dusičitý:

$$2 \text{NO} + \text{O}_2 \rightarrow 2 \text{NO}_2$$

Redukce silnými redukčnými činidly jej lze převést na N₂O₅ (působením SO₂), na hydroxylieamin NH₂OH (působením soli chromatných v kyselém prostředí) nebo na amoniak (chromatné soli v neutrálním roztoku).

Oxid dusičitý N₂O₅ je nejméně stabilní oxid dusíku. Jako chemické individuum jej lze zjistit jen při teplotách nižších než −100 °C. Je vystaven z molekul o atomové konfiguraci

$$\text{O} \begin{array}{c} \text{N} \cdots \text{N} \\ \text{O} \end{array}$$

Vazba v jeho molekule není přímo objasněna. Vzdálenost N−N je delší, než odpovídá jednoduché vazbě N−N typu σ. Některé okolnosti nasvědčují tomu, že jde o čistou vazbu π bez interakce σ. Na molekulu oxidu dusičitého lze pohlížet jako na adukt molekul NO a NO₂. Nasvědčuje tomu i fakt, že nejnedoabší cestou připravy N₂O₅ je vytvoření směsi NO a NO₂ v molarním poměru 1:1:

$$\text{NO} + \text{NO}_2 \rightarrow 2 \text{N}_2\text{O}_3$$

Rovnovážná reakce je při nižších teplotách pouze nesnášená výrazně doprava (při −102 °C zvýší tuhý modrý N₂O₅).

S vodou poskytuje N₂O₅ roztok kyseliny dusičné. Všechny jeho reakce (acidobazické i oxidace- redukční) jsou v podstatě shodné s reakcemi, jaké by vykazovala ekvivalenční směs NO a NO₂.

Oxid dusičitý NO₂ má homenous molekulu s jedním nepárovým elektronem. Vazebné poměry lze popsat hybridizací SP² na atomu N a zapojením orbitálu p, atomu N do tvorby vazby π delokalizované po celé molekule. Nepárový elektron je umístěn na nevazebném orbitalu sp² dusíku.

Za běžných podmínek je však NO₂ do jisté míry dimerován:

$$2 \text{NO}_2 \rightarrow \text{N}_2\text{O}_4$$
V tuhé fázi (za teploty pod −10 °C) je dimerace úplná. Monomer je zbarven hnědočerveně a je paramagnetický, dimer je bezbarvý a diamagnetický. Dimerace nastává splažením nepárových elektronů v hybridním orbitalu sp² a vytvořením vazby N=N.

Oxid dusičný se tvoří z oxidu dusatého účinkem vzdušného kyslíku (str. 202). Vzniká těž reakcí koncentrované kyseliny dusičné podle rovnice

\[
\text{Pb} + 4 \text{HNO}_3 = \text{Pb(NO}_3)_2 + 2 \text{NO}_2 + 2 \text{H}_2\text{O}
\]

nebo termickým rozkladem dusičnanů:

\[
2 \text{Cu(NO}_3)_2 + 3 \text{H}_2\text{O} = 2 \text{CuO} + 4 \text{NO}_2 + \text{O}_2 + 6 \text{H}_2\text{O}
\]

Reakce oxidu dusičného s vodou má charakter disproporcionační reakce:

\[
\text{N}_2\text{O}_4 + \text{H}_2\text{O} = \text{HNO}_2 + \text{HNO}_3
\]

Při větších koncentracích nebo vyšších teplotách se vzniká kyselina dusitá ihned rozkládá. Z hlediska schopnosti k oxidačně-redukčním změnám lze oxid dusičný označit za silně oxidační činitel:

\[
\begin{align*}
\text{NO}_2 &+ \text{H}_2 = \text{NO} + \text{H}_2\text{O} \\
\text{NO}_2 &+ \text{CO} = \text{NO} + \text{CO}_2 \\
2 \text{NO}_2 &+ 4 \text{HCl} = 2 \text{NOCl} + 2 \text{H}_2\text{O} + \text{Cl}_2
\end{align*}
\]

Některé reakce kapalného \(\text{N}_2\text{O}_4\) jsou velmi zajímavé, např.

\[
\text{Na} + \text{N}_2\text{O}_4 = \text{NaNO}_3 + \text{NO}
\]

Oxid dusičný je silně toxický, již velmi malé koncentrace ve vzduchu jsou nebezpečné.

Oxid dusičný \(\text{N}_2\text{O}_2\) patří mezi stálé oxydy dusíku. Za laboratorní teploty je to bezbarvá tuhá látku, teplem se rozkládá (i explozivně) podle rovnice

\[
2 \text{N}_2\text{O}_3 = 4 \text{NO}_2 + \text{O}_2
\]

V tuhé fázi je vystavěn z iontů \(\text{NO}_2^-\) a \(\text{NO}_3^-\), v plynné fázi se mezi těmito částicemi tvoří kovalentní vazba a vzniká atomová konfigurace

\[
\begin{array}{c}
\text{O} \\
\text{N} \cdots \text{O} \cdots \text{N} \\
\text{O} \\
\text{O}
\end{array}
\]

Vazebná situace uvnitř plynných molekul \(\text{N}_2\text{O}_4\) nebyla dosud průkazně objasněna.

\(\text{N}_2\text{O}_4\) lze připravit reakcí koncentrované \(\text{HNO}_3\) se silnými dehydratačními činitely, jmenovitě oxidem fosforečným

\[
2 \text{HNO}_3 + \text{P}_2\text{O}_5 = \text{N}_2\text{O}_5 + 2 \text{HPO}_3
\]

nebo reakcí \(\text{NO}_3\) s ozonom:

\[
2 \text{NO}_2 + \text{O}_3 = \text{N}_2\text{O}_5 + \text{O}_2
\]

\(\text{N}_2\text{O}_5\) je silně kyselý, s vodou poskytuje kyselinu dusičnou:

\[
\text{H}_2\text{O} + \text{N}_2\text{O}_5 = 2 \text{HNO}_3
\]
Oxid dusičný působí silně oxidativně:

\[
\begin{align*}
Na + N_2O_3 &= NaN_2O_4 + NO_2 \\
I_2 + N_2O_4 &= IO_3 + N_2
\end{align*}
\]

- Sloučeniny dusíku se sírou

Čistě binárních sloučenin dusíku se sírou není mnoho. Patří mezi ně především tetranitrid tetrasyry
\(S_4N_4\) s prostorovou atomovou konfigurací

![Diagram](image)

a dále látky \(S_2N_2\), \((SN)_n\), \(S_4N_2\), \(S_11N_2\), \(S_{15}N_2\) a \(S_{14}N_2\).

Existuje však mnoho dalších skupin sloučenin obsahujících vele N a S ještě další prvek nebo prvky (sloučeniny nejméně třetího) a mají přímou vazbu mezi atomy N a S. Jsou to např. některé imidy sýry \((S_2NH)_2, S_2NH_2, S_2NH\), sloučeniny obsahující vele síry a dusíku halogenu \((S_2NCl, S_2NCl_2)\) nebo kyslík \((S_2NO_2, S_2N=O_4)\), nitry, amidy, imidy, hydrazidy a hydroxylamidy kyselin stříčné a kyselin sírové a jejich deriváty. Tyto látky jsou velmi zajímavé svou strukturou, vlastnostmi a reakcími, avšak mají jen malý význam v technické praxi, popř. jsou významné pouze jejich alkyl deriváty či arylderiváty, jimž se systematicky zabývá organická chemie.

18.4 Binární sloučeniny fosforu

Do skupiny binárních sloučenin fosforu řadíme především fosfan \(PH_3\) a difosfan \(P_2H_4\), tedy jeho dvě sloučeniny s vodíkem, fosfity elektropozitivním prvků a dále oxid fosforu a jeho halogenidy, popř. chlorkogenidy.

- Sloučeniny fosforu s vodíkem

Nej jednodušší sloučeninou fosforu s vodíkem je fosfan. Je to nizkomolekulární plynná látka tvořená molekulami \(PH_3\). Vazba v molekule i struktura molekuly jsou obdobné amoniku, ale orbital s atomu P má na vazbě menší podíl (str. 346) a vazba P–H je menší pevná než vazba N–H; \(PH_3\) je proto labilnější sloučenina.

Fosfan vzniká hidrólýzou některých fosfiddů podle rovnic

\[
Mg_3P_2 + 6H_2O = 3Mg(OH)_2 + 2PH_3
\]

nebo působením vody či vodných roztoků hydroxídů alkalických kovů na fosfoniové soli:

\[
PH_4^+ + OH^- = PH_3 + H_2O
\]

Lze jej připravit i disproporcionací fosforu v oxidaci stávě 0, I nebo III:

\[
P_4 + 4OH^- + 2H_2O = 2HPO_4^{2-} + 2PH_3
\]

1) Jsou zde přiřazeny též sloučeniny pseudobinární, tj. od binárních odvozené.
Současně probíhá i reakce, při níž vedle vodíku vzniká fosforan:

\[\text{P}_4 + 4 \text{OH}^- + 4 \text{H}_2\text{O} = 4 \text{H}_2\text{PO}_4^- + 2 \text{H}_2 \]

Fosfan je typický svými výraznými redukčními účinky. Ve vodném roztoku solí těžkých kovů sráží málo rozpustné fosfidy, ale současně dochází i k vyredukování elementárních kovů. Slabá bazicita fosfantu se projevuje tvorbou fosfanových solí (analogie solí amončných)

\[\text{PH}_3 + \text{H}^+ = \text{PH}_4^+ \]

tedy konkrétně např.

\[\text{PH}_3 + \text{HI} = \text{PH}_4\text{I} \]

Fosfan je látkou velmi reaktivní. Je toxický.

Při vzniku fosfantu (zejména hydrolyzou fosídů) se v malém množství tvůrí i další sloučenina fosforu s vodíkem — difosfan \(\text{P}_2\text{H}_4 \). Je to opět nízkomolekulární kapalná a samozřejmě látkově stejně struktura, jakou má hydrazin.

Velmi věrohodná byla prokázána i existence dalších sloučenin fosforu s vodíkem, \(\text{P}_2\text{H}_3, \text{P}_3\text{H}_5, \text{P}_5\text{H} \) a snad i \(\text{PH} \).

- **Fosfidy**

 Fosfidy se mohou připravovat reakcí kovů s elementárním fosforem za sníženého tlaku nebo v inertní atmosféře, redukči fosforčanem např. uhlíkem

\[\text{Ca}_3(\text{PO}_4)_2 + 8 \text{C} = \text{Ca}_3\text{P}_2 + 8 \text{CO} \]

nebo i reakcemi halogenidů či sulfidů kovů s fosfanem

\[\text{Bi}_2\text{S}_3 + 2 \text{PH}_3 = 2 \text{BiP} + 3 \text{H}_2\text{S} \]

popř. též elektrochemickými postupy.

Podle vlastností je tato fosfida, které je:

a) vodou hydrolyzující určitě složené fosfanu (fosfidy alkaliických kovů, kovů alkaliických zemín, \(\text{Zn}_2\text{P}_2 \) a \(\text{AlP} \)),

b) vodou nehydrolyzující (fosfidy valně častě přechodných kovů).

- **Oxydy fosforu**

 V důsledku malého rozdílu hodnot elektrofugivity fosforu a kyslíku se všechny oxydy fosforu vyskytují ve formě převážně kovalentních molekul. Oxyd fosforitý \(\text{P}_2\text{O}_5 \) je tvořen dimerními molekulemi tetraedrického tvaru (atomy fosforu leží v vrcholcích tetraedru). Má elektronový strukturní vzorec

![Graphical representation of the structure of P2O5](image-url)
Je to bilá, snadno tající tuhá látka podobná vosku. Připraví se nejlépe tak, že se spaluje fosfor za regulovaného příslušným kyslíkem (při jeho nadbýtku by vznikal oxid fosforečný):

\[\text{P}_4 + 3 \text{O}_2 = \text{P}_4\text{O}_6 \]

\(\text{P}_4\text{O}_6 \) je kyselý, s vodou poskytuje roztok kyseliny fosforité, popř. ve vodě za horka disproporcionuje na fosfan a kyselinu fosforečnou. Velmi snadno se oxiduje na sloučeniny \(\text{P}^5 \).

Oxid fosforečný \(\text{P}_4\text{O}_{10} \) je rovněž dimerní a je tvořen tetracrickými molekulami se stejnou strukturou, jakou má \(\text{P}_4\text{O}_6 \) (v každé molekule jsou ovšem navíc přítomny 4 atomy kyslíku poutané na atomy fosforu):

Interakce \(\pi \) mezi atomy \(\text{P} \) a koncovými atomy \(\text{O} \) je značná, lze hovořit o vzniku dvoujíh važby \(\text{P}=\text{O} \).

Oxid fosforečný je bilá tuhá látka méně těkavá než \(\text{P}_4\text{O}_6 \). Krystaluje v několika modifikacích. Připraví se spalováním fosforu v nadbýtku kyslíku.

\(\text{P}_4\text{O}_{10} \) je velmi kyselý, s vodou poskytuje kyseliny fosforečnou \(\text{H}_3\text{PO}_4 \). Jeho afinita k vodě je mimořádně velká, proto se využívá jako velmi účinné sušidlo a dehydratační činidlo. Oxidačně-redukční vlastnosti má nevýrazné, může být redukován jen silnými reduktivními činidly.

Existuje i méně významný oxid fosforečný \(\text{P}_3\text{O}_4 \). Vzniká termickým rozkladem oxidu fosforitého. Má oligomerní charakter, v jeho struktuře jsou obsaženy strukturní motyvy oxidu fosforitého a oxidu fosforečného.

** Halogenidy fosforu**

Přehled existujících halogenidů fosforu podává tab. 18-4. Běžné jsou typy \(\text{PY}_3 \) a \(\text{PY}_5 \). Mají kovalentní strukturu s hybridizací \(\text{SP}^3 \) (typ \(\text{PY}_3 \)) a \(\text{SP}^3\text{D} \) (typ \(\text{PY}_5 \)) na středovém atomu fosforu. U prvého typu mají molekuly pyramidální tvar (včetně nevazebného elektronového páru tetraedrický) a u typu druhého tvar trigonálně bipyramidální:

![Diagram halogenidů fosforu](image)

Tabulka 18-4. Halogenidy fosforu

<table>
<thead>
<tr>
<th>Typ složení</th>
<th>F</th>
<th>Cl</th>
<th>Br</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{P}^4\text{Y}_3)</td>
<td>(\text{PF}_3)</td>
<td>(\text{PCl}_3)</td>
<td>(\text{PBr}_3)</td>
<td>(\text{PI}_3)</td>
</tr>
<tr>
<td>(\text{P}^5\text{Y}_4)</td>
<td>(\text{PF}_5)</td>
<td>(\text{PCl}_5)</td>
<td>(\text{PBr}_5)</td>
<td>-</td>
</tr>
<tr>
<td>(\text{P}_2\text{Y}_4)</td>
<td>(\text{P}_2\text{F}_4)</td>
<td>(\text{P}_2\text{Cl}_4)</td>
<td>-</td>
<td>(\text{P}_2\text{I}_4)</td>
</tr>
</tbody>
</table>

*) Existují též smíšené halogenidy všech typů, např. \(\text{PF}_2\text{Cl}, \text{PCl}_2 \), ... \(\text{PF}_3\text{Cl}_2, \text{PF}_3\text{Br}_2 \) ...
Takověto molekuly jsou přítomny u sloučenin v plynném nebo kapalném stavu, v tuhé fázi může dojít ke tvorbě iontů. Například u PCl₄(s) zjišťujeme strukturu PCl₄⁺, PCl₃⁻, tj.

\[
\begin{align*}
\text{S výjimkou fluoridů lze halogenidy fosforu připravovat přímou syntézou z prvků:}\\
2 \text{P} + 3 \text{Br}_2 &= 2 \text{PBr}_3 \\
\text{PBr}_3 + \text{Br}_2 &= \text{PBr}_5
\end{align*}
\]

Fluoridy se nejčastěji připravují výměnou halogenů:

\[
\begin{align*}
2 \text{PCl}_3 + 3 \text{ZnF}_2 &= 2 \text{PF}_3 + 3 \text{ZnCl}_3 \\
2 \text{PCl}_5 + 5 \text{CaF}_2 &= 2 \text{PF}_5 + 5 \text{CaCl}_2
\end{align*}
\]

Halogenidy fosforitě poskytují s vodou kyselinu fosforitou a halogenovodík:

\[
\text{PO}_3 + 3 \text{H}_2\text{O} = \text{H}_3\text{PO}_4 + 3 \text{HI}
\]

Halogenidy fosforečně hydrolyzují obdobně na kyselinu fosforečnou a halogenovodík:

\[
\text{PO}_3 + 4 \text{H}_2\text{O} = \text{H}_3\text{PO}_4 + 5 \text{HCl}
\]

Mezi nejuplatnější hydrolyzí halogenidů fosforitých i fosforečných jsou halogenid-oxidy typu POY (např. POCl₃) a POY₃ (např. POCl₅).

Technický význam halogenidů fosforu obojího typu je značný. V organické syntéze se uplatňují jako halogenové čidla a významné jsou i některé jejich organické deriváty.

Halogenidy typu P₂Y₄ mají strukturu odpovídající struktuře dísafánů (jsou jeho halogen-deriváty). Technický význam nemají.

- **Sloučeniny fosforu se sírou**

 Fosfor tvoří se sírou několik kovalentních sulfidů. Jsou to P₂S₅, P₂S₄, P₂S₃, a P₂S₁₀. Vznikají jako žluté tuhé látky slučováním stechiometrických množství obou prvků při vyšším teplotě. Sulfid fosforečný P₂S₁₀ má obdobnou strukturu jako oxid fosforečný. Struktura ostatních sulfidů může být od struktury P₂S₁₀ odvazena formálním odebráním městečkových atomů S a vytvořením vazeb mezi atomy P.

 Hydrolyzou sulfidů fosforu vznikají kyseliny fosforu a sulfán. Reakcí sulfidu fosforečného P₂S₁₀ s halogenidy fosforečnými, popř. přímou reakcí síry a halogenidů fosforitých lze připravit směšené halogenid-sulfidy fosforečné:

 \[
 \begin{align*}
 \text{P}_2\text{S}_{10} + 6 \text{PCl}_3 &= 10 \text{PSCl}_3 \\
 \text{PCl}_3 + \text{S} &= \text{PSCl}_2
 \end{align*}
 \]

- **Sloučeniny fosforu s dusíkem**

 Bněrná sloučenina fosforu s dusíkem je nitrát fosforečný P₃N₃, tuhé látky polymerního charakteru, vznikající reakcí sulfidu fosforečného s plynným amoniakem při teplotách kolem 800 °C. Málo běžné a nevýznamné jsou nitridy PN a P₃N₆. Nitrát fosforečný PN vzniká reakcí

 \[
 \text{PCl}_3(l) + 4 \text{NH}_3(l) = \text{PN}(s) + 3 \text{NH}_4\text{Cl}(s)
 \]

361
Ostatní sloučeniny s vazbami P—N jsou sloučeninami ternárními a výššími. Jsou to především amidy, imidy a nitridy kyselin fosfore a jejich organické deriváty. Dále sem patří smíšené halogen-nitridy typu PNY₂, jež jsou buď oligomeri, např. \((\text{PNCI})₃\), \(n = 3\) až 8, nebo lineárně polymerované, např. \((\text{PNCl})₃\).

18.5 TERNÁRNÍ KYSLIKATÉ SLOUČENINY DUSÍKU

Z této skupiny sloučenin jsou nejvýznamnějšími látkami kyselina dusitá, kyselina dusičná, jejich soli a smíšené halogen-oxydy dusíku.

- **Kyslikaté kyseliny dusíku**

Reakce kyseliny dusitě HNO₂ s hydroxylaminem NH₂OH lze připravit kyselinou didusíkou H₂N₂O₃:

\[
\text{HNO}_2 + \text{NH}_2\text{OH} \rightarrow \text{H}_2\text{N}_2\text{O}_3 + \text{H}_2\text{O}
\]

Existuje v tuhé stavu (je však výbušná). Neutralizací kyseliny didusík nebo redukcí vodných roztoků dusitanů sodíkovým amalgámem lze připravit alkalické soli kyseliny didusík - didusány:

\[
2\text{NO}_2^- + 4\text{NaHg} + 2\text{H}_2\text{O} \rightarrow \text{N}_2\text{O}_5^- + 4\text{Na}^+ + 4\text{OH}^- + x\text{Hg}
\]

Strukturu didusánového aniontu můžeme přibližně vyjádřit vzorcem:

\[
\begin{array}{c}
\text{N} \equiv \text{N} \\
\text{O} \\
\text{O}
\end{array}
\]

Daleko významnější kyslikatou kyselinou dusíku je kyselina dusitá HNO₂. Je to látku velmi nestálá, nelze ji připravit jako chemické individuuma, rozkladá se i ve svém vodném roztoku. Její soli jsou však mnohem stáléjší. Zčásti roztoky HNO₂ lze připravit rozpuštěním N₂O₃ (resp. směsi NO a NO₂) ve vodě, popř. těžem vytěsněním kyseliny dusitě z jejich soli silnější kyselinou:

\[
\text{AgNO}_2 + \text{HCl} \rightarrow \text{HNO}_2 + \text{AgCl}
\]

Kyselina dusitá je slabou kyselinou. Poměrně snadno podléhá oxidaci i redukci. Obdobně vlastnosti mají i její soli - dusitaný:

\[
\begin{array}{c}
5\text{NO}_2^- + 2\text{MnO}_4^- + 6\text{H}^+ \rightarrow 5\text{NO}_3^- + 2\text{Mn}^{2+} + 3\text{H}_2\text{O} \\
2\text{NO}_2^- + \text{SO}_3 + 2\text{H}^+ \rightarrow 2\text{NO} + \text{H}_2\text{SO}_4
\end{array}
\]

Dusitanový anion má lomenou strukturu, je izoelektronový s molekulou ozonu (str. 273):

\[
\begin{array}{c}
\text{N} \equiv \text{O} \\
\text{O}
\end{array}
\]

Dusitané alkalických kovů lze připravit buď rozpuštěním \(\text{N}_2\text{O}_3\) (resp. směsi NO a NO₂) ve vodném roztoku hydroxidů alkalických kovů

\[
2\text{NaOH} + \text{N}_2\text{O}_3 \rightarrow 2\text{NaNO}_2 + \text{H}_2\text{O}
\]

nebo rozkladem dusičnanů teplem:

\[
2\text{NaNO}_3 = 2\text{NaNO}_2 + \text{O}_2
\]
Uvolňovaný kyslík je nejlépe vázat na těžký kov, např. olově:

\[\text{NaNO}_3 + \text{Pb} = \text{NaNO}_2 + \text{PbO} \]

Některé dusitany se tepelně rozkládají jinak:

\[\text{NH}_4\text{NO}_2 \rightarrow \text{N}_2 + 2 \text{H}_2\text{O} \]
\[\text{AgNO}_2 \rightarrow \text{Ag} + \text{NO}_2 \]

Dusitanový anion je významným ligandem:

\[4 \text{Co}^{2+} + 24 \text{NO}_3^- + \text{O}_2 + 4 \text{H}^+ = 4\left[\text{Co(NO}_3\right]^3+ + 2 \text{H}_2\text{O} \]

Dusitany jsou látky technicky velmi významné (str. 370).

Nejběžnější kyslikatou kyselinou dusů je kyselina dusičná HNO_3. Vzniká rozpouštěním oxidu dusičitého ve vodě:

\[\text{N}_2\text{O}_4 + \text{H}_2\text{O} \rightarrow \text{HNO}_3 + \text{HNO}_3 \]

Současné vznikající HNO_3 lze z roztoku odstraňovat zaříznutím, popř. lze absorpcí N_2O_4 ve vodě uskutečnit v podmínkách, kdy přímo dochází k reakci:

\[3 \text{N}_2\text{O}_4 + 2 \text{H}_2\text{O} = 2 \text{NO} + 4 \text{HNO}_3 \]

Mimo to může být za spoluúčasti vzdušného kyslíku realizován děj

\[2 \text{N}_2\text{O}_4 + 2 \text{H}_2\text{O} + \text{O}_2 = 4 \text{HNO}_3 \]

Kyselinu dusičnou lze též získat vyvážením z jejich soli – dusičnanů.

Kyselina dusičná je silná kyselina. Koncentrovaná HNO_3 má výrazně oxidacní účinky:

\[\text{H}_2\text{S} + 8 \text{HNO}_3 = 8 \text{NO}_2 + \text{H}_2\text{SO}_4 + 4 \text{H}_2\text{O} \]
\[\text{P} + 5 \text{HNO}_3 = 5 \text{NO}_2 + \text{H}_3\text{PO}_4 + \text{H}_2\text{O} \]

V koncentrované kyselině dusičné se rozpouští většina kovů (nerozpouští se pouze Au, Pt, Rh, Ir, Nb, Ta; některé další kovy – Al, Fe, Cr – se pasivují). Ve řezděných roztocích kyseliny při redukci neúčinným kovem se dusík v molekule HNO_3 (v oxidacním stavu V) může redukovat až na dusík v záporném oxidacním stavu:

\[4 \text{Zn} + 10 \text{HNO}_3 = 4\text{Zn(NO}_3\right)_2 + \text{NH}_4\text{NO}_3 + 3 \text{H}_2\text{O} \]

Solic kyseliny dusičné – dusičnany – lze získat reakcí kyseliny s kovy, oxidy kovů a uhličitany či hydroxidy kovů, např.

\[\text{Cu} + 4 \text{HNO}_3 = \text{Cu(NO}_3\right)_2 + 2 \text{NO}_2 + 2 \text{H}_2\text{O} \]
\[\text{CuO} + 2 \text{HNO}_3 = \text{Cu(NO}_3\right)_2 + \text{H}_2\text{O} \]
\[\text{CuCO}_3 + 2 \text{HNO}_3 = \text{Cu(NO}_3\right)_2 + \text{H}_2\text{O} + \text{CO}_2 \]
\[\text{Cu(OH)}_2 + 2 \text{HNO}_3 = \text{Cu(NO}_3\right)_2 + 2 \text{H}_2\text{O} \]

Dusičnový anion NO_3^- má planární trigénální strukturu (hybridizace SP^2 na atomy N) s dekolizovanou vazbou π. na níž se podílejí orbitály p_x atomu N a všech tří atomů O (str. 348).

Kyselina dusičná i dusičnany patří mezi technicky nejúčelnější anorganické sloučeniny. Zvláštním význam má kyselina dusičná i v organických technologiích. Zejména se využívá její směs s H_2SO_4 jako tzv. „nitritní směs“. V tomto systému dochází k ionizaci:

\[2\text{H}_2\text{SO}_4 + \text{HNO}_3 = \text{NO}_3^- + 2\text{HSO}_4^- + \text{H}_3\text{O}^+ \]
Vzniklý nitrilový kation \(\text{NO}_2^+ \) interaguje např. s aromatickým uhlovodíkem jako vlastní nitrační činidlo:

\[
\text{C} + \text{NO}_2^+ + \text{H}_2\text{SO}_4 = \text{CNO}_2 + \text{H}_2\text{SO}_4
\]

Od obou kyslikatých kyselin dusiku se odvozuji též peroxokyseliny — kyselina peroxodusitá \(\text{HNOO}_2 \) \(^1\) a kyselina peroxodusičná \(\text{HNO}_4 \).

Existují též amidy kyselin dusiku, např. amid kyseliny dusičné (nitramid) \(\text{NH}_2\text{NO}_2 \). Všechny tyto látky jsou však málo stálé a nemají větší technický význam.

- Halogenid-oxidy dusiku

Tyto látky lze považovat za halogenidy kyslikatých kyselin dusiku. V jejich nomenklatuře se k této skutečnosti obvykle nepřihlíží a označují se jako halogenidy nitrosoylu (NOY) a halogenidy nitrylu (NO₂Y). Přehledné jsou uvedeny v tab. 18-5. Všechny tyto sloučeniny mají kovalentní i omeněné, resp. planárně trigonální molekuly.

Tabulka 18-5: Halogenid-oxidy dusiku

<table>
<thead>
<tr>
<th>Typ sloučeniny</th>
<th>F</th>
<th>Cl</th>
<th>Br</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deriváty kyseliny dusitě</td>
<td>NOF</td>
<td>NOCl</td>
<td>NOBr</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>O</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Deriváty kyseliny dusičné</td>
<td>NO₂F</td>
<td>NO₂Cl</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>N</td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

Chlorid nitrosoylu se tvoří ve směsi koncentrovaných kyselin HCl a HNO₃ (objmenný poměr \(3:1 \) – tzv. královské a spolu se vznikajícím chlorem

\[
3 \text{HCl} + \text{HNO}_3 = \text{NOCl} + \text{Cl}_2 + 2 \text{H}_2\text{O}
\]

je přičinou extrémních oxidačních vlastností této směsi.

18.6 TERNÁRNÍ KYSLÍKATÉ SLOUČENINY FOSFORU

Do této skupiny se řadí především všechny kyslikaté kyseliny fosforu, jejich soli a dusikáté deriváty i halogenoderiváty všech těchto sloučenin. Přehled hlavních kyslikatých kyselin fosforu je uveden v tab. 18-6.

Z elektronových strukturálních vzorců kyselin je zřejmé, že o-vaznosti atomů fosforu ve všech těchto sloučeninách je rovna čtyřem. Koordинаce atomů fosforu je proto vždy tetraedrická (tetraedr

\(^1\) Vyhýbáme se vzorci HNO₃, který je shodný se stechiometrickým vzorcem kyseliny dusičné.
<table>
<thead>
<tr>
<th>Stechiometrický vzorec, název*</th>
<th>Elektronový strukturní vzorec**</th>
<th>Oxidační stav atomu P</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₃PO₂</td>
<td></td>
<td>(P^{v})</td>
</tr>
<tr>
<td>kyselina fosformá</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kyselina hydrogen-dihydrido-dioxofosforecná)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{P}_{3}^{v})</td>
</tr>
<tr>
<td>H₅PO₅</td>
<td></td>
<td>(P^{m})</td>
</tr>
<tr>
<td>kyselina fosforitá</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kyselina dihydrogen-hydrido-trioxofosforecná)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{P}_{3}^{v})</td>
</tr>
<tr>
<td>H₅P₂O₃</td>
<td></td>
<td>(P^{m})</td>
</tr>
<tr>
<td>kyselina difosforitá</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kyselina dihydrogen-dihydrido-pentaoxidifosforecná)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{P}_{3}^{v})</td>
</tr>
<tr>
<td>H₆P₃O₈</td>
<td></td>
<td>(P^{v})</td>
</tr>
<tr>
<td>kyselina difosforitá</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kyselina trihydrogendifosforecná)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{P}_{3}^{v})</td>
</tr>
<tr>
<td>H₆P₄O₄</td>
<td></td>
<td>(P^{v})</td>
</tr>
<tr>
<td>kyselina fosforecná</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kyselina trihydrogenfosforecná)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{P}_{3}^{v})</td>
</tr>
<tr>
<td>H₆P₅O₆₃</td>
<td></td>
<td>např. (\text{H₃P₃O₄}_{10})</td>
</tr>
<tr>
<td>polyjaderné kyseliny fosforecné</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(lineární oligomer)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n = 0) kyselina katena-difosforecná</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n = 1) kyselina katena-trifosforecná</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n = 2) kyselina katena-tetrafosforecná</td>
<td></td>
<td></td>
</tr>
<tr>
<td>((\text{HPO}_₃)_₄)</td>
<td></td>
<td>např. ((\text{HPO}_₃)_₄)</td>
</tr>
<tr>
<td>polyjaderné kyseliny fosforecné</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(cyklické oligomer)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n = 3) kyselina cyklo-trifosforecná</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n = 4) kyselina cyklo-tetrafosforecná</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) V závorkách jsou uvedeny nově doporučené názvy uvedených kyselin. Neuvěřešeně šetřeným útvarem přidělují označení „katena“, cyklickým „cyklo“.

**) Uvedené elektronové vzorce nevyjadřují přítomnost interakcí \(\pi \).
je vlivem neekvivalentnosti koordinujících atomů obvykle deformován). Važby \(P-O \) nebo važby fosforu s nekoncovým atomem kyslíku jsou v podstatě jednoduché (bez interakce \(\pi \)), važby fosforu s koncovým atomem kyslíku mají četnější interakci \(\pi \) (str. 348 – 349).

Vedle kyselin uvedených v tabulce existují (bud jako chemické individua, nebo ve formě solí) polyjaderné kyseliny s atomy fosforu ve dvou různých oxidačních stavech, např. kyselina fosforito-difosforitá:

\[
\begin{align*}
\text{H} & \text{O} \text{H} \\
\text{P} & \text{O} \text{P} \text{O} \text{H} \\
\text{O} & \text{O} \\
\text{O} & \text{O} \\
\end{align*}
\]

- **Kyselina fosforiná a fosforná**

 Jak ukazuje její elektronový strukturní vzorec v tab. 18-6, je kyselina fosforiná jednosytnou kyselinou, a tvoří proto jednu řadu soli. Patří mezi středně silné kyseliny.

 Její sodná solí – fosforná sodná – vzniká disproporcionací bílého fosforu v roztoku NaOH:

 \[
P_4 + 4 \text{OH}^- + 4 \text{H}_2 \text{O} \rightarrow 4 \text{H}_2 \text{PO}_4^- + 2 \text{H}_2
\]

(současně probíhá reakce uvedená na str. 358).

Volnou kyselinu fosforinou lze z fosfornačná získat vytečením kyselinou sůrůvou a připravit ji i v krystalické formě. Kyselina i její soli jsou mimořádně účinná redukovadla. Snadno redukují ve vodných roztocích soli některých kovů na elementární kov:

\[
4 \text{Ag}^+ + 4 \text{H}_2 \text{PO}_4^- + 2 \text{H}_2 \text{O} \rightarrow 4 \text{H}_2 \text{PO}_4 + 4 \text{Ag} + 4 \text{H}^+
\]

- **Kyselina fosforitá a fosforitany**

 Kyselina fosforitá je dvojčetná kyselina. Vyplyvá to ze vzorce uvedeného v tab. 18-6. Tvoří dvě řady solí (s anionty \(\text{H}_2 \text{PO}_3^- \) a \(\text{HPO}_3^{2-} \)) a patří mezi středně silné kyseliny.

 Kyselina fosforitá se připraví reakcí oxidu fosforitového s vodou, popř. hydrolyzou halogenidů fosforitových, např. chloridu fosforitového:

 \[
 \text{PCl}_3 + 3 \text{H}_2 \text{O} = \text{H}_3 \text{PO}_4 + 3 \text{HCl}
 \]

Lze ji též připravit vytečením z jejích soli – fosforitanů.

Je stálá i ve formě chemického individua jako bílá hygroskopická látku. Kyselina i její soli mají silně redukční účinky. Fosforitany mnohých přechodných kovů jsou ve vodě nerozpustné.

Reakcii kyseliny fosforitové s halogenidy fosforitovými, např.

\[
5 \text{H}_2 \text{PO}_3^- + \text{PCl}_3 = 3 \text{H}_2 \text{P}_2 \text{O}_5 + 3 \text{HCl}
\]

lze připravit kyselinou difosforitou. K tvorbě soli kyseliny difosforité vede dehydratace Na\(\text{H}_2 \text{PO}_3 \).

- **Kyselina tetrahydrogendifosforitá a fosforičitany**

 Kyselina tetrahydrogendifosforitá je čtyřčetná sladší kyselina. Je stálá, oxiduje se jen velmi nečetně.

 Vzniká vedle dalších sloučenin při samoreduktivní oxidační bílého fosforu na všeho vodním plynu. Může se též připravit (ve formě soli) oxidaci elementárního fosforu chloritanem sodným nebo chloritanem vápenatým ve vodném roztoku:

\[
P_4 + 4 \text{Ca(ClO)}_2 + 8 \text{H}_2 \text{O} = 2 \text{Ca}_3 \text{P}_2 \text{O}_8 + 2 \text{H}_2 \text{O} + 8 \text{HCl}
\]

366
popt. i jinými cestami. Kyselou hydrolyzou kyseliny difosforitě se štěpí vazba P—P v její molekule a tvoří se kyselina fosforečná a fosforitá:

\[
\begin{align*}
\text{HOPO}_4^- & + \text{OH}^- \rightarrow \text{HOPO}_3^- + \text{H}_2\text{O} \\
\text{HOPO}_4^- & + \text{H}_2\text{O} \rightarrow \text{HOPO}_3^- + \text{OH}^-
\end{align*}
\]

● Kyseliny fosforečné a jejich soli

Reakcí P₃O₁₀ s stechiometrickým množstvím vody (ale též dehydratací kyseliny trihydrogen fosforečné) vzniká oligomerní kyselina hydrogenfosforečná ([HPO₃]₃). Tato látku je pravděpodobně z převážné části tvořena trimerními a tetramerními molekulami ([HPO₃]₄ a [HPO₃]₅) s cyklickou strukturou nebo strukturou lineární (tab. 18-6).

Technicky významné jsou sodné soli této kyseliny, běžně existují v jisté výšším polymeračním stupni (n = 20 až 500). Tyto látky mají charakter skel, jsou však rozpustné ve vodě a vysokomolekulární polymerové anionty jsou schopné poutat chelatovou vazbou kationty některých kovů. Vznikající sloučeniny mají kolloidní povahu. Proto se polymerní fosforečenany (tzv. metafosforečnany) používají při úpravě vody (k jejímu změkčování), k rozpotržení kotelního kamene, korozním úsad apod.

Hydratace oligomerní kyseliny hydrogenfosforečné vede k tvorbě monomerní kyseliny trihydrogenfosforečné:

\[(\text{HPO}_3)_n + n\text{H}_2\text{O} = n\text{H}_3\text{PO}_4\]

Tuto kyselinu lze též připravit oxidací červeného fosforu kyselinou dusičnou:

\[\text{P} + 5\text{HNO}_3 = \text{H}_3\text{PO}_4 + 5\text{NO}_2 + \text{H}_2\text{O}\]

H₃PO₄ je středně silná kyselina, velice stále. Snadno tvoří soli a estery, ale jinak je nereaktivní a nemá oxidativní účinky. Koordinace atomů P čtyřmi atomy O je přibližně tetraedrická.

Je to trojšťová kyselina, vytvárající tři řady soli. Soli vzniklé úplnou neutralizací kyseliny — fosforečenany (anion PO₄³⁻) jsou většinou málo rozpustné. Hydrogenfosforečnany ([HPO₃]⁻) a dihydrogenfosforečnany ([H₂PO₄]⁻) jsou naopak rozpustnější.

Fosforečenany jsou velmi důležitá průmyslová hnojiva, zejména rozpustné fosforečenany. Připrava některých fosforečených hnojiv spočívá v převzetí nerozpustných fosforečenanut (jaké se těží z přírodních zdrojů) na fosforečenany rozpustnější:

\[\text{Ca}_2(\text{PO}_4)_2 + 2\text{H}_2\text{SO}_4 \rightarrow \text{Ca}(\text{H}_2\text{PO}_4)_2 + 2\text{CaSO}_4\]

Vzniklá kyselina trihydrogenfosforečná se uplatňuje též v některých anorganických technologiích, je součástí oderezovacích směsí, lepidel apod.

● Některé deriváty kyselín fosforu

Stejně jako je tomu u kyselin síry, dusíku a některých dalších prvků, existují i u kyselin fosforu — především u kyseliny trihydrogenfosforečné — deriváty, které formálně vznikají tak, že její skupiny OH⁻ nebo O²⁻ se nahrazují skupinami NH₄⁺, NH₃⁻, N²⁻, S²⁻, O₂⁻ a Y⁻ (Y = F, Cl, Br, I), popř. i některými dalšími. Vznikají tak amidy, imidy či nitridy fosforečných kyselin, jejich thiocididy, peroxyokyseliny nebo halogenokyseliny. Některé z těchto látek nalezly významné použití v chemické praxi. K nejdejší příkladu patří
a) estery kyselin fluorofořečných, jež jsou látkami biologicky velmi aktivními; kyseliny fluorofořečné vznikají např. reakcemi typu
\[\text{PO}_4^{2-} + 6 \text{HF} = 2 \text{HPO}_4^{2-} + 2 \text{H}_2\text{PO}_3\text{F} \]
b) fluorofořečný některých kovů (s anionty PF_6^-, PO_4^{3-} aj.), jež jsou ve velmi čisté formě po aktivaci stopami některých kovů významnými luminiscenčními materiály, vznikají např. reakcí chloridu fosforečného s fluoridy kovů:
\[\text{POCl}_3 + 6 \text{Cl}^- = \text{PF}_6^- + 5 \text{Cl}_2 \]
c) halogenid-oxidu fosforečné POY_3 (Y = F, Cl, Br), uplatňující se v organické syntéze jako halogenážní nebo kondenzační činidlo; vznikají opatrnou hydrolyzou halogenidů fosforečných podle rovnice
\[\text{POCl}_3 + \text{H}_2\text{O} = \text{POCl}_2 + 2 \text{HCl} \]
d) heteropolyfosforečné kyseliny a jejich soli, jež mají uplatnění především v analytické chemii. K jejich vzniku vedou kondenzace v systémech obsahujících ve vodním roztoku fosforečné a některé další anionty schopné tohoto děje:
\[\text{HPO}_4^{2-} + 12 \text{MoO}_4^{2-} + 23 \text{H}^+ = \left[\text{P(Mo}_6\text{O}_{36})_4\right]^{3-} + 12 \text{H}_2\text{O} \]

18.7 VÝROBA A POUŽITÍ TECHNICKÝCH VÝZNÁMNÝCH SLOUČENIN DUSÍKU

K technickým významným sloučeninám dusíku patří kyselina dusičná, amonik, dusičnan, dusícyan, některé oxidy dusíku a další látky uvedené v přehledné schématu na obr. 18-2. Významně jsou též NH_3NO_3, (NH_3)_2SO_4 a NaNO_3 jako složky průmyslově vyráběných hnojiv.

- **Výroba amoniku**

Převážná část amoniku se vyrábí katalyzovanou tlakovou syntézou z prvků:
\[\text{N}_2(g) + 3 \text{H}_2(g) = 2 \text{NH}_3(g) \]
Reakce je exothermická a probíhá s objemovou kontrakcí. Její rovnovesí se výrazně posouvá doprava zvýšením tlaku a snížením teploty. Při výrobě se proto pracuje v podstudu za těžko podmíněn, aby však proces probíhal dostatečnou rychlosti, je nutné udržovat teplotu kolem 450°C. Katalyzátorem je elementární železo (modifikace γ) aktivované přítomností Fe_2O_3, Al_2O_3, K_2O a CaO. Dusík pro syntézu se získává frakční destilací zkapselněného vzduchu (str. 278), vodík nejčastěji z vodního plynu (str. 265). Méně významným způsobem výroby amoniku je jeho uvolňování z čepkových vod (koksárenských a plynárenských) účinkem Ca(OH)_2 nebo jiné silné zásady:
\[2 \text{NH}_4^+ + \text{Ca(OH)}_2 = \text{Ca}^{2+} + 2 \text{NH}_3 + 2 \text{H}_2\text{O} \]
Amonik se buď zkapalňuje a přechovává se v ocelových tlakových nádobách, nebo se rozpouští ve vodě za vzniku roztoku "hydroxidu amonného" (str. 350).

Z amoniku se vyrábí HNO_3. Další použití má při výrobě amonických solí (hnojiva) a je též výchozí látkou pro výrobu různých jiných sloučení dusíku. Mimoto slouží jako odladké kapalina.
Většina amoniaku spotřebuje organická syntéza (neutralizace, výroba močoviny, aminoplastů aj.) i metalurgie (nitridace kovů). Kapalný amoníak se užívá i jako hnojivo.

- **Výroba kyselin dusičných**

 Dnes je již prakticky jediným zdrojem kyselin dusičných výrobní proces, při němž se plynový amoniak katalyticky spaluje ve směsi se vzduchem na oxid dusatý:

 \[
 4 \text{NH}_3(g) + 5 \text{O}_2(g) = 6 \text{H}_2\text{O}(g) + 4 \text{NO}(g)
 \]

 Katalyzátorem jsou slitiny Pt-Rh a Pt-Pd. Pracuje se při teplotě asi 900 °C a vzniká plynná reakce směs se musí rychle chladit, aby nedocházelo k rozpadu NO na dusík a kyslík. Vzniklý NO se pak samovolně oxiduje dalším vzduchem na N\textsubscript{2}O\textsubscript{4}

 \[
 2 \text{NO} + \text{O}_2 = \text{N}_2\text{O}_4
 \]

 který reaguje s vodou:

 \[
 \text{N}_2\text{O}_4 + \text{H}_2\text{O} = \text{HNO}_3 + \text{HNO}_2
 \]

 Vzniklá nežádoucí kyselina dusitá se za podmínek výroby rozkládá:

 \[
 3 \text{HNO}_2 = \text{HNO}_3 + 2 \text{NO} + \text{H}_2\text{O}
 \]

 Uvolňující se NO je recyklován a znovu oxidován na N\textsubscript{2}O\textsubscript{4}.

 Jednotlivé způsoby výroby HNO\textsubscript{3} se liší v konkrétním postupu použitím při absorpcí oxidů dusíku ve vodě. Uvedeným způsobem se produkují roztoky HNO\textsubscript{3} o koncentraci 50 až 60%. Ten
může být dále zahuštěn destilací na 68,4% ni azeotropickou směs. Dýma má kyselina dusičná (asi 98% ni) se obvykle připravuje tak, že se kapalný N₂O₄ za přítomnosti O₂ a pod tlakem rozpouští v horké zlédné kyseliny dusičné.

Výroba HNO₃ jejím uvolněním z chlíského ledku ztratila již původní význam a těměř se neužívá. Právě tak se upustilo od pokusů o zavedení výroby HNO₃ založené na přípravě oxidů dusíku ze vzduchu přímo reakcí:

\[
N₂ + O₂ = 2 \text{NO}
\]

Reakci lze v omezené míře uskutečnit tím, že se vzduch vede elektrickým obloukem a reakční sněs se extrémně rychle ochlazuje. Proces je mimořádně náročný na spotřebu elektrické energie, a v důsledku toho neekonomický.

Kyselina dusičná je jednou ze základních chemikálií v chemickém průmyslu. Uplatňuje se v řadě velkou kapacitních technologií anorganických (výroba hnojiv, kyseliny sírové, kyseliny fosforečné aj.) i organicckých (vybušniny, plasty, lečiva, barviva, láky atd.). Využívá se především její schopnost tvořit soli, oxidovat a nitrovat.

- **Výroba dusičnanů**

Ve velkém se vyrábí NH₄NO₃, NaNO₃ a Ca(NO₃)₂.

Dusičnan amonij NH₄NO₃ se vyrábí prostou neutralizací kyseliny dusičné amoniakem. Je významným průmyslovým hnojivem. Používá se též jako bezpečnostní thrávina. Uplatňuje má i v anorganické technologii (výroba N₂O aj.).

Dusičnan sodný NaNO₃ se vyrábí neutralizací zbytkových nitrosních plynů při výrobě HNO₃ nebo směsi oxidů dusíku uvolněné při oxidaci a nitrácím působením HNO₃. K neutralizaci se používá roztok uhličitanu sodného:

\[
2 \text{Na}_2 \text{CO}_3 + 3 \text{N}_2 \text{O}_4 = 4 \text{NaNO}_3 + 2 \text{NO} + 2 \text{CO}_2
\]

Dusičnan vápenatý Ca(NO₃)₂ vzniká při výrobě HNO₃ absorpcí nitrosních plynů v suspenzi Ca(OH)₃, popř. se vyrábí rozpouštěním oxidu vápenatého v kyselině dusičné.

NaNO₃ i Ca(NO₃)₂ jsou významná dusičkatá hnojiva.

- **Výroba oxidů dusíku**

Významné oxidů dusíku jsou NO, N₂O₄ a N₂O. Prvé dva se získávají katalytickým spalováním amoniu při výrobě HNO₃ (str. 369). Jejich směs vzniká při oxidaci a nitrácím působením HNO₃ na některé látky. Jsou významným meziproduktem při výrobě HNO₃ a slouží i jako katalyzátor ve výrobě H₂SO₄ nitrosním způsobem. N₂O₄ se používá jako oxidujícího komponenta raketových paliv. Oxid dusík je vyráběn tepelným rozkladem NH₄NO₃. Užívá se zejména jako anestetikum (říjní plyn), dále v anorganické syntéze (výroba Na₂O) a v potravinářství.

- **Výroba dusitanů**

Dusitany získáváme převážně redukci tavenin dusičnanů uhlíkem nebo olovcem:

\[
2 \text{NaNO}_3 + C = 2 \text{NaNO}_2 + \text{CO}_2
\]

V roztoku lze dusičnanu redukovat sodikovým nebo zinkovým amalgámem:

\[
\text{ZnHg} + \text{NO}_3^- + \text{H}_2\text{O} = \text{Zn}^{2+} + \text{NO}_2^- + 2 \text{OH}^- + \times \text{Hg}
\]

Dusitany mají velký význam v organiccké syntéze (výroba azobarviv, lečiv aj.), v textilním průmyslu a při některých anorganických syntézech.
Výroba dalších sloučenin dusíku

Hydrazin \(N_2H_4 \) se vyrábí oxidací amoniaku chloranem sodným. Chemismus tohoto postupu je již uvěděn (str. 351). Mimoto se dnes hydrazin získává převážně reakcí chloru a amoniaku v prosředí kapalných ketonů.

\[
R - C = O + 4 NH_3 + Cl_2 \rightarrow R - C = NH + 2 NH_4C1 + H_2O
\]

Vzniklý substituovaný diaziridin se hydrolyzuje převádí na výchozí keton a hydrazin:

\[
R - C - NH + H_2O = R - C = O + NH_2\overset{NH_2}
\]

Hydrazin má technické použití jako výrazně redukční činidlo, uplatňuje se ve farmaceutickém a barvířském průmyslu a při výrobě plastů a výbušnin. Význam má i jako raketové palivo.

Hydroxylamin \(NH_2OH \) se běžně připravuje katodickou redukcí roztoku \(HNO_3 \) ve zvednuté kyselině sírové. Lze jej získat i katalytickou redukcí oxidů dusíku v chlorovodíkovém roztoku plynovým vodíkem:

\[
2 NO_2 + 5 H_2 + 2 HCl \rightarrow 2 NH_2OH + 2 H_2O
\]

Nejvíce množství \(NH_2OH \) se spotřebuje při výrobě polyamidů; mimoto se hydroxylamin užívá též jako redukční činidlo, dle při vybarování tkanin apod.

Amid sodný \(NaNH_2 \) se vyrábí reakcí plynového amoniaku s rozpuštěným sodíkem (str. 351). Odolně se připravují amidy dalších alkalických kovů. Upatření nalezi především v organické syntéze a při výrobě kyanidu sodného.

18.8 VÝROBA A POÚŽITÍ TECHNICKÝ VÝZNAMNÝCH SLOUČENIN FOSFORU

Přírodním zdrojem fosforu a jeho sloučenin jsou téměř výhradně apatity. Zpracovávají se na elementární fosfor redukcí uhličtem v elektrické peci (str. 279). Mimoto lze přímo rozkládat přírodní fosforečnany účinkem \(H_2SO_4 \) za vzniku technické kyseliny fosforečné nebo fosforečných hnojiv.

Elementární fosfor má přímé použití především v hutním průmyslu, při výrobě zápalek a těž v organické syntéze. Je meziproduktem při připravě \(P_4O_{10} \) při výrobě čisté \(H_3PO_4 \) a některých dalších sloučenin. Přehled technických významných pochodů a technologií sloučenin fosforu podává schéma na obr. 18.3.

- Výroba oxidu fosforečného

\(P_4O_{10} \) vzniká a vyrábí se spalováním bílého fosforu v nadbyteku vzduchu:

\[
P_4 + 5 O_2 = P_4O_{10}
\]

Je meziproduktem při výrobě \(H_3PO_4 \), fosforečnanů a \(POCl_3 \). Pro svou extrémně velkou afinitu k vodě se používá k osušení plynů nebo tuhé látě. Upatřuje se též při výrobě organických derivátů kyseliny fosforečné a v dalších organických technologiích.
Obr. 18-3. Hlavní cesty průmyslové výroby fosforu a jeho sloučenin

- **Výroba PCl₃, PCl₅, POCl₃ a P₄S₁₀**

 Všechny tyto sloučeniny se vyrábí přímo syntézou z prvků, nejčastěji za použití červeného fosforu. Pouze POCl₃ vzniká buď reakcí PCl₅ s ozonem

 \[\text{PCl}_3 + O_3 = \text{POCl}_3 + O_2 \]

 nebo též reakcí

 \[\text{P}_4\text{O}_{10} + 6 \text{PCl}_3 = 10 \text{POCl}_3 \]

 PCl₅, PCl₃ a POCl₃ jsou významná chlorální činidla, uplatňují se v organické syntéze a v průmyslu barvírů. P₄S₁₀ je využíván jako výchozí látky při syntéze řady insekticidů, fungicidů a speciálních maziv.

- **Výroba fosforanů**

 Je založena na disproportičním bílého fosforu v roztocích hydroxidů alkalických kovů (str. 358). Redukčních vlastností fosforanů využívá anorganická i organická syntéza. Fosforany jsou též součástí elektrolytických lázní, sloužících k bezproudovému pokovování součástek a výrobní (elektrotechnický průmysl, výroba bižutérie).

- **Výroba fosfurečnanů**

 Fosfurečnány se nejčastěji vyrábí neutralizací kyseliny fosforečné H₃PO₄ oxidy, hydroxidy nebo uhlíčené kovů. Vzniklé fosfurečnány obsahují monomerní anionty. Termické zpracování např. hydrogenfosfurečnanů vede ke vzniku kondenzovaných fosfurečnanů s polyjedernými anionty:

 \[\text{NaH}_3\text{PO}_4 + 2 \text{Na}_2\text{HPO}_4 = \text{Na}_3\text{P}_2\text{O}_{10} + 2 \text{H}_2\text{O} \]

 \[2 \text{NaH}_3\text{PO}_4, \text{H}_2\text{O} = \text{Na}_2\text{H}_3\text{P}_2\text{O}_7 + 3 \text{H}_2\text{O} \]
Výroba fosforečných hnojiv

Fosforečná hnojiva se vyrábějí působením kyseliny sírové na apatit. Chemickou podstatou děje je převodíení nerozpustného fosforečnanu (anion HPO$_4^{2-}$) na hydrogenfosforečnan (anion H$_2$PO$_4$) nebo volnou kyselinou fosforečnou. Tyto více či méně rozpustné látky jsou již asimilovatelné rostlinami. Stejného efektu lze dosáhnout, působí-li se na apatit technickou kyselinou fosforečnou, kyselinou dusičnanou, kyselinou chlorovodíkovou nebo i vodním roztokem oxidu siřičitého. Mimo to lze apatit (zejména fluorapatit) zpracovávat účinkem vodní páry za vysokých teplot, popř. působením par P$_4$O$_10$ na tzv. termické fosforečnany a kondenzované fosforečnany, jež sice nejsou rozpustné, ale přesto je rostliny dovedou asimilovat při zvolna probíhající hydrolyze v půdách vhodného složení. Též řada průmyslových odpadních látek s obsahem fosforu má uplatnění jako fosforečná hnojiva.

Výroba kyselin fosforečných

Kyselina fosforečná se v zásadě vyrábí dvojím způsobem.

Takzvaná „termická“ kyselina fosforečná se získává tak, že se bílý fosfor spaluje v grafitové komoře a vzniklý oxid fosforečný se hydratuje vodou. Tato kyselina se vyznačuje poměrně velkou čistotou.

Naproti tomu tzv. „extrakční“ kyselina fosforečná je získávána přímo z přírodních fosforečnanů jejich rozkladem kyselinami (nejčastěji kyselinou sírovou, ale i kyselinou chlorovodíkovou nebo kyselinou dusičnou). Klidový děj výrobního procesu lze vyjádřit rovnicí

\[
\text{Ca}_4\text{(PO}_4\text{)}_3\text{F} + 5\text{H}_2\text{SO}_4 + 5n\text{H}_2\text{O} \rightarrow 3\text{H}_3\text{PO}_4 + 5\text{CaSO}_4.n\text{H}_2\text{O} + \text{HF}
\]

\[(n = 0, 0,5, 2)\]

Podle volby technologie vzniká buď bezvodý síran vápenatý, nebo hemihyrdat či dihydrát síranu vápenatého. Extrakční kyselina fosforečná obsahuje značné množství něčistot a pro náročnější použití se musí čistit.

Kyselina fosforečná má rozsáhlé uplatnění při povrchové úpravě kovů, jako složka odrezovacích lázní, v potravinářském průmyslu a v zemědělství, jako složka krmných směsí a zemědělské paky při výrobě fosforečných a vícevlakových tuhých i kapalných hnojiv. Dále se používá při výrobě technicky významných fosforečnanů, v organické syntéze (nejčastěji po převodě na oligomer) kyseliny fosforečné, v textilním, farmaceutickém a sklářském průmyslu a v keramice.
19 Uhlík a křemík

Uhlík \(C \) a křemík \(Si \) jsou první dva prvky skupiny 4A periodického systému. Jejich atomy mají elektronovou konfiguraci valenční sféry \(ns^2np^2 \) \((n = 2, 3) \).

Uhlík je ví ce než typické chemické vlastnosti nekovů (velkou elektronegativitu, kyselost oxidu, neschopnost tvorit kovovou vazbu). Naproti tomu u křemíku jsou již nekovové vlastnosti poněkud potlačeny. Často se tento prvek označuje za polokov.

Mezi chemii uhlíku a křemíku jsou ještě další výrazné rozdíly. Zatímco pro uhlík je příznácná tvorba velmi pevných homonukleárních vazeb \(C = C \) a valná část jeho sloučenin obsahuje řetězce atomů uhlíku (organické sloučeniny), jsou obdobné vazby \(Si \) – \(Si \) mnohem labilnější a pro křemík netypické.

Další rozdíl je v tom, že uhlík ochotně vytváří pomocí svých orbitalů \(2p \) pevné stejnajaderné i různajaderné vazby \(\pi \) (lokalizované i delokalizované), kdežto na atomech křemíku je obdobná interakce za účastí orbitalů \(3p \) energeticky nevýhodná a nedochází k ní. Mimo toho mohou atomy křemíku zapojit do tvorby vazeb \(\pi \) se své orbitaly \(3d \); vzniklé interakce \(\pi \) jsou však slabé. Orbitaly \(3d \) atomů křemíku se mohou těž přímo podílet na tvorbě vazeb typu \(\sigma \), takže atom křemíku může být až štěstivý (hybridizace \(SP^3D^2 \)). U atomů uhlíku obdobná možnost účasti orbitalů \(d \) na vazbách neexistuje, a uhlík je proto nejvíce čtyřvazý (hybridizace \(SP^3 \)).

19.1 Vazebné možnosti uhlíku a křemíku

Oba prvky stoječí zhruba uprostřed periodického systému prvků vykazují hodnoty elektronegativity \(\chi_C = 2,6; \chi_Si = 1,9 \) blízce aritmetickému průměru elektronegativity nejelektronegativnějšího a nejlepši elektronizovatelného prvku periodického systému. Od ostatních prvků mají proto uhlík i křemík ve stupnicí elektronegativity jen malý odstup a vytvářejí s nimi vazby převážně kovalentní. Pouze u vazeb \(Si-F \), \(Si-Cl \), \(Si-O \) a v karbidech elektronegativních kovů lze předpokládat výraznější uplatnění elektrostatických iontových sil. Chemie obou prvků je tedy převážně chemického kovalentního sloučení.

Z těchto důvodů je představa o přesunutí elektronů a o vzniku poměrně stabilních elektrovaných konfigurací, uváděna na obr. 19-1, velice hrbým čidloodušením skutečné situace. Nicméně podává přehled o stabilních oxidálních stavách obou prvků, a lze ji proto k tomuto účelu využít.

\[
\begin{align*}
&\text{ns}^2\text{np}^0 & \text{ns}^2\text{np}^6 & \text{ns}^2\text{np}^4 & \text{ns}^2\text{np}^2 \\
& C^0 & C^2 & C^4 & C^6
\end{align*}
\]

| Obr. 19-1. | Schematické vyjádření oxidálních stavů a elektronových konfigurací, v nichž se formálně vyskytují atomy \(C \) a \(Si \) | 374 |
Uvedené oxidační stavy přisuzujeme atomům uhliku a křemiku v jejich jednoduchých anorganických sloučeninách. Zcela stejný a běžný u obou prvků je oxidační stav IV. U sloučení s vazbami C−C (tedy u naprosté většiny sloučenin organických) poskytuje formální výpočet oxidačních stavů jiná, mnohdy i zlomková čísla. V úvahách o organických sloučeninách se proto užívá představy oxidačního čísla pokud je možno vyhýbáme.

Obr. 19-2. Způsoby překryvu AO, tsn. AO uhliků s AO vazebných partnerů při tvorbě vazeb.

Způsoby překryvu AO a HAO uhliku s orbitály vazebných partnerů jsou znázorněny na obr. 19-2.

Při hybridizaci SP³ se atom C vůbec čtyřmi vazebnými partnery čtvrtičí tetraedricky orien-tovaných vazeb σ (obr. 19-2a). Hybridizace SP² vede k vytvoření planární trojúhelník trojice vazeb σ, zbylý orbital p, uhliku může vytvořit vazbu typu π (obr. 19-2b) nebo se může zapojit do delokalizované interakce π. Posléze hybridizace SP tvoří vždy dvojici prostorově opačně oriento-
vaných (lineárně uspořádaných) vazeb σ. Současně vznikající dvě vazby π pak mohou sněžovat
buď k jednomu z vazebních partnerů (celkový řád této vazby je 3, obr. 19-2c), nebo protisměrně
každá k jednomu z dvojice vazebních partnerů (každá z vazeb má celkový řád 2, obr. 19-2d). Prvé
ří popsané vazebné situace jsme poznali v předchozím výkladu tvorby vazeb v těchto sloučeních:

a) metanu a etanu (str. 106),
b) etanu (str. 108),
c) ethanu (str. 109).

Poslední způsob překrývání atomu C s vazebnými partnery (obr. 19-2d) se objevuje v molekule
oxidu uhličitého popsané elektronovým strukturním vzorcem

\[
\overset{-}{\text{C}}=\overset{-}{\text{C}}
\]

Je zajímavé, že ve všech uvedených vazebných situacích je celková vaznost atomu C (součet počtu
vazeb n a j) rovna 4.

V některých případech nemusí docházet k překrývání všech AO, resp. HAO atomu uhliku
s orbitály vazebních partnerů a tyto orbitály mohou být obsazeny nevazebnými elektronovými
páry. Takováto situace nastává např. v molekule CO (str. 96) nebo v iontech s ni izoelektronovými,
napr. CN⁻ nebo C₂⁻:

\[
\overset{-}{\text{C}}=\overset{-}{\text{C}} \quad - \quad \overset{-}{\text{C}}=\overset{-}{\text{C}} \quad \overset{-}{\text{C}}=\overset{-}{\text{C}}
\]

Vaznost atomů uhliku je v těchto částicích snížena a má hodnotu 3.

Atomy křemíku mohou při hybridizaci SP³ vystupovat jako čtyřvazný a stejně jako atomy
uhliku mohou vytvářet čtverec tetraedricky orientovaných vazeb σ. Příkladem jsou vazebné si-
tuace v halogenidech křemíčkových SiX₄ (X = halogen), v SiH₄, v aniontu SiO₂⁻ a v prostorových
mřížkách SiC, SiO₂, křemíččitanů aj. Přítom tetraedrický systém vazeb σ je v těchto částic (s vý-
jimkou SiH₄) vždy ve větši či menší míře provázen interakcí z orbitály vazebních partnerů s orbitály
3d středového atomu Si. Situace je po této stránce analogická situaci popsané na str. 291 při objas-
vání vazby v iontu ClO₄⁻ na str. 324 u iontu SO₄²⁻ a na str. 348 u dalšího izoelektronového iontu
PO₄³⁻. Hybridizace SP² a SP, vedoucí k vazebným situacím znázorněným na obr. 19-2b, c, d, jsou
pro křemík zeza netypické.

Jak jsme již uvedli, orbitály 3d křemíku mohou někdy přispět též i k tvorbě vazeb typu σ.
Stává se to u iontu [SiF₆]³⁻, ve kterém se do tvorby vazeb Si—I-F zapojí na atomu Si orbitály
3s, 3pₓ, 3pᵧ, 3p₂ a 3dₓ₋₋₋₋₋₋ (hybridizace SP₄D₂). Vzniká tak šestice oktaedricky orientovaných
vazeb σ a ion [SiF₆]³⁻ má strukturu

\[
\begin{array}{c}
\overset{-}{\text{F}} \\
\vert \\
\overset{-}{\text{F}} \\
\vert \\
\overset{-}{\text{F}} \\
\vert \\
\overset{-}{\text{F}} \\
\vert \\
\overset{-}{\text{F}} \\
\end{array}
\]

I při vazbě uhliku nebo křemíku s nejelektronegativnějšími prvky (vazby Si—I, Si—O,
Si—Cl) se kovalentnost těchto vazeb pohybuje kolem 50%. Při vazbě s méně elektronegativními
prvky je samozřejmě podíl kovalentnosti vazeb větší. Rozlišování kladných a záporných oxidačních
stawůh uhlíku i křemíku je za těchto okolností formální a využívá se zpravidla jen v nomenklaturní
oblasti.

376
19.2 CHEMICKÉ VLASTNOSTI UHLÍKU A KŘEMÍKU

Reaktivita elementárního uhlíku za laboratorní teploty je malá. Diamant a grafit jsou při normální teplotě stálé a s většinou jiných prvků nebo sloučenin neresaguji. Teprve vyvražňují zvýšené teploty (na 300 až 800 °C) vedou k oxiaci obou modifikací uhlíku silnými oxidacími činidlly (tavenými sílí disoxidem, elementární kyslík, fluor, chlor) nebo k reakci s jinými prvky (štěr, dusík aj.). Tavenina K₂Cr₂O₇ oxiduje elementární uhlík podle rovnice

\[2K_{2}Cr_{2}O_{7}(l) + 3Cl_{2}(g) = 2K_{2}CO_{3}(l) + 2Cr_{2}O_{3}(s) + CO_{2}(g) \]

V elementárním kyslíku grafit i diamant hoří:

\[Cl_{2}(s) + O_{2}(g) = CO_{2}(g) \]

Fluor poskytuje jako konečný produkt sloučeninu (CF₃)₃:

\[xC(s) + \frac{1}{2}F_{2}(g) = (CF_{2})_{x}(s) \]

Obdobnou reakci s chlorem vznikají zejména dva produkty – hexachlorethan C₆Cl₁₈ a hexachlorebenzen C₆Cl₁₂. Reakcí uhlíku s dusíkem se tvoří převážně díkyán (CN)₂, se sírou vzniká sulfid uhličitý CS₂. Na oxidy kovů působí uhlík zřetelně redukčně. Používá se proto k připravě kovů nebo jejich karbidů redukči příslušných oxidů:

\[2PbO + C = 2Pb + CO₂ \]
\[CaO + 3C = CaC₂ + CO \]

Grafické formy uhlíku s velkým povrchem, tzv. „aktivní uhlí“ (str. 280), vyžadující se dendritickou strukturou krystalů a přítomností velkého množství poruch krystalové hmoty, jsou obecně dále reaktivnější než kompaktní grafit nebo diamant. I když teploty poutají molekuly některých látek na svém členitém povrchu chemickými silami (tzv. chemisorpci). Tento důležitý oblast lokalizován na povrchu a do hloubky materiálu nezasahuje.

Chemie uhlíku a jeho sloučenin je jako celek neobyčejně rozmanitá. Sloučeniny uhlíku s vodíkem, kyslíkem a dalšími prvky, vyžadující se lineárně, větvované i cyklické řetězence atomů uhlíku (popř. atomů ostatních prvků), zkoumá organicální chemie.

Také křemík v elementárním stavu patří za běžného teplot (viz poznámku na str. 193) mezi málo reaktivní prvky. V kyselinách, s výjimkou kyselin fluorovodíkové, se nerozpouští. Je však rozpuštěn v roztocích sílén bazických hydroxidů:

\[Si + 2NaOH + H₂O = Na₂SiO₃ + 2H₂ \]

S většinou prvků reaguje křemík až za vysokých teplot za vzniku binárních sloučenin. Při teplotě nad 500 °C reaguje i s vodou:

\[Si + 2H₂O = SiO₂ + 2H₂ \]

Křemík má zřetelné redukční účinky a využívá se proto stejně jako uhlík k redukcí oxidů kovů na elementární kovy:

\[3BaO + Si = BaSiO₃ + 2Ba \]
\[3Mn₂O₇ + 4Si = 5Mn + 4MnSiO₃ \]
\[4Li₂O + 2Si + 2CaO = 8Li + 2CaSiO₃ \]

Chemie sloučenin křemíku je dosti pevná. Velmi rozmanitou strukturu mají přírodní i syntetické křemíčity.
19.3 BINÁRNÍ SLOUČENINY UHLÍKU

Mezi nejvýznamnější látky této skupiny patří sloučeniny uhlíku s vodíkem, karbidy kovů a polokovů, oxidy uhlíku, sloučeniny uhlíku s halogeny, šírou a dusíkem a dále též deriváty těchto binárních sloučenin (které však jsou látkami ternárními nebo i vyššími).

- **Sloučeniny uhlíku s vodíkem**

Sloučeniny uhlíku s vodíkem, tzv. uhlovodíky, tvoří rozsáhlou samostatnou říду sloučenin, vyzaňující se zřetelněm atomů uhlíku. Chemii uhlovodíků a jejich nejrůznějších derivátů se zabývá organická chemie. Uhlovodíky s dvojou a trojou vazbou mezi atomy C jsou často velmi reaktivní, stejně jako mnohé deriváty uhlovodíků, jež obsahují atomy dalších nekovových prvků. Naopak uhlovodíky bez násobných vazeb a bez heteroatomů jsou pozoruhodně stabilní a mělko reaktivní. Deriváty uhlovodíků obsahující atomy kovů (s vazbou uhlík—kov) se nazývají organokovové sloučeniny. Jejich chemie tvoří rozsáhlou oblast mezi chemií organickou a anorganickou.

Přírodním zdrojem většiny uhlovodíků a mnoha dalších organických látek je ropu, uhlí, zemní plyn a některé biologické materiály. Nejednodušší uhlovodíky se těž mohou získávat hydrolytickým rozkladem karbidů:

\[
\begin{align*}
\text{Al}_2\text{C}_3 + 12 \text{H}_2\text{O} & \rightarrow 2 \text{Al(OH)}_3 + 3 \text{CH}_4 \\
\text{Ca}_2\text{C}_2 + 2 \text{H}_2\text{O} & \rightarrow \text{Ca(OH)}_2 + \text{H}_2\text{C=CH}_2 \\
\text{Mg}_2\text{C}_3 + 4 \text{H}_2\text{O} & \rightarrow 2 \text{Mg(OH)}_2 + \text{H}_2\text{C=CH}_2
\end{align*}
\]

- **Karbidy**

Souhrnným názvem karbidy se označují sloučeniny uhlíku s elektropozitivními prvky, tj. s kovy a polokovy.

Všechny karbidy jsou látky netěkavé, za laboratorních podmínek existují pouze v tühém skupenství. Pro jejich klasifikaci má velký význam charakter vazby mezi uhlíkem a kovem a uspořádání zůčastněných atomů do míříky. Podle toho můžeme rozlišovat tyto typy karbidů:

1. Karbidy, v jejichž míříce se vyskytuje tzv. acetylidová skupina \(\text{C}_2^2^- \). Lze je považovat za soli acetylenu \(\text{C}_2\text{H}_2 \), a označují se proto často názvem acetylidy. Mají, zejména jde-li o sloučeniny elektropozitivních kovů (kovové skupiny 1A, 2A a 3A), výrazný iontový charakter. Jejich míříka je vystavena z kationtů kovů a aniontů \(\text{C}_2^2^- \), např. \(\text{CaC}_2 \) s elektronovým strukturním vzorcem \(\text{Ca}^{2+} \left[\text{C}==\text{C}\right]^2^- \).

Iontové acetylidy snadno hydrolyzují za uvolněním acetylenu:

\[
\left[\text{C}==\text{C}\right]^2^- + 2 \text{H}_2\text{O} \rightarrow \text{H}_2\text{C=CH}_2 + 2 \text{OH}^{-}
\]

Ostatní karbidy tohoto typu, např. \(\text{Cu}_2\text{C}_2, \text{Ag}_2\text{C}_2, \text{Zn}_2\text{C}_2 \) a \(\text{Hg}_2\text{C}_2 \), jsou kovalentní povahy, tj. vazba mezi kovem a skupinou \(\text{C}_2^2^- \) u nich již není iontová. Tyto karbidy nehydrolyzuji a některé z nich jsou explozivní. Acetylidy lze připravit buď reakcí kovu, popř. jeho oxidu s uhlíkem za vysokých teplot, nebo i reakcí oxidu kovu nebo elementárního kovu s acetylénem:

\[
2\text{Cu} + \text{C}_2\text{H}_2 \rightarrow \text{Cu}_2\text{C}_2 + \text{H}_2
\]

2. **Polymerní karbidy s tetraedrický koordinovaným atomem uhlíku** \(\text{CO}^4^- \). Lze je považovat (vyšloveně formálně) za soli methanu. Jsou výrazně kovalentní; střídající se atomy uhlíku a kovu vytvářejí prostorovou síť vazeb. Typické je např. uspořádání karbidu křemiku \(\text{SiC} \), které je v pod-
statě shodně s uspořádáním v mřížce diamantu, kde polovina atomů C je nahrazena atomy Si. Karbidy tohoto typu vytvářejí některé polokovy a malé elektropozitivní kovy.

Polymerní kovalentní karbydy jsou neobyčejně tvrdé, težkovatelné a malo reaktivní sloučeniny. Ty, u nichž přece jen v důsledku výraznějšího rozdílu elektronegativit je vazba kov—uhlík poněkud iontovější (např. Be₄C, Al₄C₃), jsou schopné reagovat s horkou vodou za hydrolytického uvolnění methanu:

\[
\text{Al}_4\text{C}_3 + 12 \text{H}_2\text{O} = 2 \text{Al}(ext{OH})_3 + 3 \text{CH}_4
\]

Polymerní karbydy je možno syntetizovat vysokoteplotním procesem z prvků nebo redukci oxidů kovů uhlíkem za obdobných podmínek.

Některé další karbydy se vlastnostmi a strukturou vymykají z uvedených tří skupin. Existují např. karbydy typu La₂C₄ s iontově kovalentní vazbou mezi iontem La⁺⁺ a kruhu C⁴⁻. Známý je těž třikartání dihydrokarbid Mg₂C₃, mající v podstatě iontovou strukturu s aniontem C⁴⁻:

\[
2 \text{Mg}^{2+} \left[\text{C≡C=\text{C}} \right]^{4-} + 4 \text{H}_2\text{O} = 4 \text{OH}^- + \text{HCC≡C=CH}_2
\]

Jeho hydrolyzou vzniká uhlovodík propin (methylacetylen):

\[
\left[\text{C≡C=\text{C}} \right]^{4-} + 4 \text{H}_2\text{O} = 4 \text{OH}^- + \text{HC≡C=CH}_2
\]

Obdobně, ale jistě rozdílnější řešené páry uspořádání atomů uhlíku nacházíme v některých karbido uhlíku, manganu a kovu v mědi. Jejich rozklady vodou nebo kyselinami za vzniklých teplotách vedou ke vzniku směsi vyšších uhlovodíků.

- **Oxidy uhlíku**

Kromě malé významného oligomerického kovalentního suboxidů uhlíku (např. C₂O₂, C₄O₃) existují dva běžné oxidy CO a CO₂.

Oxid uhelnatý CO je těžko zkapalnitelný plyn, tvořený molekulami CO. Vazba v této molekule je již podkopává strukturální schopnost (str. 96).

Oxid uhelnatý vzniká spalováním uhlíku za nedostatečného přístupu kyslíku (v duchu). Skutečný průběh reakce spočívá v tvorbě oxidu uhelnatého reakcí:

\[
\text{C}(s) + \text{O}_2(g) \rightarrow \text{CO}_2(g)
\]

Vzniklý CO₂ je při styku se zbytkem nezreagovaným uhlíkem hned redukován na CO:

\[
\text{C}(s) + \text{CO}_2(g) \rightarrow 2 \text{CO}(g)
\]

Nejlepší cestou k připravě CO v laboratoři je rozklad (dehydratace) mravení kyseliny HCOOH na koncentrovanou kyselinu sírovou:

\[
\text{HCOOH} + \text{H}_2\text{SO}_4 \rightarrow \text{CO} + \text{H}_2\text{O}^+ + \text{HSO}_4^-
\]

V soustavách C a O₂ obsahujících nadbytek uhlíku je při teplotách nad 1000°C posunuta rovnováha uvedených reakcí výrazně ve prospěch tvorby oxidu uhelnatého. Při nižších teplotách.
vzniká směs obou plynů, při 400 °C je v rovnovážném stavu reakce přítomn pouze oxid uhličitý (tzw. Boudouardova rovnováha).

Oxid uhelnatý je reaktivní látka. Je silným redukovaním. Se vzdušným kyslíkem se sloučuje na CO₂. Je málo rozpustný ve vodě, ve vodném roztoku nepodléhá acidobazické reakci. Při reakci s roztoky silné bazických hydroxidů poskytuje za zvýšené teploty mravenčený:

\[\text{CO} + \text{OH}^- = \text{HCOO}^- \]

Pozoruhodné sloučeniny – tzw. karbonyly – tvoří oxid uhelnatý s přechodnými kovy. Jsou to sloučeniny obecného vzorce [M₅(CO)₉] (M je atom kovu), např. [Fe(CO)₅] nebo [Mn₅(CO)₁₀] se strukturami

Tyto technicky významné sloučeniny (používané při přípravě a rafinaci kovů a při speciálních syntézách) vznikají přímým sloučováním elementárního kovu s oxidem uhelnatým

\[\text{Ni} + 4 \text{CO} = [\text{Ni(CO)}₅] \]

nebo oxidů (sulfidů, halogenidů) kovů s oxidem uhelnatým

\[\text{OsO}_₄ + 9 \text{CO} = [\text{Os(CO)}₅] + 4 \text{CO}_₂ \]

popř. jinými reakcemi.

Oxid uhličitý CO₂ je plynová látka, kterou lze poměrně snadno zkapalnit, popř. převést do tuhého stavu. Má nízkomolekulární strukturu s jednoduchými lineárními molekulami (str. 376).

Jak již bylo uvedeno, vzniká CO₂ spalováním elementárního uhlika a těž rozkladem uhličitářů, a to buď termicky

\[\text{CaCO}_₃ = \text{CaO} + \text{CO}_₂ \]

nebo tak, že se z uhličitánu vytváří silně jiho minerální kyselinou nestálá kyselina uhličitá, která se samovolně rozkládá na vodu a oxid uhličitý:

\[\text{CaCO}_₃ + 2 \text{HCl} = \text{CaCl}_₂ + \text{H}_₂\text{O} + \text{CO}_₂ \]

Oxid uhličitý je z hlediska dispozice k oxidně-redukčním změnám látka velmi stálá. Většinou není redukční vlastnosti. Se silnými redukovadly reaguje až při zvýšené teplotě za vzniku CO nebo elementárního uhlika:

\[\text{CO}_₂(g) + 4 \text{Na(l)} = 2 \text{Na}_₂\text{O(s)} + \text{C(s)} \]

Acidobazický má CO₂ vyhraněný charakter. Je kyselý. Ve vodě se výborně rozpouští, hydratuje se a v rovnovážném ději poskytuje zředěný roztok kyseliny uhličitě.
- Sloučeniny uhlíku s halogeny

Valnou část organických sloučenin lze nahrazovat jednoho nebo více atomů vodíku halogenem, adičí molekul halogenů na násobné vazby i jinými postupy převést na halogenderiváty. Těmito významnými sloučeninami se zabývá organická chemie.

Do třídy anorganických sloučenin uhlíku a halogenů lze snad zařadit pouze intermedieričně se tvořící halogenidy uholnité CF₂, CCl₂, CBr₂, CI₂ (popř. smíšené sloučeniny CFCI, CCBr₂ a jí), ale zejména velmi stálé halogenidy uhlíčitée CF₄, CCl₄, CBr₄ a CI₄ (i ze zde existují smíšené sloučeniny CF₃Cl, CF₂Cl₂, CFCI₃, CBr₂Cl₂, CBrF₂, CBr₂Cl₂, CF₃I a řada dalších).

Halogenidy uhlíčité se mohou připravovat přímou halogenací CO, CO₂, CS₂ a CH₄ elementárními halogeny podle rovnice:

\[
\begin{align*}
CO₂ + 2F₂ &= CF₄ + O₂ \\
CS₂ + 3Cl₂ &= CCl₄ + S₂Cl₂ \\
CH₄ + 4Br₂ &= CBr₄ + 4HBr
\end{align*}
\]

popř. sloučeninami přenášejícími halogen (halogenačním činidly):

\[
\begin{align*}
CO + 2SF₄ &= CF₄ + SOF₂ + SF₂ \\
3CCL₄ + 4AlBr₃ &= 3CBr₄ + 4AlCl₃ \\
CCl₄ + 4H₂I &= ClI₄ + 4C₂H₄Cl
\end{align*}
\]

Bromid uhlíčité, stejně jako málo stálý jodid uhlíčité, se nejlépe získává výměnou halogenů v CCl₄:

\[
\begin{align*}
3CCl₄ + 4AlBr₃ &= 3CBr₄ + 4AlCl₃ \\
CCl₄ + 4H₂I &= ClI₄ + 4C₂H₄Cl
\end{align*}
\]

- Sloučeniny uhlíku se sírou

Meritě binární látky tohoto druhu lze řadit vedle málo významných a více či méně nestálých sloučenin CS, C₃S₂ a (CS)ₙ, pouze jedinou stálou a důležitou sloučeninu – sulfid uhlíčité (sírouhlík) CS₂. Molekuly této těkavé kapalné látky jsou z vazebného hlediska vystaveny analogicky jako molekuly CO₂. Sulfid uhlíčité se vyrábí reakcí grafického uhlíku s párami síry při 900 °C

\[
\begin{align*}
C(s) + S₂(g) &= CS₂(g) \\
\text{nebo } i \text{ reakci metanu se sírou za přítomnosti SiO₂ nebo Al₂O₃ při teplotě poněkud nižší: }
\end{align*}
\]

\[
\begin{align*}
\text{CH₄}(g) + \frac{4}{n}S₂(g) &= \text{CS₂}(g) + 2\text{H₂S(g)} & (n = 2 \text{až } 4)
\end{align*}
\]

CS₂ je výborné rozpouštědlo. Rozpouští především nepolární organické látky. Nemá výrazně oxidacně-redukční ani acidocí kyselostní. Je však velmi horlavý a spaluje se podle rovnice

\[
\begin{align*}
\text{CS}_₂ + 3\text{O}_₂ &= \text{CO}_₂ + 2\text{SO}_₂
\end{align*}
\]

Jeho páry ve směsi se vzduchem shoří explozivně. Je jedovatý.

Existuje řada terárních a výskytu sloučenin, v nichž se vyskytují vazby C—S. Většina jich však patří k organickým látkám.

381
Sloučeniny uhliku s dusíkem

Opravdu binární sloučeninou uhliku s dusíkem je pouze tzv. dikyan (CN)₂. Jeho lineární molekulární struktura

\[\text{[N\equiv C-C\equiv Ni]} \]

Násobné vazby jsou delokalizovány po celé molekule, čád vazby C—C je výrazně vyšší než 1. Dikyan je jedovatá plynná látku, termicky stabl, bez výraznějších oxidobázických a oxidačně-redukčních vlastností. Lee jej připravit termickým rozkladem některých kyanidů (kyanidů těžkých kovů):

\[2 \text{AgCN} \rightarrow 2 \text{Ag} + (\text{CN})_2 \]

Kyanidy měďnatý Cu(CN)₂, připravený z roztoku srážením soli měďnaté kyanidem alkalického kovu, se vnitřní oxidačně-redukční změnou rozkládá na kyanid měďný CuCN a dikyan již za laboratorní teploty

\[2 \text{CuCN} \rightarrow 2 \text{CuCN} + (\text{CN})_2 \]

Velmi významnými sloučeninami uhliku s dusíkem jsou ternární a kvartérní látky – kyanovodík HCN, kyanidy, kyselina kyanatá HNCO, kyanatany a thiokyanatany těchto látek.

Kyanovodík HCN je velmi těkavá a prudce jedovatá kapalina tvořená molekuly těto struktury:

\[\text{H—C≡Ni} \]

Připraví se pásobením kyseliny sírové na kyanidy nebo kyanokomplexy kovů,

\[\text{NaCN} + \text{H}_2\text{SO}_4 = \text{HCN} + \text{NaHSO}_4 \]

\[K_2[\text{Fe(CN)}_6] + 3 \text{H}_2\text{SO}_4 = 6 \text{HCN} + 2 \text{K}_2\text{SO}_4 + \text{FeSO}_4 \]

popř. reakcí AgCN s H₂S:

\[2 \text{AgCN} + \text{H}_2\text{S} = \text{Ag}_2\text{S} + 2 \text{HCN} \]

HCN je velmi slabá kyselina. Rozpouští se výborně ve vodě. Soli kyanovodíku se nazývají kyanidy. Svými vlastnostmi se kyanidový anion \(\text{CN}^- \) velmi blíží halogenidovým iontům. Kyanidy se podobají halogenidům i svou rozpustností. Ve vodném roztoku silně hydrolyzují (sr. 259). Některé kyanidy jsou výrazně kovalentní sloučeniny, kyanidy elektropozitivních kovů jsou převážně iontové. Výraznou vlastností kyanidového iontu izoelektronového s CO je jeho schopnost vystupovat jako ligand při tvorbě koordinačních sloučenin:

\[\text{Ni}^{2+} + 4 \text{CN}^- = \text{[Ni(CN)_4]}^{2-} \]

\[\text{Fe}^{3+} + 6 \text{CN}^- = \text{[Fe(CN)_6]}^{3-} \]

Kyselina kyanatá HNCO je velice těkavá kapalina se strukturou vyjádřenou elektronovým vzorcem

\[\text{H—N=C=O} \]

Lze ji připravit z jejich solí – kyanatanů – vytištěním silnější kyselinou (HCl). Kyanatany se získávají opatrnou oxidací kyanidů, nejlepší oxidem olova v tavenině:

\[\text{KCN} + \text{PbO} = \text{KNO} + \text{Pb} \]

382
Zvolná se tvoří též ve zvlhčených kyanidích oxidací vzdutým kyslíkem. Kyanatany ve vodě hydrolyzují na volnou kyselinu, která však podléhá dalšímu pomalemu rozkladu na amoniak a močovinu.

Existují též sírny analogie kyseliny kyanatů a kyanatů – rhodanovodík HSCN a jeho soli thiokyanatany (rhodanidy). Thiokyanatany vznikají oxidací kyanidů sirou (v tavenině):

\[\text{KCN} + S \rightarrow \text{KSCN} \]

Thiokyanatový ion má strukturu

\[[\text{S}≡\text{C}≡\text{N}]^- \]

Je schopen vystupovat jako ligand v koordinačních sloučeninách, např.

\[[\text{Fe(H}_2\text{O)}_6]^{3+} + 2\text{SCN}^- \rightarrow [\text{Fe(H}_2\text{O)}_4(\text{SCN})_2]^{3+} + 2\text{H}_2\text{O} \]

Uvedené reakce se užívá k důkazu přítomnosti ionů Fe^{3+}.

19.4 BINÁRNÍ SLOUČENINY KŘEMÍKU

Mezi tyto látky se řadí sloučeniny křemíku s vodíkem, kovy, kyslíkem, halogeny, sirou, dusíkem a dalšími prvky.

- **Silany**

Silany jsou velmi reaktivní sloučeniny křemíku s vodíkem. Mají obecný vzorec SiH_{2n+2} a jsou křemíkovou analogií alifatických nasyčených uhlovodíků. Elektronové strukturní vzorce prvých čtyř členů silanové řady

\[
\begin{align*}
\text{H} & \quad \text{H} & \quad \text{H} & \quad \text{H} \\
\text{H} & \quad \text{Si} & \quad \text{Si} & \quad \text{H} \\
\text{H} & \quad \text{H}
\end{align*}
\]

ukazují, že na atomech Si se uplatňuje hybridizace SP^{3}. Všechny atomy Si jsou koordinovány tetraedricky (stejně jako u uhlovodíků). Vazba Si—H je daleko méně pevná než vazba C—H, proto jsou silany mnohem nestáléji než nasyčené uhlovodíky.

Silany se připravují reakcí silicidu hořčatého s kyselinou chlorovodíkovou:

\[\text{Mg}_2\text{Si} + 4\text{HCl} \rightarrow \text{SiH}_4 + 2\text{MgCl}_2 \]

Při reakci se současně tvoří v malé míře i vyšší silany, např.

\[2\text{Mg}_2\text{Si} + 8\text{HCl} \rightarrow \text{Si}_2\text{H}_6 + 4\text{MgCl}_2 + \text{H}_2 \]

Silany vznikají též reakcí halogenidů křemičitých s některými iontovými hydridy v tavenině

\[\text{SiCl}_4 + 4\text{NaH} \rightarrow \text{SiH}_4 + 4\text{NaCl} \]

nebo za laboratorním teplotv v etherickém roztoku reakcí s hydridovými komplexy:

\[\text{SiBr}_4 + \text{Li}[\text{AlH}_4] \rightarrow \text{SiH}_4 + \text{LiBr} + \text{AlBr}_3 \]

Silany jsou samozápalné. S vodou reagují za vzniku vodíku a gelu kyseliny křemičité:

\[\text{Si}_2\text{H}_6 + (3x + 6)\text{H}_2\text{O} \rightarrow 3\text{SiO}_2\cdot x\text{H}_2\text{O} + 10\text{H}_2 \]

383
Explozivně reagují s halogeny. Reakcí s halogenovodíky nebo chlorovanými uhlovodíky za přítomnosti halogenidů hliníčtých vznikají halogenderiváty silanů – halogensilanové reakce:

\[2 \text{SiH}_4 + 3 \text{HBr} = \text{SiH}_3\text{Br} + \text{SiH}_2\text{Br}_2 + 3 \text{H}_2 \]

Obdobná je reakce silanů s alkoholy. Vede k tvorbě alkoxysilanů:

\[\text{SiH}_4 + 2 \text{CH}_3\text{OH} = \text{SiH}_3(\text{OCH}_3) + 2 \text{H}_2 \]

Existují i alkylidery silanů, např. \(\text{SiH}_3(\text{CH}_3)_2 \). Všechny silany, halogensilanové, alkylsilanové a alkoxysilanové jsou látky redukční povahy.

Byla též prokázána intermediární existence labilních molekul \(\text{SiH}_2 \) a \(\text{SiH}_3 \) a připravena polymerní látky o složení \(\{\text{SiH}_3\}_n \).

- **Silicidy**

 Sloučeniny křemíku s elektropozitivnějšími kovy se nazývají silicidy. Většinou mají charakter sloučenin s kovovou vazbou. Vznikají buď přímou syntézou z prvků, nebo působením přebírku křemíku na oxid kovu.

 Silicidy slině elektropozitivním kovů reagují s vodou:

 \[\text{Na}_2\text{Si} + 3 \text{H}_2\text{O} = \text{Na}_2\text{SiO}_3 + 3 \text{H}_2 \]

 \[\text{Ca}_2\text{Si} + (x + 6) \text{H}_2\text{O} = 2 \text{Ca(OH)}_2 + \text{SiO}_2\cdot x \text{H}_2\text{O} + 4 \text{H}_2 \]

 Reakce některých silicidů s kyselinami vede ke vzniku silanů (str. 383). Mnohé silicidy vyslovené kovového charakteru však s kyselinami vůbec nereagují.

- **Oxidy křemíku**

 Křemík tvoří pouze jediný zcela stálý oxid – oxid křemíkův \(\text{SiO}_2 \). Jeho disociace při extrémních podmínkách však vzniká též oxid křemencový \(\text{SiO} \). Nejlepší cestou k připravě \(\text{SiO} \) je redukce \(\text{SiO}_2 \) elementárním křemíkem při vysoké teplotě. \(\text{SiO} \) lze připravit i jako tůhů látku.

 Má výrazné redukční účinky.

 Oxid křemíkovej \(\text{SiO}_2 \) je jedna z nejstálějších látek vůbec. Je významně zastoupen v zemské kůře. Vyskytuje se ve čtyřech základních krystalografických modifikacích, jako křemec (α, β), tridym (α, β), cristobalit (α, β) a amorfní křemenné sklo. Na rozdíl od oxidu uhličitého má polymerní vysokomolekulární strukturu. Je tomu tak proto, že křemík se nemůže vazebně vysvýšit tvorbou násobných vazeb, nýbrž musí vytvořit za účasti svých valenčních orbitálů 3s a 3p tetraedrický systém čtyř vazeb typu σ (hybridizace SP^3). To je možné pouze tehdy, když jsou na atomu Si koordinovány dva (jak by vyplývalo ze stehniometrického vzorce), ale čtyři atomy kyslíku. Každý atom kyslíku musí být v důsledku toho koordinován na dva atomy Si a celý systém atomů v azeb vytváří prostorovou síť.

 Elektronový strukturní vzorec zobrazující část (plošný úsek) této trojrozměrné síť lze zjednodušeně formulovat takto:

 ![Diagram silicidy](image)

 384
Tetraedry SiO₄ jsou vzájemně spojeny svými vrcholkými atomy kyslíku (spečené dvěma tetraedrům). Jednotlivé modifikace oxidu křemičitého se od sebe liší vzájemnou orientací tetraedrů a způsobem jejich prostorevěho zřízení (obr. 19-3). Polymerní struktura SiO₂ je příčnou jak jeho velmi malé těžkosti, tak i snížené chemické reaktivitu.

![Obr. 19-3. Vzájemné propojení tetraedrů SiO₄ ve struktuře oxidu křemičitého. Jednotlivé modifikace SiO₂ se od sebe liší hodnotou úhlu α.](image)

SiO₂ reaguje pouze s kyselinou fluorovodíkovou za vzniku plynného fluoridu křemičitého:

\[\text{SiO}_2 + 4\text{HF} = \text{SiF}_4 + 2\text{H}_2\text{O} \]

Roztoky hydroxidů alkalických kovů narušují povrch SiO₂. Taveniny hydroxidů alkalických kovů spontánně reagují s SiO₂ za vzniku křemičitanů:

\[\text{SiO}_2 + 2\text{NaOH} = \text{Na}_2\text{SiO}_3 + \text{H}_2\text{O} \]

Za vysokých teplot (v tavenině) je SiO₂ reaktivnější, projevuje se jeho kyselé vlastnosti a je schopen reagovat s některými bazitějšími anorganickými látkami:

\[\begin{align*}
\text{SiO}_2 + \text{K}_2\text{CO}_3 &= \text{K}_2\text{SiO}_3 + \text{CO}_2 \\
\text{SiO}_2 + \text{Na}_2\text{SO}_4 &= \text{Na}_2\text{SiO}_3 + \text{SO}_3 \\
\text{SiO}_2 + 2\text{KNO}_3 &= \text{K}_2\text{SiO}_3 + \text{NO} + \text{NO}_2 + \text{O}_2
\end{align*} \]

- **Skladby křemíku a halogeny**

Velmi málo stále jsou halogenidy křemíčité SiY₂. Nejstálější je SiF₄, který vzniká redukcí SiF₄ elementárním křemíkem při 1 200 °C, avšak i ten během několika hodin po syntéze podlehá komplikovanému rozkladu a vzniká složitá směs produktů. SiCl₂ a SiBr₂ byly identifikovány v přírode halogenidů křemíčkých po působení elektrického výboje za nízkého tlaku.

Stálé jsou halogenidy křemíčité SiY₄ (Y = F, Cl, Br, I). K přípravě SiF₄ je vhodnou způsobem syntézu:

\[2\text{CaF}_2 + 2\text{H}_2\text{SO}_4 + \text{SiO}_2 = 2\text{CaSO}_4 + \text{SiF}_4 + 2\text{H}_2\text{O} \]

nebo termický rozklad některých hexafluorokřemičitanů:

\[\text{Na}_2[\text{SiF}_3] = 2\text{NaF} + \text{SiF}_4 \]

SiCl₄ a SiBr₄ lze získat přímou syntézou z prvků nebo redukční halogenací SiO₂ (str. 296). Méně stálý SiF₄ vzniká též syntézou z prvků nebo i reakcí některých siliciidů s jodem či jodovodíkem při vyšších teplotách.

385
Všechny halogenidy křemičité jsou nízkomolekulární těkavé sloučeniny. Jejich molekuly mají tetraedrický tvar (SP³) s jednou dvou vazbou Si—Y typu o. Pouze u SiF₄ se předpokládá výraznější uplatnění interakce π mezi orbitály p atomů F a orbitály d atomu Si.

Na rozdíl od obdobných sloučenin uhličité halogenidy křemičité velmi snadno hydrolyzují. Vysvětluje se to přítomností orbitálů 3d na atomu Si, které umožňují přechodné zvýšení vaznosti křemiku (hybridizace SP² D) a tvorbu intermediárních aduktů typu SiY₄ H₂O. Jejich existence se projevuje snížením aktivace energie hydrolytického členení molekuly SiY₄. Hydráty uvedeného typu jsou prvním bezúčelným při pronikání atomů kyslíku (z molekuly vody) do koordinační sféry křemiku a umožňují hydrolýzu halogenidu křemičitého podle samarini rovnice

\[\text{SiCl}_4 + (x + 2) \text{H}_2\text{O} = \text{SiO}_2, x \text{H}_2\text{O} + 4 \text{HCl} \]

Všechny halogenidy křemičité jsou Lewisovými kyselinami; jejich oxidativní redukční vlastnosti jsou nevýrazné.

SiF₄ je schopné reagovat s molekulami HF nebo ionty F⁻ (ve vodném roztoku) za vzniku zcela disociované kyseliny hexafluorokřemičité H₃[SiF₄]:

\[2 \text{HF} + \text{SiF}_4 + 2 \text{H}_2\text{O} = 2 \text{H}_3\text{O}^+ + [\text{SiF}_4]^{-} \]

Kyselina hexafluorokřemičitá je schopná existovat jen v ionizované formě (je velmi silnou kyselinou). Hexafluorokřemičitý anion \([\text{SiF}_4]^{-}\) má pravidelnou oktaedrickou konfiguraci (hybridizace SP³ D²).

Sloučeniny křemiku se sírou

V podstatě jedinou binární sloučeninou křemiku se sírou je sulfid křemičitý SiS₂. Připravuje se syntézou z prvků, popř. reakcí elementárního Si a H₂S nebo CS₂ při vysoké teplotě. Lineární polymerní struktura SiS₂ vyjádřuje elektronový strukturní vzorec

\[
\begin{align*}
\text{Si-Si} & \quad \text{Si-Si} \\
\text{S} & \quad \text{S} \\
\end{align*}
\]

Jak z tohoto vzorce vyplyvá, je SiS₂ málo těkavý a má vláknitou strukturu podobnou asbestosu. Koordinační atomů Si v této struktuře je opět tetraedrická (SP³). SiS₂ je látkou nerozpustná prakticky ve všech rozpouštědlech, vodou se však při vyšších teplotách spontánně hydrolyzuje:

\[\text{SiS}_2 + (x + 2) \text{H}_2\text{O} = \text{SiO}_2, x \text{H}_2\text{O} + 2 \text{H}_2\text{S} \]

Reakce SiS₂ a SiCl₄ lze připravit smíšený dichlorid-sulfid křemičitý:

\[\text{SiS}_2 + \text{SiCl}_4 = 2 \text{SiCl}_3 \text{S} \]

S kapalným amoniakem poskytuje SiS₃ imid křemičitý:

\[\text{SiS}_2 + 4 \text{NH}_3 = \text{Si(NH)}_3 + 2 \text{NH}_4\text{HS} \]

Obdobně jako se sírou sloučuje se křemík těž s dalšímichalkogeny. Existují SiSe₂, SiTe₂, SiTe₃ a některé jejich deriváty.

Sloučeniny křemiku s dusíkem

Ze skupiny binárních sloučenin Si₃N₄, Si₂N₄, SiN a (Si₂N₄)₂ je stálou a běžnou lícé pouze nitrid křemičitý Si₃N₄, vznikající při 1400 °C reakci elementárního Si s plynným N₂. Je
prostorovým polymerem kovalentního charakteru. Je proto velmi obtížně tavitelný a málo reaktivní.

Z dalších sloučenin křemíku obsahujících dusík lze uvést imidy a amidy křemíku, např. Si(NH)₄ nebo Si[NH₂]₄. Amid křemíčkový vzniká reakcí

\[
\text{SiCl}_4 + 8 \text{NH}_3 \rightarrow \text{Si(NH)}_4 + 4 \text{NH}_4\text{Cl}
\]

Existují i mnohé sloučeniny organokřemíčité, obsahující vazbu Si—N.

19.5 TERNÁRNI KYSLÍKATÉ SLOUČENINY UHLÍKU

Řádime mezi ně především kyselina uhličitou a uhličitan. Ostatní ternární sloučeniny uhlíku s kyslíkem spadají většinou do organické chemie. K anorganickým sloučeninám patří ještě ternární sloučeniny obsahující uhlík, kyslík a halogen, resp. chlalkogen, tedy např. všechny halogenid-ossidy a oxid-chlalkogenidy uhlíkaté.

- Kyselina uhličitá a uhličitan

Oxid uhličitý se při rozpouštění v vodě hydratuje a přitom se v roztoku tvoří adukty obecného složení CO₂.xH₂O. Monohydrát CO₂·H₂O odpovídá vzorce kyseliny díhydrogenuhličité \(H_2\text{CO}_3 \) a dihydrátu CO₂·2H₂O vzorec kyseliny tetrahydrogenuhličité \(H_4\text{CO}_4 \). Uspořádání vzorců v molekulách obou těchto látok je vyjadřeno elektronovými vzory:

\[
\begin{array}{c}
\text{H—O} \\
\text{C—O}
\end{array}
\quad \begin{array}{c}
\text{H—O} \\
\text{C—O—H}
\end{array}
\quad \begin{array}{c}
\text{H—O} \\
\text{H—O—O—H}
\end{array}
\]

Vedle toho ovšem ve vodním roztoku existuji i adukty, v nichž se mezi molekulami vody a molekule CO₂ uplatňuje vazba vodíkovým můstkem. Přitom se mezi částicemi vznikajícími v systému voda-oxid uhličitý ustavuje rovnováha, jejíž poloha závisí na koncentraci složek a na dalších fyzikálních podmínkách. Ke složitosti struktury takového roztoku se při běžných chemických představách nepřihlédí a předpokládá se, že roztok obsahuje jen kyselinu uhličitou \(H_2\text{CO}_3 \), které se přisuzuje slabá až střední kyselost a značná nestabilita, pro níž ji nejze připraví jako chemické individuum. Při pokusech o zkonzentrování takového vodního roztoku a při spontánním vytězšování kyseliny uhličité uhlíkaté z uhličitanů silnější minerální kyselinou podle rovnice

\[
\text{CO}_3^{2−} + 2 \text{H}^+ = \text{H}_2\text{CO}_3 + \text{H}_2\text{O}
\]

uniká z roztoku oxid uhličitý, což formálně vyjadřuje rovnice samovolného rozkladu kyseliny:

\[
\text{H}_2\text{CO}_3 = \text{H}_2\text{O} + \text{CO}_2
\]

Vodní roztoky oxidu uhličitého nepodléhají oxidace-redukčním změnám.

Od dvojstýné kyseliny díhydrogenuhličité lze odvodit dvě řady solí, hydrogenuhličitan s aniontem HCO₃⁻ a uhličitan s aniontem CO₃²⁻.

Z hydrogenuhličitanů jsou běžné pouze soli alkalických kovů a kovů alkalických zemin. Jsou poměrně dobře rozpustné [sníženou rozpustnost vykazuje pouze Ca(HCO₃)₂ a NaHCO₃]. Anion HCO₃⁻ hydrolyzuje ve vodě podle rovnice

\[
\text{HCO}_3^- + \text{H}_2\text{O} = \text{H}_2\text{CO}_3 + \text{OH}^-
\]

a proto roztoky hydrogenuhličitanů mají slabě alkalickou reakci.
Běžnějšími látkami jsou uhličitany. Připravují se zahriváním hydrogenuhlíčitanů

\[
2 \text{NaHCO}_3 = \text{Na}_2\text{CO}_3 + \text{CO}_2 + \text{H}_2\text{O}
\]

nebo neutralizací roztoků hydroxidů oxidem uhličitého:

\[
2 \text{NaOH} + \text{CO}_2 = \text{Na}_2\text{CO}_3 + \text{H}_2\text{O}
\]

S výjimkou uhličitanů alkalických kovů jsou málo rozpuštětí. Uhlíčitanový anion uděluje vodnému roztoku zdešlenou alkalickou reakci v důsledku výrazného uplatnění hydrolytického děje

\[
\text{CO}_3^{2-} + \text{H}_2\text{O} = \text{HCO}_3^- + \text{OH}^-
\]

Uhlíčitanový anion má planárně trigonální strukturu, vyjádřenou elektronovým strukturním vzorcem se třemi vazbami C–O typu σ a dceloklokanovou vazbou π:

\[
\begin{array}{c}
\text{O} \\
\text{C} \\
\text{O}
\end{array}
\]

Od kyseliny uhličité nebo uhličitanů lze skutečně nebo formálně odvodit řadu jejich derivátů, jako např. diamid kyseliny uhličité, tzv. močovina, a její thioderivát – thiomočovina. Jejich molekuly mají tuto strukturu:

\[
\begin{array}{c}
\text{H}_2\text{N}–\text{C}–\text{NH}_2 \\
\| \\
\| \\
\| \\
\text{S}
\end{array}
\begin{array}{c}
\text{H}_2\text{N}–\text{C}–\text{NH}_2 \\
\| \\
\| \\
\| \\
\text{S}
\end{array}
\]

Známé jsou těž thioderiváty uhlíčitanů s anionty \(\text{CO}_2\text{S}^{2-}\) (thiohulíčitan), \(\text{CO}_2\text{S}^{-}\) (thithiohulíčitan) a \(\text{CS}_2^{-}\) (trithiohulíčitan), peroxoderiváty kyseliny uhličité – kyselina peroxyhulíčitá \(\text{H}_2\text{CO}_4\), kyselina peroxyhulíčitá \(\text{H}_2\text{CS}_4\text{O}_6\) a řada dalších látek.

- Halogenid-oxide a oxid-chalkogenidy uhličité

Halogenid-oxide uhlíku obecného stechiometrického vzorce \(\text{CO}_x\) lze považovat též za halogenderiváty kyseliny uhličité. Největším reprezentantem látek této skupiny je tzv. fogen \(\text{COCl}_3\) (dichlorid kyseliny uhličité, resp. dichlorid-oxid uhličité). Vzniká přímou katalyzovanou syntézou z CO a Cl₂:

\[
\text{CO} + \text{Cl}_2 = \text{COCl}_2
\]

Tvoří se též při redukčních chloracích oxidů (str. 296). Je to jedovatý plyn s trigonálně planární molekulou:

\[
\begin{array}{c}
\text{O} \\
\text{C} \\
\text{O}
\end{array}
\]

Má použití v organické syntéze. Obdobné sloučeniny s jinými halogeny (\(\text{COF}_2\), \(\text{COBr}_2\), \(\text{COCIF}_3\)) jsou již méně významné.

S oxidem uhličitého a sulfidem uhličitým je izostrukturní (a izoelektronovou) látkou oxid-
-oxid sulfid uhličité \(\text{COS}\) s molekulou

\[
\text{O}–\text{C}–\text{S}
\]

Vzniká reakci CO s párami síry jako bezbarvý plyn.
19.6 TERNÁRNÍ KYSLIKATÉ SLOUČENINY KŘEMíKU

Nejrozšířenější a nejrozmanitější skupinu z těchto sloučenin tvoří křemičité. Spolu s SiO₂ patří ke sloučeninám nejvíce zastoupeným v zemské kůře. Mají i značný technický význam. Ternární kyslikatou sloučeninou křemík je též kyselina křemičitá. Formálně sem lze zařadit i sloučeniny typu silanolů a siloxanů.

- Kyselina křemičitá

Vytěšením z křemičitanů silné minerální kyselinou podle rovnice

\[\text{Na}_2\text{SiO}_3 + \text{H}_2\text{SO}_4 + \text{H}_2\text{O} = \text{Na}_2\text{SO}_4 + \text{H}_2\text{SiO}_4 \]

nebo hydrolyzou halogenidů křemičitých

\[\text{SiCl}_4 + 4 \text{H}_2\text{O} = \text{H}_2\text{SiO}_4 + 4 \text{HCl} \]

se ve vodném roztoku tvoří vlnná kyselina křemičitá. Její složení pravděpodobně odpovídá molekulovému vzoru \(\text{H}_4\text{SiO}_4 \) (molekuly \(\text{H}_2\text{SiO}_3 \) nejsou schopné existence, nicméně stehiometrie některých křemičitanů tomuto vzorci odpovídá). Slabá kyselina křemičitá \(\text{H}_4\text{SiO}_4 \) není v této monomerní formě stálá a podléhá kondenzačním reakcím, při nichž se tvoří polyjederné útvary, např.

\[
\begin{align*}
\text{OH} & \quad \text{OH} \\
\text{HO-Si-OH} + \text{HO-Si-OH} & = \text{HO-Si-OH} + \text{H}_2\text{O} \\
\text{OH} & \quad \text{OH} \\
\end{align*}
\]

Tato reakce pokračuje a nakonec vznikají vysokomolekulární produkty s rozsáhlým prostorovým zřetězením. Produkty reakce mají koloidní povahu, zadržují se ve vodném roztoku, avšak zvýšení teploty nebo přídavek elektrolytů nebo jen delší stání roztoku způsobí posílení jejich vyloučení ve formě gelu. Gel zadržuje velké množství vody. Jeho chemické složení se velmi často vyjadřuje vzorcem \(\text{SiO}_2 \cdot x\text{H}_2\text{O} \) a látka se nazývá „silikatel“. Zhláští se na teplotě do 700 °C lze téměř vškerovou vodou ze silikagelu odstranit. Získá se tak tuhá amorfní látku. Její stehiometrie se blíží vzorci oxidu křemičitého \(\text{SiO}_2 \). Při laboratorních teplotách vysušený silikatel snadno opět přijímá molekuly vody nebo i jiných, např. organických rozpouštědle. Této vlastnosti se v chemické praxi velmi často využívá a silikatel slouží jako velmi výhodná sušidla, resp. adsorptivní látky.

Vysušený silikatel lze redukovat na elementární křemík nebo na silicidy pouze extrémně účinnými redukciadly (C, CaC₂, Al aj.). Z řady polyjederných kyselin křemičitých byla jako chemická individuaum v krystalické formě izolována pouze kyselina hexahydrogenhexakřemičitá \(\text{H}_6\text{Si}_6\text{O}_{15} \).

- Křemičitany

Velké množství hornin a minerálů má složení odpovídající křemičitanům. Křemičitany jsou formálně solemi monomerních i polymerních kyselin křemičitých. Jen jedině je však můžeme připravit přímou neutralizací kyseliny. Běžně vznikají reakcemi kyselého oxidu křemičitého \(\text{SiO}_2 \) s bazickými oxidy nebo hydroxidy kovů v taveninách:

\[
\begin{align*}
\text{CaO} + \text{SiO}_2 & = \text{CaSiO}_3 \\
2 \text{KOH} + \text{SiO}_2 & = \text{K}_2\text{SiO}_3 + \text{H}_2\text{O}
\end{align*}
\]

389
Křemičitany jsou vesměs látky velmi málo těžké, obtížně redukovatelné a napříč reakčí.

S kyselinou fluorovodíkovou poskytují fluorid křemičitý, resp. kyselinu hexafluorokřemičitou:

\[
\begin{align*}
\text{CaSiO}_3 + 6 \text{HF} & = \text{CaF}_2 + \text{SiF}_4 + 3 \text{H}_2\text{O} \\
\text{SiF}_4 + 2 \text{HF} & = \text{H}_2[\text{SiF}_6]
\end{align*}
\]

Tavením některých křemičitanů (přírodních) s uhličitanem sodným nebo s hydroxidy alkalických kovů vznikají křemičitany alkalických kovů:

\[
\begin{align*}
\text{MgSiO}_3 + \text{Na}_2\text{CO}_3 & = \text{MgCO}_3 + \text{Na}_2\text{SiO}_3 \\
\text{CaMgSi}_2\text{O}_8 + 4 \text{NaOH} & = \text{CaO} + \text{MgO} + 2 \text{Na}_2\text{SiO}_3 + 2 \text{H}_2\text{O}
\end{align*}
\]

Fyzikální vlastnosti křemičitanů jsou odrážením jejich krystalografické struktury. Základní strukturní jednotkou, která se vyskytuje v krystalových mřížkách křemičitanů, je tetraedricky uspořádaná pěticí atomiů SiO\(_4\):

![Diagram tetraedrického uspořádání atónů SiO\(_4\)](image)

Při vyjadrování struktury složitějších křemičitanů se tato skupina často znázorňuje grafickými zkratkami, představujícími uvedený tetraedr v pohledu na jeden z jeho vrcholů:

![Diagram tetraedrických atónů SiO\(_4\)](image)

(Kroužky značí atony kyslíku, tečka uprostřed středového kroužku je atom křemiku umístěný ve středu tetraedru a skrytý pod vrcholovým atomem kyslíku. Pravý obrázek je dalším, zjednodušenějším vyjádřením této struktury.)

Pokud se jedná o livově strukturní jednotky SiO\(_4\) vyskytují v mřížce křemičitanu bez vzájemného propojení kovalentní vazby, hovoříme o křemičitanech s izolovanými tetraedry SiO\(_4\). Atomová skupina SiO\(_4\) vystupuje v roli jednojaderných aniontů SiO\(_4^{4-}\). Příkladem přírodních křemičitanů tohoto druhu je zirkon ZrSiO\(_4\) a forsterit Mg\(_2\)SiO\(_4\). Jejich strukturu vyjadřují vzorce:

\[
\begin{align*}
\text{Zr}^{4+} & \left[\begin{array}{c}
\text{SiO}_4
\end{array} \right]^{4-} \\
2 \text{Mg}^{2+} & \left[\begin{array}{c}
\text{SiO}_4
\end{array} \right]^{4-}
\end{align*}
\]

V tomto znázornění ovšem není vystižen dosti výrazný podíl kovalentnosti ve vazbě mezi kovem a kyslíkem ze skupiny SiO\(_4\).

Druhou skupinu tvoří křemičitany, v jejichž struktuře se vyskytuje spojení několika skupin SiO\(_4\) (nejčastěji dvou, tři nebo šesti). Označují se jako křemičitany s osmoukovitou strukturou. Jejich příkladem jsou přírodní látky, thermite Sr\(_2\)Si\(_2\)O\(_7\), wollastonit Ca\(_3\)Si\(_2\)O\(_6\) nebo beryl...
Al₃Be₂Si₂O₁₀₄, v nichž jsou atomy kovů poutány iontově kovalentními vazbami ke skupinám Si₂O₅⁺, Si₄O₁₀⁴⁺ a Si₄O₉⁺ se strukturou

Těti skupiny tvoří křemíčitan, v nichž jsou skupiny SiO₄ zřetězeny do lineárních „neko nečných“ řad. Nazývají se křemíčitany s řetězovitou strukturou. V jejich struktuře se vyskytují polyaniony dvojitého typu; jsou seřazeny buď do jednoduchého, nebo do dvojitého řetězce:

Křemíčitany tohoto typu jsou látky zřetelně vláknnité. Z přírodních materiálů mezi ně patří pyroxeny, amfiboly (asbest aj.). Atomy kovů jsou v mřížce těchto křemíčitanů umístěny v těsné blízkosti řetězců a jsou k nim iontově nebo i kovalentně poutány prostřednictvím okrajových atomů kyslíku. Dohráli-li se zřetězení skupin SiO₄ v celé ploše, získávají křemíčitany vrstevnatý charakter. Nazýváme je křemíčitany s vrstevnatou strukturou. Polymerní anion má jedno ze dvou možných schematicky vyjádřených uspořádání:

Mezi křemíčitany tohoto typu patří především šídly a některé další minerály vyznačující se dobrou štěpností a odolností jednotlivých vrstev. Mnohé z těchto minerálů mají komplikovanější chemické složení. Jejich vrstevnatá struktura je kombinována s vrstevnatým uspořádáním dalších složenin. Tak je např. známa kombinace vrstvy tetraédřů SiO₄ s vrstvou Al(OH)₃ nebo Mg(OH)₂. Příom polymerní rovinou anion křemíčitanový nahrazuje část skupin OH ve vrstvě příslněného hydroxidu. Látky tohoto druhu jsou technicky velmi významnými minerály (kaolinit, mastek, jily aj.).
Křemičitany, v nichž část atomů křemíku je nahrazena atomy hliníku, vytvářejí prostorově sitě. Jsou to tzv. křemičitany, resp. hlinitokřemičitany s trojrozměrnou strukturou. Graficky znázornění jejich prostorové náhledy je poněkud obtížnější.

Společným a velmi významným znakem všech křemičitanů tohoto i předchozích typů je, že dva sousedící tetraedry SiO₄ mají společný pouze jediný vrchol. Nikdy se nevytváří spojení tetraedrů hranou nebo dokonce stěnou:

\[
\begin{array}{c}
\text{a} \\
\text{b}
\end{array}
\]

- Polysiloxany (silikony)

Významné místo mezi tepelně i chemicky stálými oleji, mazivy a plasty zaujaly v posledních desetiletích polymerní sloučeniny, v nichž se vyskytuje lineární či větvený strukturní motiv

\[
\begin{array}{c}
\text{Si}-\text{O}-\text{Si}-\text{O} \\
\text{Si}\quad \text{Si}
\end{array}
\]

s alifatickými či aromatickými organickými substituanty.

Například halogenidy křemičité poskytují reakce s alkoholy estery kyseliny křemičité

\[
\text{SiCl}_4 + 4 \text{ROH} \rightarrow \text{Si(OR)}_4 + 4 \text{HCl}
\]

které velmi ochotně přecházejí na polymerní molekuly

\[
\begin{array}{c}
\text{R} \\
\text{I} \\
\text{I}
\end{array}
\begin{array}{c}
\text{O} \\
\text{O}
\end{array}
\begin{array}{c}
\text{Si} \\
\text{Si}
\end{array}
\begin{array}{c}
\text{R} \\
\text{I} \\
\text{I}
\end{array}
\]

Obdobně vznikají hydrolyzou alkylhalogensilanů nebo arylhalogensilanů \(R_n \text{SiCl}_m \) \((m + n = 4)\) lineární nebo větvené makromolekuly, např.
Uvedenou hydrolyzou alkyhalogensilanů vznikají v prvé fázi jejich hydroxyderiváty — silanoly. V další fázi pak tyto silanoly kondenzují (za vystoupení molekul vody) a vytvářejí sitě polysiloxanů. Přitom jednotlivé siloxany přispívají k tvorbě sitě strukturními motivy těchto druhů:

<table>
<thead>
<tr>
<th>alkylchlorosilan nebo arylchlorosilan</th>
<th>alkylsilanol nebo arylsilanol</th>
<th>vytvořený strukturní motiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>R₂SiCl</td>
<td>R₂SiOH</td>
<td>R—Si—O—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>R₂SiCl₂</td>
<td>R₂Si(OH)₂</td>
<td>—O—Si—O—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>RSiCl₃</td>
<td>RSi(OH)₃</td>
<td>—O—Si—O—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—O—</td>
</tr>
</tbody>
</table>

Hydrolyzou SiCl₄ intermediárně vzniká kyselina křemičitá, která přispívá do struktury polysiloxanů strukturním motivem SiO₄⁻:

\[
\begin{align*}
\text{IOI} & \quad \text{Si—O—} \\
\text{IOI} & \quad \text{Si—O—}
\end{align*}
\]
Hydrolyzou vhodných směsí substituovaných chlorsilanů lze připravit makromolekuly různé struktury a molekulové hmotnosti a získávat tak technicky významné látky zvané silikony, vyzařující se zcela určitými požadovanými vlastnostmi.

19.7 VÝROBA A POUŽITÍ TECHNICKÝ VÝZNAVNÝCH SLOUČENIN UHLÍKU

Technické využití má i elementární uhlík. Grafické formy uhlíku s velkým povrchem (str. 280) jsou významnými sorbenti prostředky. V chemickém průmyslu a v metalurgii se uplatňuje redukce elementárním uhlíkem (koksem, grafitem). Grafit má i další použití v metalurgii (výroba karbidů, zúžilekouvání slitin), při výrobě maziv a konzervačních prostředků, v gumárenském průmyslu atd. Významné jsou i průmyslové vyráběné diamondy jako materiál k výrobě obráběcích nožů, vrtacích hlavic pro geologické výty, jako brusivo a pod. Neobvyklé významnou úlohu má v energetice a v chemickém průmyslu uhlí jako přírodní materiál obsahující grafický uhlík a sloučeniny uhlíku s některými prvky.

- **Výroba oxidů uhlíku**

Oxid uhelnatý CO se nejčastěji vyrábí zpracováváním koksárenského, vodního nebo generátorového plynu.

Koksářský pln získaný suchou destilací uhlí při výrobě koksu obsahuje vedle vodíku (str. 266) a metanu asi 8% CO a další složky.
Vodní plyn vzniká reakcí tuhých paliv (koks, antracitu) s vodní párou při teplotě nejméně 1 000 °C (str. 265)

\[C + H_2O = H_2 + CO \]

a obsahuje až 40 % CO.

Generatorový plyn se tvoří v zařízení pro výrobu vodního plynu v periodě, kdy se splavováním uhlí nebo koksu vzduchem nebo kyslíkem vyhřívá generátor na teplotu nad 1 000 °C. Generatorový plyn obsahuje až 30 % CO.

Uvedené plyně směsi se obvykle na své složky dělí frakčním zkapalněním nebo v chemickou cestou, při níž se přímým CO₂ vytváří vodním roztokem NaOH a CO se od dalších složek oddechí absorpcí v amonialalném roztoku měděné soli. Desorpcí při sušením tlaku se pak CO znovu uvolní jako plyn. solí se a podle potřeby se dál čistí. Uchovává a distribuuje se v ocelových tlakových nádobách.

Oxid uhličitý je průmyslově velmi významná látka. Rozsáhle používají mají především jeho právě uvedené směsi jako topné plyny. Dále slouží k rafinaci kovů (niklu, železa), k redukcí rud, k redukčním halogenacím oxidů kovů a k výrobě fosgenu, kyanovodíku a dalších sloučenin uhlíku s dusíkem. Významně je uplatnění CO v organické syntéze, kde se ve formě tzv. syntézního plynu (poměr \(H_2 : CO = 1 : 1 \) až \(1 : 3 \)) užívá ke katalytické výrobě některých uhlovodíků (benzninu), alkoholů, aldehydů, ketonů a karboxylých kyselin.

Oxid uhličitý CO₂ se průmyslově získává termickým rozkladem vápence podle rovnice

\[CaCO_3 = CaO + CO_2 \]

a ze spalin, ze zemního plynu a plynu uvolňovaného při kvasných procesech. CO₂ se obvykle oddechuje od ostatních plynůých složek směsi absorpcí ve vodním roztoku \(K_2CO_3 \):

\[K_2CO_3 + H_2O + CO_2 = 2 KHC\]

Desorpcí, tj. zpětným běhu této reakce, se uskuteční zvýšením teploty roztoku. Po dalším čištění se CO₂ komprimuje, přičemž se kapalina a plní se pod tlakem do ocelových tlakových nádob. Rychlou expanzi stlačeného CO₂ lze dosáhnout jeho velkého podchlazení a přeměny na tuhou látu. V této formě, jako tzv. „suchý led“, se též průmyslově vyrábí a využívá se jako velmi účinná chladicí látka.

Oxid uhličitý slouží k výrobě uhličitanu sodného a jiných uhličitanů [\(NaHCO_3, (NH_4)_2CO_3, KHC\)], k výrobě některých organických kyselin a močoviny, dále k napělování plastů, jako inertní atmosféra při některých chemických reakcích a hasicí prostředek; používá se též v potravinářském průmyslu aj.

● Výroba uhličitanu sodného a uhličitanu draselného

Uhlíčitan sodný \(Na_2CO_3 \) (často označovaný názvem soda) se dnes vyrábí téměř výhradně tzv. Solvayovým postupem. Při zavádění CO₂ do chlazeného vodního roztoku amoniku a chloridu sodného probíhá reakce

\[CO_2 + NH_3 + H_2O = NH_4HCO_3 \]
\[NH_4HCO_3 + NaCl = NH_4Cl + NaHCO_3 \]

NaHCO₃ se jako nejméně rozpustná složka roztoku vytažuje v krystalické formě, odděluje se od matečných loutě a zahříváním asi na 200 °C se plevána na uhličitan disodný (kalcinovanou soda):

\[2 NaHCO_3 = Na_2CO_3 + CO_2 + H_2O \]

395
Také matečné lhouy se rozloží zahříváním s přídavkem Ca(OH)₂:

\[
2 \text{NH}_4\text{Cl} + \text{Ca(OH)}_2 = \text{CaCl}_2 + 2 \text{H}_2\text{O} + 2 \text{NH}_3
\]

Uvolněný amoniak se vrací do výroby.

Uhlíčitan sodný, at jíz bezvodný, nebo ve formě hydrátu, má významně použití v chemickém průmyslu (výroba boritanů, fosforičanu sodného, vodního skla, mýdel, barvířů aj.), ve sklářství, v papírenském průmyslu, v energetice při úpravě napájecí vody pro kotle a podp.

Solvayův postup se největší významnou zahříváním draselného K₂CO₃ (často označovaného názvem kohu) pro přihl. velkos rozpusťnost K₂HCO₃. Užívá se proto buď elektrolytický postup, při němž se elektrolýzou roztoku KCl připraví vodný roztok KOH a ten se neutralizuje vznášením CO₂ za vzniku K₂HCO₃ a pak K₂CO₃, anebo postup Engelsa: Do vodného roztoku KCl, v němž je suspendován MgCO₃, se zavádí CO₂. Probíhá reakce

\[
2 \text{KCl} + \text{CO}_2 + 3 \text{MgCO}_3,3 \text{H}_2\text{O} = 2 \text{MgCO}_3, \text{KHC}_2\text{O}_3,4 \text{H}_2\text{O} + \text{MgCl}_2
\]

při níž konverzi sražení MgCO₃·3H₂O vzníká velmi málo rozpusťná podvojná a smíšená sůl MgCO₃·KHC₂O₃·4H₂O. Při zahřívání vodné suspenze této sůl proběhne reakce

\[
2 \text{MgCO}_3, \text{KHC}_2\text{O}_3,4 \text{H}_2\text{O} = \text{K}_2\text{CO}_3 + 2 \text{MgCO}_3,3 \text{H}_2\text{O} + \text{CO}_2 + 3 \text{H}_2\text{O}
\]

Sražení MgCO₃·3H₂O se vrací do výroby. Roztok s obsahem K₂CO₃ se zahřívá ke krystalizaci v odparkách.

Největší uplatnění při výrobě uhlíčitana draselného však má v přítomně době jednoduchý způsob „mravenčanou“. Zaváděním CO do roztoku K₂SO₄ a Ca(OH)₂ ve vodě (za vyšší teploty a tlaků) se uskuteční děj

\[
\text{K}_2\text{SO}_4 + \text{Ca(OH)}_2 + 2 \text{CO} = \text{CaSO}_4 + 2 \text{HCOOK}
\]

Vyloučený síran vápenatý se odlučuje a z matečného lhou se v odparce získá tuhý mravenčan draselný HCOOK. Zahříváním za přístupu vznášku přechází na uhlíčitan draselný:

\[
2 \text{HCOOK} + \text{O}_2 = \text{K}_2\text{CO}_3 + \text{CO}_2 + \text{H}_2\text{O}
\]

Stejně jako Na₂CO₃ uplatňuje se i K₂CO₃ ve sklářském průmyslu, v barvářství, v potravinářství a při výrobě draselných mýdel. Velké upotřebení má v anorganické syntéze, protože téměř všechny technicky významné draselné sůl (šamoniát, dúsíčnan, chlorová, bromid, manganát aj.) se připravují z K₂CO₃ jako výchozí suroviny.

Výroba karbidů

Oba nejvýznamnější karbidy, karbid vápenatý CaC₂ a karbid křemičitý SiC, se připravují reakcí oxidu vápenatého resp. křemičitého s uhlíkem při vysoké teplotě:

\[
\text{CaO} + 3\text{C} = \text{CaC}_2 + \text{CO}
\]

\[
\text{SiO}_2 + 3\text{C} = \text{SiC} + 2\text{CO}
\]

Reakce se uskutečňují ve elektrické peci.

CaC₂ se užívá k výrobě acetylenu a kyanidu vápenatého. Mimoto má velký význam v metallerii železa jako desulfurační činidlo. SiC slouží jako brusný materiál, používá se jako vyzdívka reaktorů (pro extrémní reakční podmínky) a v elektrotechnickém průmyslu k výrobě topných odporyových těles.

Zajímavě je vstrojenství, v kterém se používají také obráběcí a brusné materiály karbidy některých kovů. Připravují se v některých přímou syntézu, někdy i difúzní uhlík do povrchových vrstev kofovéch součástí za dlouhodobého působení vysoké teploty.
• **Výroba sulfidu uhličitého (sirouhliku)**

Sulfid uhličitý se vyrábí buď přímou syntezou z prvků (při teplotách okolo 800 °C)

\[\text{C}(s) + \text{S}_2(g) = \text{CS}_2(g) \]

nebo katalyzovanou (Al_2O_3, SiO_2 + Mn, C) reakcí (při teplotě 600 °C)

\[\text{CH}_4 + 2\text{S}_2 = \text{CS}_2 + 2\text{H}_2\text{S} \]

\(\text{CS}_2 \) se spotřebuje především při výrobě viskózových vlákén (kantohemana celulózy), v gumárenském průmyslu, v organické syntéze a při výrobě CCl_4. Sulfid uhličitý je výborné organické rozpouštědlo, je vlhký jedovatý a v párech velmi výbušný.

• **Výroba kyanidu, kyanidů a kyanovodíku**

Kyanimid vápenatý CaCN_2 (tzv. dusíkaté vápno) se vyrábí reakcí CaC_2 s dusíkem při teplotě asi 1200 °C za přítomnosti CaCl_2:

\[\text{CaC}_2 + \text{N}_2 = \text{CaCN}_2 + \text{C} \]

Používá se při výrobě některých anorganických pigmentů (kyanimid u olivinového) a kyanidů a je následně v organické syntéze. Hlavní použití má jako významné dusíkaté hnojivo.

Kyanidy alkačických kovů (NaCN a KCN) se vyrábějí několikrým způsobem. Běžně se připravují z CaCN_2 reakcí

\[\text{CaCN}_2 + \text{C} + \text{Na}_2\text{CO}_3 = 2\text{NaCN} + \text{CaO} + \text{CO}_2 \]

uskladněvanou v tavenině při teplotě 900 °C. Obdobně lze kyanidy získávat reakcí uhličitanu alkačického kovu s elementárním uhličitem a dusíkem:

\[\text{Na}_2\text{CO}_3 + 4\text{C} + \text{N}_2 = 2\text{NaCN} + 3\text{CO} \]

Další se kyanidy vyrábějí reakcí amidů s uhličitem:

\[2\text{NaNH}_2 + \text{C} = \text{Na}_2\text{CN}_2 + 2\text{H}_2 \]
\[\text{Na}_2\text{CN}_2 + \text{C} = 2\text{NaCN} \]

Kyanimid sodný Na_3CN_2 je meziproduktem tohoto procesu.

Kyanidy mají uplatnění v organické syntéze, ve fotografickém průmyslu, při výrobě drahých kovů (kyaničkové houževiny zlata a střbra) a jsou významnou složkou mnohých pokovovacích lázní.

Kyanovodík HCN se vyrábí katalyzovanou oxidací směsi methanu a amoniaku

\[2\text{CH}_4 + 2\text{NH}_3 + 3\text{O}_2 = 2\text{HCN} + 6\text{H}_2\text{O} \]

nebo přímou katalyzovanou reakcí amoniaku s oxidem uhelnatým:

\[\text{CO} + \text{NH}_3 = \text{HCN} + \text{H}_2\text{O} \]

Také suchá destilace dusíkatých organických látek a krakování vzniklých plynných produktů vede k tvorbě směsi plynů, mezi nimiž je vždy i kyanovodík. Takto se mohou zpracovávat např. melasové výpary nebo melasa. Zdrojem HCN je též svitlín a koksárský plyn ve své surové, nečisté formě.

Kyanovodík má mimořádný význam pro syntézu syntetických textilních vláken, kaučuku a řady plastů. Pro svou mimořádnou jedovatost se užívá k hubení škůdců v zemědělství a v potravinářském průmyslu.
VÝROBA A POUŽITÍ TECHNICKÝCH VÝZNAHMÝCH SLOUČENIN KŘEMÍKU

Významné použití má i elementární křemík. Ve formě slitiny se železem (ferrosilicium) se uplatňuje v ocelárnictví. Ocel s obsahem křemíku je chemicky vysoce odolná (kselinozvrzadí). Křemík je výhodným redukčním činitelí při připravě některých kovů (silikotermické přípravy lanthanoídů). Mimořádně významné je jeho dnešní využití v elektrotechnice (diody, fotoelektrické články).

Ze sloučenin křemíku jsou významné polysiloxany (silikony), oxid křemíčité a křemíčitan ve formě skel, porcelánu, kamenin, cementů a dalších průmyslově vyráběných materiálů. Zdroji sloužícími pro výrobu těchto látek jsou přírodní křemen a rozličné křemíčity. Jejich zpracování spočívá spíše než v chemických dějích hlavně v přečištění suroviny a změněm struktury vysokých zvýšenou teplotou.

Výroba oxidu křemíčitého

Oxid křemíčitý se vyskytuje ve formě křemencu a dalších svých modifikací v přírodě. K některým účelům se musí přečišťovat (vyhluhováním kyselinou chloridovou, přetavením), jindy se používá přímo, bez úprav. I ze její připravené celé surové halykem křemíku.

Vyhluhaný gel SiO\textsubscript{2} · xH\textsubscript{2}O se může zahlážován převést až na bezvodou formu.

Přírodní SiO\textsubscript{2} je surovina ve sklařském a keramickém průmyslu, ve výrobě stavebních materiálů, kyselinovzdorných vývodek aj. Umělé připraveny SiO\textsubscript{2} je důležitým adsorbentem (silikatgy), nespecifickým katalyzátorem, nosičem katalyzátů, susičem prostředkům a plněm v gumárenství. Velmi významné je použití monokrystalů přírodního a uměle připraveného křemencu v optických a elektronických (jako piezoelektrikum) zařízeních.

Výroba polysiloxanů

Polysiloxany se připravují hydrolyzou směsi alkylchlorosilanů nebo arylchlorosilanů R\textsubscript{3}SiCl, R\textsubscript{2}SiCl\textsubscript{2}, RSiCl\textsubscript{3}. Hydrolyzou vzniklé silany kondenzují za vystoupení molekuly vody a tvoří řetězce polysiloxanů (str. 392). K připravené výzvoch člornilá slouží bud reakce SiCl\textsubscript{4} s některými organokovovými sloučeninami

\[\text{SiCl}_4 + \text{Zr}(ext{C}_2\text{H}_5)_2 = (\text{C}_2\text{H}_5)_3\text{SiCl}_2 + \text{ZrCl}_2 \]

nebo katalyzovaná reakce chlorovaných uhlovodíků s elementárním křemíkem za vysoké teploty:

\[2\text{C}_2\text{H}_5\text{Cl} + \text{Si} = (\text{C}_2\text{H}_5)_3\text{SiCl}_2 \]

SiCl\textsubscript{4} pro uskutečnění první z obou uvedených reakcí se připraví redukční chlorací SiO\textsubscript{2}.

Výroba skla, keramiky, porcelánu a cementu

Některé podvojné křemíčity mají schopnost tuhout z taveným ve formě amorfním sklo1. Toto tzv. křemíčité sklo nalezlo zcela mimořádné uplatnění v průmyslu, technice, vědě i běžném denním životě.

1 S obecnou představou sklenitého skupenského stavu tuhých látek a základními poznatky o strukturo a vlastnostech sklo se seznamním později.
Chemickým složením se běžně (tzv. normální) sklo vždy bliží hexakřemíčitanu disodno-
-vápenatému se stechioometrickým vzorcem Na₂Ca₃Si₆O₁₈ (resp. se vzorcem Na₄O.CaO.6SiO₂,
który ponekud názornější vyjadřuje formální stechioometrické zastoupení oxidů). Amorfní struktura
otoho křemíčitantu je tvořena nepravidelně uspořádanými řetězí kovalentních tetraedrů SiO₄
(spojenými vrcholky) a ionty Na⁺ a Ca⁺, které se k tomuto polykřemíčitantuovému skeletu (s anion-
tovým charakterem) poutají v podstatě iontovou vazbou.

Výroba tohoto skla spočívá v tavení směsi křemenného písku, uhličitanu sodného a vápence
(v molarním poměru 6:1:1) při teplotě asi 1200 °C:

\[
6 \text{SiO}_2 + \text{Na}_2\text{CO}_3 + \text{CaCO}_3 = \text{Na}_2\text{O.CaO.6SiO}_2 + 2 \text{CO}_2
\]

Získává se tak „měkké“ sklo (snadno tavitelné sodné sklo) vhodné pro výrobu nenáročných užitko-
vých předmětů (tabulové sklo, láhve, atd.).

Změnu složení tavené směsi se získávají skla jiných specifických vlastností. Nahraniem
(částečným nebo úplným) sodných solí draselnými se vyrábí „tvrdé“ sklo (těžkotavitelné draselné
sklo). Slouží jako sklo optické nebo chemické (je odolné proti chemikáliím). Částečnou náhradou
CaO oxidem olovnatým PbO se získává olovnaté sklo s vysokým indexem lomu, avšak křehké,
těžké a s velkou tepelnou roztahností, která způsobuje, že toto sklo není dost odolné proti tepel-
nému namáhání. Má však značné uplatnění v optice a při výrobě broušených dokorněných předmětů
(skle draselně-olovnaté). Další technicky významná varianta skladby skla spočívá v částečném
nahrazení SiO₂ oxidem hliníčkým nebo oxidem boritým. Vznikají tak skla vysoce odolné proti
tepelnému namáhání a chemickým vlivům, vhodné pro výrobu chemického a varného nádobí.
Při dlouhodobém zaúklidění některých borokřemíčitých skel se odlučuje fáze boritamu sodného,
její se vyhýbá horkou HNO₃ a zbude půrovitý materiál s velkým obsahem SiO₂, který má použití
při katalyza nebo se slouží k kompaktní sklování výřezných mechanických i chemických vlast-
ností. Dokonalou odolností k tepelnému šoku (náhledým změnám teploty) vyniká křemenné sklo,
jejíž je v podstatě amorfní SiO₂. Byla vyvinuta řada dalších chemických způsobů úpravy vlastností
skla. Příkladem je sklo, v nichž je SiO₂ nahrazen P₂O₅, dále skla s obsahem fluoridů, oxidu
kadmiového, oxidu wolframového aj.

Tabulka 19-1. Barvení skla

<table>
<thead>
<tr>
<th>Zbarvení skla</th>
<th>Prostředek</th>
</tr>
</thead>
<tbody>
<tr>
<td>hnědá</td>
<td>Fe⁹⁺, Mn⁹⁺</td>
</tr>
<tr>
<td>žlutá</td>
<td>Fe⁹⁺</td>
</tr>
<tr>
<td>zelená</td>
<td>Cr⁶⁺, Ca⁷⁺, Fe⁹⁺</td>
</tr>
<tr>
<td>modrá</td>
<td>Cu²⁺</td>
</tr>
<tr>
<td>červená</td>
<td>Au³⁺, Cu¹⁺, Se⁹⁺</td>
</tr>
<tr>
<td>bílá</td>
<td>Sn⁴⁺, kostní popel</td>
</tr>
<tr>
<td>černé</td>
<td>Fe⁹⁺</td>
</tr>
</tbody>
</table>

Jestliže se do taveniny skel přidávají oxidy kovů, které tvoří barvené křemíčity, nebo
elementární kovy, jež se atomárně rozptýlí, získávají se skla různě zbarvené. Příklad nejčastějších
barvících prostředků je uveden v tab. 19-1. Velmi rozmanitého zbarvení skla se dosáhne použitím
příduvku malých množství oxidů lanthanoidů.

Přírodní jámy jsou složité minerálovodní součásti, jejichž chemická analýza ukazuje na obsah
hliníku (Al⁶⁺), křemíku (Si⁴⁺) a kyslíku s vodíkem (O⁻⁻, OH⁻, H₂O). Přítomně jsou ovšem i četné
další prvky, někdy dokonce v poměrně velkém zastoupení (Na⁺, Ca²⁺, K⁺, Mg²⁺, Fe³⁺, Mn⁴⁺ aj.). Valná část chemických látek, které vytvářejí jíly, jsou křemíčitan y a hlinitokřemíčitan y různé struktury. Ložiska a vrstvy jílů se vseměs vytvořily zvětráváním křemíčitanových hornin. Mnohé z jílů mají průmyslově využití při výrobě keramiky, kameniny a stavebních materiálů. Jsou složkou mnoha přípravovaných plastických směsí, z nichž se výrobky tvarují a potom vypalují při vhodné teplotě. Vypalováním se výrazně snižuje obsah vody v materiálu a současně v něm dochází k takovým změnám struktury a krystality, jež znamenají zvýšení jeho mechanické pevnosti, odolnosti k vodě a pod. Na tomto (znáčně zjednodušeně podaném) principu je založena výroba cihel, některých druhů krytiny, kameniny, hmot českého zboží a mnohých žárovzdorných výzdovek.

Zvlášť významná je výroba technického a užitkového porcelánu, která spočívá nikoli ve zpracování jílů, nýbrž kaolinu. Hlavní složkou přírodního kaolinu je minerál kaolinit (Al₂O₃·2SiO₂·2H₂O). Opakovaným vypalováním předmětů zhotovených z vliškových plastických směsí obsahující kaolin, živce (K₂O·Al₂O₃·6SiO₂) a křemen vzniká bílá, málo porovitá a v tenké vrstvě přesvítá hmota — porcelán.

Pálení směsi vápence (nebo CaO) a některých přírodních křemíčitanů, resp. hlinitokřemíčitanů (jílů, hlin, brdílec) vznikají sílyny, obsahující především křemíčitan vápenaté. Rozemletím sintrované (t.j. natavené a částečně slinité) hmoty s přídavkem vhodných příměsí se získává šedá prášková látka — křemíčitanový (portlandský) cement, který má velký význam ve stavebnictví.
20 Bor

Bor, B je prvky ze skupiny 14 periodické soustavy. Lze jej označit za polokov, avšak chemickým chováním se líší mezi nekory. V elementárním stavu a ve formě některých svých sloučenin má vlastnosti polovodičů.

Atomy boru mají základní elektronovou konfiguraci valenční sféry 2s² 2p³. Protě elektronové konfiguraci helia tedy atomům boru přebývají tři elektrony a do elektronové konfigurace neonu jim pět elektronů chybí.

Hodnota elektronegativity atomů boru je poměrně velká (2,0) a skutečné odtržné tři valenčních elektronů (vznik kationtu B₃⁺) není realizováno ani při vazbě s nejelektronegativnějšími prvky. Zejména nepravidelné je samozřejmě i faktické přijetí pěti elektronů atomem boru a dosažení elektronové konfigurace 2s² 2p⁶. Bor je proto prvky vytvářející výhradně jen kovalentní vazby. Malý počet elektronů ve valenční sféře a značná elektronegativita atomu boru způsobuje, že jeho vazby v určitých situacích mají neobvyklý polycentrický a delokalizovaný charakter.

Chemické vlastnosti boru se dosti podobá chemii uhlíku. Analogii lze sputovat především tom, že bor je schopen řešit své atomy (i když poté budí jiným způsobem než uhlík) a že vytváří neobyčejně rozšířenou skupinu sloučenin s vodíkem (jsou určitou obdobou uhlovodíků). Chemické vlastnosti kyslíkatých sloučenin boru naopak velice připomínají vlastnosti analogických sloučenin křemiku.

20.1 VAZEBNÉ MOŽNOSTI BORU

Na vazbách vytvářených atomy boru se podílejí pouze orbitaly valenční sféry. Geometrie překryvu těchto orbitalů 2s a 2p s orbitaly vazebných partnerů může být prakticky ve všech případech objasněna představou hybridizace SP² nebo SP³.

V případě hybridizace SP² je na atomu boru koordinována trojice vazebných partnerů, s nimiž se používá třetí planárně uspořádanými vazbami typu π. Prázdný orbital 2pₓ atomu boru se přímo zapojuje do tvorby delokalizované vazby π.
Typickým příkladem molekul s tímto vazebným uspořádáním jsou BF₃, BCl₃ nebo anion BO₂⁻. V podstatě stejně je i vazebné schéma v diboritanovém aniontu B₂O₂⁻, v hexagonálním nitridu boru BN apod. Bor je při takovémto způsobu vytvoření vazeb trojvazný (z hlediska počtu vytvářených vazeb γ) a je obklopen pouze sestetem elektronů (ve vazbách σ). Uspořádání valenční sféry atomu boru je elektronové deficitní.

Při hybridizaci SP³ je na atomu boru koordinována tetraedricky čtveřice vazebných partnerů. Vazby mají do značné míry čistý charakter σ:

Oba uvedené způsoby vazby boru se realizují v jeho běžných „klasických“ sloučeních, jejichž příklady jsou uvedeny. Výzkum rozsáhlé skupiny sloučení boru s vodíkem (boranů), jejich derivátů, a některých dalších sloučení však ukázal, že k objasnění překvapivých atomových kon-
figuraci, které se v nich vyskytují, je nutné připustit poněkud nevyklá známé způsoby překryvu AO a HAO zůstane atopických atomů. Hlubší teoretický novor vedl ke zjištění, že tyto představy nejsou v rozporu s principy a metodou teoretického přístupu MO-LCAO.

Dva atomy B a atom H mohou být společně používáni prostřednictvím jediného elektrono-

vého páru přitomněho na MO delokalizovaného po této trojici atomů. Poněvadž jsou takto pou-

žany tři atomy dvěma elektrony, nazývá se vazba tohoto typu vazba třístředková dvouelektronovou.

Obrázek 20-1 vyjadřuje základní představy vzniku takovéto vazby. Ukazuje způsob překryvu zůstane atopických AO a HAO, energetickou posloupnost vzniklých MO a lineární kombinace AO

(resp. HAO), jež vedou k tvorbě MO. Trojice atomů vytváří nelineární trojúhelníkové uspořádání.

Každý z atomů B přispívá k tvorbě vazby překryvem jediného hybridizovaného orbitalu sp³ (zbylé

HAO se podílejí na jiných vazbách), atom H se účastní orbitálem 1s. Kombinaci těchto tří výchozích

Obr. 20-2. Uzavřená třístředková dvouelektronová vazba trojice atomů B.

a) Překryv orbitálů sp³ atomů boru; b) diagram MO; c) lineární kombinace HAO; d) znázornění vazby

v elektronovém strukturním vzorci

Obr. 20-3. Otevřená třístředková dvouelektronová vazba trojice atomů B.

a) Překryv orbitálů sp³ krajních atomů boru s orbitálem 2p místového atomu boru; b) diagram MO;

c) lineární kombinace AO (HAO); d) znázornění vazby v elektronovém strukturním vzorci

403
AO vzniká trojice MO, orbitály \(\psi_1, \psi_2, \psi_3 \). Orbital \(\psi_1 \) po obsazení elektronovým pairem působí vazebně. Orbital \(\psi_2 \) je nevazebný a \(\psi_3 \) je protivazebný. Tyto dva orbitály nejsou obsazené elektrony. Oblast maximální elektronové hustoty (orbitál \(\psi_1 \)) má tvar banánů

V molekule boránů a jejich derivátů a dokonce i v dalších sloučeninách se vyskytují dvě varianty takového vazby.

Další možnost vzniku trojčetné dvouelektronové vazby je ukázána na obr. 20-3. Trojúhelník tvořený atomy boru je v tomto případě rovnoramenný, středový atom zastavá funkcí atomu můstkového. Okraje atomu boru se zapojují do tvorby vazby svými orbitály sp², můstkový atom boru svým orbitálem žp. Toto pojistko se nazývá otevřená trojčetná dvouelektronová vazba.

20.2 CHEMICKÉ VLASTNOSTI BORU

Krystalické elementární bor je chemicky velmi inertní. Za vysších teplot jeho reaktivita zřetelně vzrůstá. Větší reaktivitu se vyznačuje amorfní modifikace boru.

Spalováním boru v kysličku vzniká B₂O₃. Při teplotách nad 900°C se bor slučuje těž s dusíkem za vzniku nitridu boritého BN. S halogeny poskytuje za zvýšených teplot halogenidy borité typu BYₓ, v obdobných podmínkách se sírou dává BₓSₓ. Nepůsobí na něj vroce kyselina chlorovodíková ani kyselina fluorovodíková, avšak oxiduje se horkou kyselinou dusičnou nebo kyselinou sírovou:

\[
\begin{align*}
B + 3 \text{HNO}_3 & = \text{H}_3\text{BO}_3 + 3 \text{NO}_2 \\
2 \text{B} + 6 \text{NaOH} & = 2 \text{Na}_3\text{BO}_3 + 3 \text{H}_2
\end{align*}
\]

V taveninách hydroxidů alkalických kovů se bor rozpouští za vzniku boritanů a vodíku:

\[
2 \text{B} + 6 \text{NaOH} = 2 \text{Na}_3\text{BO}_3 + 3 \text{H}_2
\]

Některé roztavené kovy rozpouští elementární bor. Přitom se bud tvoří boridy těchto kovů, nebo dochází ke vzniku slítin. Vodní párou se bor při 600°C oxiduje na B₂O₃ za uvolnění vodíku:

\[
2 \text{B} + 3 \text{H}_2\text{O} = \text{B}_2\text{O}_3 + 3 \text{H}_2
\]

Při velmi vysokých teplotách je elementární bor schopen vykouřovávat kovy z jejich oxidů, sulfidů či halogenidů a může dokonce redukovat i oxid uhelnatý a oxid křemičitý.

Přičinou malé reaktivity boru v elementárním stavu za nevysvětlených teplot je jeho pevná polymerní krystalická mířka, vystavěná z ikosaedrů B₁₅ (str. 283). Nicméně stálý a energeticky výhodný systém vazeb však může bor vytvářet po sloučení s některými prvky. Značně stálé jsou sloučeniny boru s kyslíkem, dusíkem, sírou a halogeny, zejména když mají strukturu, v níž jsou na atomech boru tetraedricky koordinovány čtyři atomy vazebných partnerů. Také boridy kovů jsou stálé.

20.3 BINÁRNÍ SLUČENINY BORU

Mezi nejúčinnějšími binárními sloučeninami boru patří především borony, boridy kovů, halogenidy a oxidy boru a dále též sloučeniny boru s některými nekovovými prvky, zejména sírou, dusíkem, uhličitem apod.

1) Zatížba je proto nazývá „banánová“. 404
Borany jsou sloučeniny boru s vodíkem. Svou strukturou, vazbou a reaktivitou se řadí mezi nejzajímavější chemické sloučeniny vůbec. Studiem boranů se započala věda zahýbat vlastně až na začátku tohoto století (Stock, 1909 až 1936). Zcela mimořádná pozornost jim byla věnována kolem roku 1942, kdy se předpokládalo, že by mohly být vhodnou výchozí látkou pro přípravu velmi těžkých sloučenin uranu a posloužit při separaci nuklidu ^{233}U (potřebného pro výrobu atoomové pumy). Druhé období mimořádného zaintenzivnění výzkumu boranů nastalo v 50. letech, kdy se uvažovalo o jejich použití jako vysoce účinných paliv pro raketové motory. Přesto, že se borany v obou uvedených funkcích nakonec neuplatnily, rozvinulo se poznání jejich neobyklé chemie natolik, že dalsí studium boranů začalo být velmi významné z teoretického hlediska i z hlediska jejich praktického využití v některých dalších oblastech.

Složení molekul boranů lze vyjádřit obecnými vzorcemi B_nH_{3-n} a B_nH_{3+n} (existují však i borany, jejichž složení těmito vzorcům neodpovídá).

Struktura boranů je velmi neobyklá a nemá u sloučenin jiných prvků obdobu. Mimořádnost jejich struktury je důležitá, že se v boranech uplatňují elektronové deficitní tříštědové vazby. Představu vzniku těchto vazeb jsme již podrobně probírali (str. 402, 403). Elektronové struktury vzorce boranů lze formulovat pouze tehdy, využijí-li se grafické skratky pro vyjadření tříštědových dvouelektronových vazeb (tzv. Lipscombova symbolika)

![Diagram](https://via.placeholder.com/150)

a samečejmě též klasická symbolika běžných vazeb:

$\text{B} \equiv \text{H} \equiv \text{B}$

Až dostup byly nalezeny téměř tři desítky základních boranových skeletů. Pomineme-li existenci molekul nejnejobvyklejší $\text{B}3\text{H}6$ 1), který se pouze intermediárně tvoří např. při termické fragmentaci některých vyšších boranů a není pro svou elektronovou deficitní strukturu (sextet)

![Diagram](https://via.placeholder.com/150)

dostatečně stabilní, je nejneobvyklejší stabilním boranem $\text{diboran}(6)$ B_2H_6. Geometrický a elektronový tříštědový vzorec jeho molekuly spojuje se znázorněním překryvu AO (HAO) je na obr. 20-4. Je vidět, že v molekule B_2H_6 se kromě čtverice běžných vazeb $\text{B} \equiv \text{H}$ uplatňuje i dvojice tříštědových vazeb. Předpokládá se, že valenční sféra atomů boru má hybridizaci sp^3. Molekula B_2H_6 má tvar dvoucí tetraedrů spojených hranou.

Geometrické vzorce a elektronové struktury vzorce tří vyšších boranů jsou uvedeny na obr. 20-5. Z obrázku lze přesložit znázorněné struktury rozoznat, že složení vazeb v molekulách boranů vytváří konvánní tvary vaničkového nebo miskového tvaru. S rostoucím počtem atomů boru v molekule se miskové tvar stále prohlašuje, až se posléze úplně uzavírá (úvěr s 12 atomy boru). Vzniklý ikosaedr B_{12} se objevuje ve struktuze některých derivátů boranů a je stavební jednotkou v elementárním boru. Základní boranové skelety B_2 a B_3 se mohou různým způsobem dále sdružovat, a to tak, že se propojí jednou nebo několika vazbami, popř. i tím, že mají některé společné atomy.

1) Arabská číslice v závorce vyjadřuje počet atomů H v molekule.
Obr. 20-4. Molekula diboranu(6).
a) Geometrický vzorec; b) pětkrát HAO a AO atomů boru a vodíku v molekule; c) elektronový strukturní vzorec

Obr. 20-5. Geometrické a elektronové strukturní vzorce některých vyšších boranů:
a) tetraboran(10) \(\text{B}_4\text{H}_{10} \)
b) pentaboran(11) \(\text{B}_5\text{H}_{11} \)
c) dekaboran(14) \(\text{B}_{12}\text{H}_{14} \)

Borany lze připravit různými chemickými reakcemi. Historicky je významný rozklad boridu hořčíku kyselinami. Tvoří se směs několika nižších boránů. Nejvíce mezi nimi nejčastěji výkon slouží diboran (6). Ten lze získat např. reakcí tetrahydroboritanu lithného s ethylátém fluoridu boritého

\[
3 \text{Li[BH}_4\text{]} + \text{BF}_3(\text{C}_2\text{H}_4\text{)}_2\text{O} = 2 \text{B}_2\text{H}_6 + 3 \text{LiF} + (\text{C}_2\text{H}_4\text{)}_2\text{O}
\]

nebo i reakcí \(\text{Na[BH}_4\text{]} \) s koncentrovanou kyselinou sírovou:

\[
2 \text{Na[BH}_4\text{]} + 2 \text{H}_2\text{SO}_4 = \text{B}_2\text{H}_6 + 2 \text{H}_2 + 2 \text{NaHSO}_4
\]
Diboran(6) je výchozí látkou pro vyší borany. Borany o menších relativních molekulové hmotnosti jsou plynulé nebo kapalné, vyší borany (počínaje dekaboranem) jsou vesměs tuhé látky. Chemicky jsou všichy borany neobyčejně reaktivní, některé se na vzduchu samovolně zapalují. Až na výjimky se snadno hydrolyzují vodou. Poměrně značná elektropozitivita polokovového boru je přičinou, proč kovalentní vazby mezi atomy boru a vodíku mají polární charakter s elektronovou hustotou lokalizovanou do jisté míry na atomech H. Borany proto mají v některých případech dosti blízko k iontovým hydridům. Zejména koncový vodík (vazba B—H) má hydridový charakter a je přičinou výrazných redukčních vlastností mnoha boranů a jejich hydrolyzovatelností.

Výzkum boranů i heteroboranů se velmi intenzivně rozvíjí. Přinesl již mnoho pozoruhodných poznatků a umožnil i praktické využití těchto látek ve vědě a technice.

- Boridy

Binární sloučeniny boru s elektropozitivnějšími prvky, než je sám, se nazývají boridy. Jsou to vesměs velmi tvrdé netěkavé látky, chemicky značně nereaktivní.

Připravují se syntézou z prvků, redukci oxidů kovů elementárním borem, redukci směsi oxidu kovu a oxidu bortého uhličtem i elektrochemickými částmi.

Halogenidy boru

Základním typem sloučení halogenů s borem jsou nízkomolekulární látky o vzorce \(\text{BY}_3 \) (Y = F, Cl, Br, I). Jejich molekuly jsou planární a mají tvar rovnoběžného trojúhelníku. Vedle tří vazeb \(\sigma \) vzniklých překryvem tří orbitálů \(s^2 \) atomů boru s orbitály \(p \), atomů halogenů je v molekulách halogenidů boritých přítomna též delokalizovaná vazba \(\pi \) (str. 401). Výrazně se vazba \(\pi \) uplatňuje jezmena v molekule \(\text{BF}_3 \). U ostatních halogenidů boritých je interakce \(\pi \) podstatně slabší.

Přírodní fluorid boritý \(\text{BF}_3 \) lze nejlépe připravit reakcí boritanů nebo oxidu boritěho s fluorovodíkem:

\[
\text{B}_2\text{O}_3 + 6\text{HF} = 2\text{BF}_3 + 3\text{H}_2\text{O}
\]

Kapalný chlorid boritý \(\text{BCl}_3 \) se nejčastěji získává redukční chlorací oxidu boritěho při 500 °C:

\[
\text{B}_2\text{O}_3 + 3\text{C} + 3\text{Cl}_2 = 2\text{BCl}_3 + 3\text{CO}
\]

Obdobná cesta vede též k připravě bromidu boritěho \(\text{BBr}_3 \).

Ve sních halogenidů boritých nebo působením halogenovodíků na halogenidy boritě se tvoří též smíšené halogenidy boritě, např.

\[
\text{BF}_3 + \text{BCl}_3 = \text{BCIF}_2 + \text{BCl}_2\text{F}
\]

Všechny halogenidy boritě jsou látky s deficitem elektronů na středovém atomu, a chovají se proto jako akceptory elektronových parů, tj. jako Lewisovy kyseliny. Běžná je tvorба aduktů halogenidů boritých s Lewisovými zásadami:

\[
\text{BF}_3 + \text{NH}_3 = \text{BF}_3\text{NH}_3
\]

Snadno probíhá hydrolyza halogenidů boritých vodou:

\[
\text{B}_2\text{O}_3 + 3\text{H}_2\text{O} = \text{H}_3\text{BO}_3 + 3\text{H}_2\text{O}
\]

Nejprudčeji hydrolyzuje \(\text{B}_2\text{O}_3 \). Zřetelně pomalejší a penězudržitelný průběh hydrolyzy zjišťujeme u \(\text{BF}_3 \). Hydrolyzou vznikající fluorovodík se aduje na molekuly fluoridu boritěho (jsou ve vodě přítomny v hydrátové formě \(\text{BF}_3\text{H}_2\text{O} \)) za vzniku disociované kyseliny tetrafluoroboritý \(\text{H[BF}_3] \). Hydrolyza probíhá podle čelné rovnice

\[
4\text{BF}_3 + 6\text{H}_2\text{O} = 3\text{H}_3\text{O}^- + 3[\text{BF}_3]^+ + \text{H}_3\text{BO}_3
\]

Kyselina tetrafluoroboritá je stálá jen v roztoku ve formě svého iontu, nelze ji připravit ve volném stavu. Stále jsou však její soli – tetrafluoroboritany.

Halogenidy boritě (zejmena \(\text{BF}_3 \)) nalezly použití v organické chemii jako významné katalyzátory.

Byla prokázána existence halogenidů boru typu \(\text{B}_2\text{Y}_3 \), \(\text{B}_4\text{Y}_6 \), \(\text{B}_4\text{Y}_8 \) a \(\text{B}_6\text{Y}_8 \) a \(\text{BY}_3 \). V jejich struktuře se uplatňují skupiny vzájemně propojených atomů boru, velmi obdobné těm, které jsme poznali při výkladu struktury molekul boranů.

Oxidy boru

Stálým a běžným oxidem boru je oxid boritý \(\text{B}_2\text{O}_3 \). Lze jej připravit termoelektrickou dehydratací kyseliny boritě. Vzniká též spalováním boru v kyslíku.

Má polyemrní charakter, a je proto málo těžký. Ve své amorfní formě je vystaven z trigonálně planárních atomových skupin \(\text{BO}_3 \), jež jsou nepravidelně zřetězeny tak, že dvě sousední skupiny mají jeden společný atom kyslíku. \(\text{B}_2\text{O}_3 \) se jen obtížně převádí do krystalické formy.
v níž je vystaven z pravidelně zřetelných tetraedrů BO₄, které opět mají společné atomy kyslíku. Oxid boritý je látkou kyselé povahy. S vodou ochotně poskytuje kyselinu boritou. Lze jej redukovat jen velmi silnými redukčními činidlami (Na, Mg, Al aj.). Rostavený B₂O₃ rozpuští většina oxidů kovů za vzniku boritých skel, často různě zbarvených.

Schopnost boru tvořit rozdílné uskupení a skelety s elektronově definitivními vazbami mezi svými atomy se projevuje existenci řady dalších „nižších“ oxidů boru se složením přibližně odpovídajícím stehnometrickým vzorcům BO, B₂O₅, B₄O, B₁₅O₃ a B₇O.

- **Sloučeniny boru s dusíkem a uhlíkem**

Významnou sloučeninou boru s dusíkem je nitrid boritý BN. Připravuje se reakcí BCl₃ s NH₃ a rozkladem vzniklého aduktu při 750 °C. Vzniká též přímo reakcí boru s dusíkem i některými dalšími cestami. Má výrazně polymerní charakter a ve své hexagonální formě vykazuje prakticky stejnou strukturu jako grafit. Podobně se připraví i jeho kubickou modifikací, která je izostrukturální s diamantem. Kubický nitrid boritý má tvrdost větší než diamant a lze jej poměrně snadno připravit ve formě až centimeterových krystalů. Je těž termicky a chemicky stejné. Tyto vlastnosti jej předurčují k rozšíření jeho technického využití již v nejbližších letech.

Také nejnedočasnější sloučenina boru s uhlíkem — karbid tetrašar B₄C — je látku chemicky odolná a vynikající mimořádnou mechanickou pevností. Její polymerní strukturu tvoří škarové B₁₂ a tříčlenné lineární řetězce C₂. Tento karbid, připravovaný reakcí B₂O₃ a C v elektrické peci, nalezne pravděpodobně pro své mechanické vlastnosti významné použití v technice. Již dnes se stejně jako elementární bor uplatňuje jako retardér neutronů v jaderné technice.

Zajímavými ternárními a vyššími sloučeninami boru, obsahujícími vazby B—N, jsou sloučeniny typu cyklo-trihydroboran(6) B₃N₃H₆ (užívá se též název „borazol“). Jeho molekula má strukturu

\[
\begin{array}{c}
\text{H} \\
\text{B} \\
\text{N} \\
\text{H} \\
\text{H} \\
\text{H}
\end{array}
\]

a je izostrukturální a izoelektronová s benzenem. Svými fyzikálními a do jisté míry i chemickými vlastnostmi se benzenu velmi podobá. Existuje i řada dalších sloučenin obdobného typu, které jsou analogií aromatických uhlovodíků a jejich derivátech.

20.4 **TERNÁRNÍ KYSÍKÁTE SLOUČENINY BORU**

Do této skupiny látek řadíme především kyseliny boritvé, boritany a některé jejich deriváty.

- **Kyselina trihydroboritá**

Kyselina trihydrogenboritá je rozpustná ve vodě. Rozpouští se do značné míry pouze molekulárně. Pokud její molekuly ionizují, děje se to většinou tak, že se nejdtěje hydraturují molekulou vody a ze vzniklého slabé kyselého aduktu se pak odštěpi proton. Výsledkem je vznik tetrahydroxoboritanových aniontů v roztoku:

\[\text{H}_3\text{BO}_3 + 2\text{H}_2\text{O} = [\text{B(OH)}_4^-] + \text{H}_3\text{O}^+ \]

\[\text{Obr. 20.7. Uspořádání vrstvy atomů ve struktuře kyseliny trihydrogenboritá (○ vodík, ○ bor a ○ kyslík)} \]

V koncentrovaných roztocích kyseliny boritá se uplatňuje též tvorba polyjaderých aniontů, např.: \[2\text{H}_2\text{O}^+ + 3[\text{B(OH)}_4^-] = [\text{B}_3\text{O}_4(\text{OH})_4]^- + 7\text{H}_2\text{O} \]

Polyboritanové anionty mívají cyklickou strukturu; v rovnici uvedený anion \textit{cyklo}-tetrahydroxoboritanový(1−) je upořádán takto:

- **Kyselina hydrogenboritá**

Zaříznáním na teplotu kolem 180 °C odstřepeuje krystalická kyselina trihydrogenboritá vodu a přeměňuje se na kyselinu hydrogenboritou HBO₂. Kyselina tohoto složení se vyskytuje ve třech modifikacích a má oligomerní nebo polymerní strukturu. I v její krystalové mřížce se uplatňují vazby vodíkovým můstkem. Chemickým chováním se uvedené dvě kyseliny boritá od sebe téměř nelíší.

- **Boritany**

Svým stěchiometrickým složením mohou boritany formálně odpovídat solím kyseliny trihydrogenboritě nebo kyselinu hydrogenboritě. Mohou být odvozeny i od dalších hypotetických polyjaderých kyselin boritých.

V jejich struktuře se objevuje buď trigonalně planární atomové skupiny BO₃ nebo tetraedrické skupiny BO₄, někdy též obou současně. Boritany se dvěma už při atomu boru v jediném aniontu (ktéří je v tomto případě nejčastěji cyklicky upořádané) vytvářejí obvykle pravidelné krystalické uspořádání, při ještě větším počtu atomů boru v polyaniontu však již mají vzniklé látky většinou amorfní charakter (upořádání polyaniontu nebyvá cyklické, nýbrž řetězovité).
Ne všechny atomy vodíku z hypotetických polyjaderných kyselin boritých musí být při tvorbě boritanu nahrazeny kovem. Dokladem je složení a struktura velmi významného boritanu – boraxu. Podle stoichiometrického vzorce \(Na_2B_4O_7\cdot 10H_2O\) již lze sice považovat za dekadyhydrat tetraboritanu disodného, ale podle skutečné struktury, vyjádřené funkčním vzorcem \(Na_2B_4O_7\cdot (OH)_2\cdot 8H_2O\), je oktahydrátem tetraborito-pentaoxotetaboritanu disodného čili disodnou solí hypotetické kyseliny hexahydrogen-nonaoxotetaborité \(H_2B_4O_6\). Bicyklický čtyřjaderný anion obsažený ve struktuře boraxu má elektronový strukturní vzorec
\[
\begin{align*}
\text{OH} & \quad \text{OH} \\
\text{O} & \quad \text{B} \quad \text{O} \\
\text{B} & \quad \text{O} \quad \text{B} \\
\text{O} & \quad \text{B} \quad \text{O} \\
\text{OH} & \quad \text{OH}
\end{align*}
\]

Boritany, stejně jako kyseliny borité, nemají žlutelné oxidačně-redukční vlastnosti a jejich redukce je převážně na elementární bor nebo na boridy. Ve vodném roztoku boritany silně hydrolyzují a jejich roztoky mají alkaliční reakci. Taveniny boritanů, obdobně jako roztavený \(NaOH\), rozpuštějí většinu oxidů kovů a poskytují s nimi amorfní boritany (skla), které v případě přechodných kovů jsou charakteristické zbarvení. Technicky velmi významnými deriváty kyselin boritých a boritanů jsou od nich odvozené peroxosolučeniny a zejména peroxohydráty (str. 318), jejichž žlutelné oxidační učinky.

Uplatnění nalezly i další odvozené látky – estery kyselin boritých, thioderiváty boritanů (mají částečně všechny atomy kyslíku nahrazeny atomy síry) a řada dalších látek.

20.5 VÝROBA A POUŽITÍ TECHNICKÝ VÝZNAMNÝCH SLOUČENIN BORU

Zdrojem boru a jeho sloučení jsou především ložiska *kernitu* \((Na_2B_4O_5\cdot 4H_2O)\), *sasselitu* \((H_3BO_3)\), *colemanitu* \((Ca_2B_4O_7\cdot 5H_2O)\), *borasu* \((Na_2B_4O_7\cdot 10H_2O)\) a některých dalších minerálů. Elementární bor se uplatňuje v metalurgii jako složka některých slitin (používaných v atomových reaktorech) a při úpravě povrchu kovových součástek. Používá se též při výrobě polovodičů.

![Obr. 20-8. Hlavní cesty přimyslové výroby boru a jeho sloučení](image-url)

- **Výroba kyseliny trihydrogenboritě**
 Hlavní cestou výroby H$_3$BO$_3$ je rozklad přírodních boritanů kyselinou sírovou za zvýšené teploty:

 \[
 \text{Na}_2\text{B}_4\text{O}_7 \cdot 4 \text{H}_2\text{O} + \text{H}_2\text{SO}_4 + \text{H}_2\text{O} = 4 \text{H}_3\text{BO}_3 + \text{Na}_2\text{SO}_4 \\
 \text{Ca}_2\text{B}_4\text{O}_7 \cdot 11 \text{H}_2\text{O} + 7 \text{H}_2\text{SO}_4 + 7 \text{H}_2\text{O} = 6 \text{H}_3\text{BO}_3 + 2 \text{CaSO}_4
 \]

 Ze sassolínu se vyrábí čistá kyselina boritá rekrystalizací.

- **Výroba boritanů a peroxohydrátů boritanů**
 Nejdůležitějšíí boritan, tetraboritán disodný, se může získávat jednoduchým čištěním přírodního boraxu nebo jiných tetraboritanů. Často se též při výrobě boraxu vychází z coleenitů, které v roztoku roztokem uhličitanu nebo sira sodného:

 \[
 2 \text{Ca}_2\text{B}_4\text{O}_7 \cdot 5 \text{H}_2\text{O} + 2 \text{Na}_2\text{CO}_3 + 2 \text{NaHCO}_3 + 19 \text{H}_2\text{O} = \\
 3 \text{Na}_2\text{B}_4\text{O}_7 \cdot 10 \text{H}_2\text{O} + 4 \text{CaCO}_3
 \]

 Borax lze stejně jako některé jiné boritany připravovat též prostou neutralizací kyselin borité hydroxidem nebo uhličitanem sodným.

 Významné používá borax při výrobě skla, smaltů a glazu. Borax a další boritany jsou důležitými změkčovadly vody, popř. detergency. Rozsáhlé je uplatnění boraxu a boritanů při výrobě pracích prostředků a v metalurgii (sváření).

 Významnou látkou je peroxohydrát boritamu sodného o složení vyjádřeném stechiometrickým vzorcem Na$_2$B$_3$O$_7$·3H$_2$O. Vyrábí se reakcí boraxu s alkalickým vodným roztokem peroxidu vodíku:

 \[
 \text{Na}_2\text{B}_3\text{O}_7 \cdot 10 \text{H}_2\text{O} + 4 \text{H}_2\text{O} + 2 \text{NaOH} + \text{H}_2\text{O} = 4 \text{NaBO}_2 \cdot 3 \text{H}_2\text{O} \cdot 3 \text{H}_2\text{O}
 \]

 Látka je silně oxidovadlo, je vynikajícím bělicím prostředkem. Upotřebuje se v textilním průmyslu, při výrobě pracích prostředků a též v lékařství a v kosmetice.

- **Výroba oxidu boritého**

- **Výroba fluoridu boritého**
 K jeho syntéze se užívá řada různých chemických postupů. Běžná je výroba z boraxu působením fluorovodíku a koncentrované kyseliny sírové:

 \[
 \text{Na}_2\text{B}_4\text{O}_7 \cdot 10 \text{H}_2\text{O} + 12 \text{HF} + 2 \text{H}_2\text{SO}_4 = 4 \text{BF}_3 + 2 \text{NaHSO}_4 + 17 \text{H}_2\text{O}
 \]
nebo zařízením tetrafluoroboritu sodného s oxidem boritým a koncentrovanou kyselinou sírovou:

\[6 \text{Na[BF}_4\text{]} + \text{B}_2\text{O}_3 + 6 \text{H}_2\text{SO}_4 = 8 \text{BF}_3 + 6 \text{NaHSO}_4 + 3 \text{H}_2\text{O} \]

Plynny BF₃ se distribuuje buď stačený v ocelových tlakových nádobách, nebo ve formě svých adižních sloučenin s některými rozpouštědly (vodou, etherem aj.). Nejrozšířenější použití má v organické syntéze jako katalyzátor při polymeračních, acylačních a alkylačních reakcích.

- **Výroba komplexních hybridoboritű**

K nejdůležitějším z nich patří tetrahydryboritan sodný a tetrahydryboritan lithně a některé jejich alkylaterity a alkoxylaterity. Připravují se reakcí hydridu sodného nebo hydridu lithného s oxidem boritým, fluoridem boritým nebo s borany. Komplexní hydridoboritany jsou důležitými hydrogenučními a redukčními činidly v organické syntéze.
21 Symetrie molekul a krystalových mřížek

V předchozích kapitolách jsme se na mnoha místech setkali s pojmem atomová konfigurace, resp. tvar molekuly. Letošní se seznámili též s představou krystalové mřížky a uvedomili si její geometricky vysoce pravidelnou strukturu.

Nyní se budeme stručně zabývat otázkami symetrie čili souměrnosti všech takovýchto prostorových útvarů.

21.1 POJEM SYMETRIE

Jestliže nějaký prostorový útvar tvořený souborem bodů může být geometricky transformován tak, aby po uskutečnění transformace nově vzniklý stav (obraz) jako celek nebyl rozlišitelný od stavu předchozího (rozor), říkáme, že útvar je vzhledem k této transformaci symetrický. Geometrická transformace sama se přitom nazyvá operace symetrie.

- Operace symetrie

Dvojice bodů \(A \) a \(B \) na obr. 21-1a je útvar, který je symetrický k operaci „začáteč v rovině \(\sigma \).“ Rovina \(\sigma \) musí být kolmá na úsečku \(AB \) a musí procházet jejím středem. Nepřihlížíme-li k označení obou bodů, je zřejmé, že dvojice bodů před začátkem i po něm, kdy si oba body vyměnily místa, jsou nerozlišitelné.

Dvojice bodů \(A \) a \(B \) (obr. 21-1b) je symetrickým útvarem tře ve vztahu k další operaci symetrie, „rotace kolem osy \(C \) o úhel \(180^{\circ} \).“ Osa prochází středem úsečky \(AB \) a je na ni kolmá\(^1\). Osa rotace \(C \), která prochází bodem \(A \) i bodem \(B \), by umožňovala provedení operace symetrie „rotace kolem osy \(C \) o libovolný úhel“ (obr. 21-1c). Tato operace ponechává body \(A \) a \(B \) beze změny.

\(Obr. 21-1. \) Operace symetrie provedené s dvojicí bodů \(A \) a \(B \):

a) začátek v rovině \(\sigma \),
b) a e) rotace kolem osy \(C \),
d) inverze podle bodu \(i \),
e) translace (v nekonečně řadě bodů), f) rotace kolum složené osy \(S \)

\(^1\) Je zřejmé, že dvojice bodů \(A \) a \(B \) má nekonečný počet takovýchto os rotace.
Další vhodnou operací symetrie, použitelnou na dvojici bodů \(A \) a \(B \), je „inverze podle bodu \(C \). Bod \(i \) přitom leží ve středu úsečky \(AB \) a operace značí takovou transformaci, při níž zobrazovaného bodu jako vzoru odpovídá jeho obraz tak, že spojnìce vzoru a obrazu prochází bodem \(i \) a je jím pálena (obr. 21-1d).

Jestliže body \(A \) a \(B \) budou součástí nekonečného souboru bodů ležících na přímce v ekvivalentním rozdělení (obr. 21-1e), je možnou operací symetrie těch posouvání bodů po této přímce o jejich vzájemnou vzdálenost \(AB \) nebo o její násobek. Tato operace se nazývá „translate“.

Z důvodu, které vyplynou naopak po důkladnějším seznámení s matematickým aparátou používaným k vyjadřování a popisu souměrnosti útvarů, se za operaci symetrie považuje i tzv. „identita“, což je prosté ponechání výchozího stavu. Při této operaci se každý bod tvaru stává svým vnitřním obrazem.

 Jsou ještě další, poněkud složitější operace symetrie, jež jsou ve skutečnosti složeny z uvedených jednoduchých operací.

 Například pro dvojici bodů \(A \) a \(B \) je symetrickou operací „rotace kolem osy \(C \) o úhel \(180^\circ \) a následné zrcadlení v rovině a kolmá na osu \(C \)“. Osa \(C \) přitom prochází středem úsečky \(AB \) a svírá s ní libovolný obecný úhel. Rovina \(C \) také prochází středem úsečky \(AB \) a je na osu \(C \) kolmá (obr. 21-1f). Krátce a běžnější název pro tuto symetrickou operaci zní „rotace kolem složené osy“. Je zřejmé, že je složena z operace „rotace“ a operace „zrcadlení“.

V nekonečných souborech pravidelně uspořádaných bodů se mohou uplatňovat složité operace symetrie vytvořené kombinací operace „translaci“ s některou z dalších jednoduchých operací. Například kombinace translace s jednoduchou rotací vznikají tzv. „svobožné rotace“, kombinací translace s jednoduchým zrcadlením dostáveme tzv. „vzniklé zrcadlení“.

Je důležité si uvědomit, že všechny operace symetrie s výjimkou translace a s výjimku složených operací, v nich je translace obsažena, mají jednu zcela charakteristickou vlastnost: Nejméně jeden bod prostoru zůstává při jejich aplikaci nezměněn, tj. zobrazuje se sám na sebe. Při zrcadlení nemění položku žádný z bodů, které leží v rovině zrcadlení. Při rotaci neopouští své místo v prostoru body ležící na ose rotace. Při případě inverze zobrazuje se sám na sebe pouze bod \(i \). Symetrie útvarů, k jejímž popisu není třeba operace translace, se proto nazývá „bodová symetrie“. Typickými příklady útvarů tohoto typu jsou jednoduché molekuly i ionty, geometrická tělesa s konečným počtem vrcholů, hran a stín, a tedy i ideálně vyvinuté krystaly, a mnohé další pravidelné tvary, vyskytující se v přírodě.

Naproti tomu k popisu symetrie vnitřní struktury krystalů tvořené nekonečnými řadami, rovinami a stěnami atomů nebo iontů se vždy musí využít i operace translace, jež neponechává žádný bod v původní polozce. Symetrie tohoto druhu je proto označuje názvem symetrie prostorové.

Prvky symetrie

K vyjadření souměrnosti určitého útvaru se častěji než výčet operací symetrie používá výčet tzv. prvků symetrie. Prvky symetrie jsou jednotlivé roviny, osy a body, které lze na daném útvaru úspěšně využít k provedení operací symetrie, tedy roviny, osy a střed symetrie, jejichž příklady jsou uvedeny na obr. 21-1.
Rosiny symetrie umožňují provádět symetrickou operaci „rotaci“. Označují se symbolem σ. Podle jejich orientace k tzv. hlavní ose útvaru se tento symbol doplňuje indexem h, v nebo d (horizontální, vertikální, diagonální). Názornou představu ukazuje obr. 21-2.

Osy symetrie generují symetrickou operaci „rotace“.

Jednoduché osy symetrie označujeme C a rozlišujeme je podle jejich tzv. četnosti, tj. podle toho, kolikrát se musí symetrická operace „rotace“ opakovat, aby obraz každého bodu geometrického útvaru nakonec splnil se svým původním vzorem. Tak např. osa symetrie C_2 z obr. 21-1b je dvojčetná, neboť dvojici bodů A a B je třeba počítat dvakrát o úhel $2\pi/2$, aby se uha body vrátily do původní polohy. Obdobně osa vyjádřující symetrickou operaci „rotaci o úhel $2\pi/3$“ bude trojčetná. Zde obecně tedy platí, že osa symetrie, kolem níž se útvar otočí o úhel $2\pi/n$ je osou n-četnou. Četnost os vyjadřuje číslovkou indexem. Ose, o nichž jsem právě hovořil, budou mít tedy značení C_2, C_3 a C_n. Zvláštními případy os symetrie jsou osy C_1 a C_∞. Operaci symetrie podle osy C_1 je rotace o úhel $2\pi/1$. Vede k návratu všech bodů útvaru na původní místo, a je tedy prvkem symetrie, s jehož pomocí uskutečníme operaci identity. Osa symetrie C_∞ je osa, kolem níž může útvar rotovat o libovolný úhel $2\pi/n$ $\left(n \to \infty\right)$ a vznikající obrazy jsou od původního vzoru nerozlišitelné.

Osy symetrie různé četnosti a obrazy A_1, A_2, ... bodu A transformovaného podle těchto os jsou znázorněny na obr. 21-3.

Obr. 21-3. Četnost os symetrie. Je znázorněna postupní transformace bodu $A \to A_1 \to ...$ při aplikaci jednotlivých operací „rotace kolem osy dané četnosti“

Obr. 21-4. Složené osy symetrie S_1, S_2, S_3, a S_4 a transformace bodu $A \to A_1 \to ...$ při n-násobné aplikaci těchto os $\left(n \to \infty\right)$

1) V úvahách o četnosti os tedy vlastně upouštíme od představy úplné zaměnitelnosti bodů a přibližujeme k jejich značení.

416
Složené osy symetrie se značí písmenem S s číselným indexem, který značí jejich četnost. Výjádřit složené operace symetrie, při nichž je útvar transformován nejprve rotací kolem jednoduché osy symetrie (její četnost je určena četností složené osy) a pak nastává zrcadlení v rovině na osu kolmé. Postupné transformace bodu A při aplikaci operace rotace kolem složených os S1 a S2 jsou znázorněny na obr. 21-4. Je vidět, že rotace kolem složené osy S1 je vlastně totožná s jednoduchým zrcadlením v rovině. Aplikace osy S2 má na body útvaru stejný účinek jako inverze podle bodu A. Zajímavé jsou rozdíly v poloze obrazů A_1 bodu A při aplikaci k operaci složené osy S_1 v případě, kdy n je číslo sudé, a v případě, kdy je liché. Pouze pro sudá n je hod A_n totožný s bodem A. Pro liché číslo n nastává ztožtožnění až po uskutečnění 2n symetrických operací.

Střed symetrie se označuje i jako první pořadný kanonický uskladnění operace inverze podle bodu ř. Zobrazení libovolného bodu v prostoru pomocí středu symetrie je ekvivalentní jeho zobrazení pomocí libovolné osy S_2, která bodem i prochází.

Všechny dosud uvedené prvky symetrie lze označit za prvky symetrie bodové. Mimoto samozřejmě existují prvky prostorové symetrie (str. 415). Tvoří je jednak část prvky symetrie bodové, jednak další prvky, pro prostorovou symetrii specifické. Za takové lze považovat šroubovou osu symetrie (v četnosti 2, 3, 4 a 6) a rovinu posuvného zrcadlení. Podrobnějšími a názornějšími objasněními posledním jmenovaným prvky prostorové symetrie se zde nesnáhujeme zabývat, protože k výkladu souměrnosti a struktury krystalových mřížek použijeme jiný postup než představy prostorové symetrie.

21.2 BODOVÁ SYMETRIE MOLEKUL A IONTŮ

Bodovou symetrii molekul, resp. iontů se rozumí symetrie atomové konfigurace těchto částic, tedy prostorových útvarů tvořených atomy a molekulami. Přípomínka atomy je z hlediska operaci symetrie jsou zaměňován pouze jí údajům ožímu prvku. Při analýze souměrnosti molekuly se vždy předpokládá, že jí údají jsou v rovnovážných polohách, a nespíše se k jejich tepelnému pohybu. Jinak řečeno, při úvážení o symetrii molekul a jiných chemických skupinách používáme dělku vzhled mezi atomy a voděně úhly...
<table>
<thead>
<tr>
<th>Symbol grupy</th>
<th>Prvky symetrie</th>
<th>Vzájemná poloha prvků symetrie</th>
<th>Příklady tvaru molekul</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td></td>
<td>identita</td>
<td>CH₃CHFCI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PFClBr</td>
</tr>
<tr>
<td>S_2</td>
<td>1osa C₂</td>
<td></td>
<td>H₂O₂</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C₂H₄Cl₂</td>
</tr>
<tr>
<td>S_3</td>
<td>1rovina σ</td>
<td></td>
<td>HC₁O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HN₃</td>
</tr>
<tr>
<td>S_{2h}</td>
<td>1osa C₂</td>
<td></td>
<td>Cl₁</td>
</tr>
<tr>
<td></td>
<td>1rovina σ_h</td>
<td></td>
<td>Cl₂</td>
</tr>
<tr>
<td></td>
<td>1střed i</td>
<td></td>
<td>Cl₂H₂Cl₂</td>
</tr>
<tr>
<td>S_{2v}</td>
<td>1osa C₂</td>
<td></td>
<td>H₂O</td>
</tr>
<tr>
<td></td>
<td>2roviny σ_v</td>
<td></td>
<td>Cl₂H₂Cl₂</td>
</tr>
<tr>
<td>S_{3v}</td>
<td>1osa C₃</td>
<td></td>
<td>NH₃</td>
</tr>
<tr>
<td></td>
<td>3roviny σ_v</td>
<td></td>
<td>Cl₂H₂Cl₂</td>
</tr>
</tbody>
</table>

418
<table>
<thead>
<tr>
<th>Symptom</th>
<th>Řady</th>
<th>Vzájemná poloha</th>
<th>Příklady tvárů molekul</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_{2d}</td>
<td>1 osa C_2 (a C_2)</td>
<td>2 osy C_2</td>
<td>2 roviny σ_v</td>
</tr>
<tr>
<td>D_{2h}</td>
<td>3 osy C_2</td>
<td>3 roviny σ_v</td>
<td>1 sřed i</td>
</tr>
<tr>
<td>D_{3h}</td>
<td>1 osa C_3</td>
<td>3 osy C_2</td>
<td>3 roviny σ_v</td>
</tr>
<tr>
<td>D_{4h}</td>
<td>1 osa C_4 (a C_2)</td>
<td>4 osy C_2</td>
<td>4 roviny σ_v</td>
</tr>
<tr>
<td>D_{5h}</td>
<td>1 osa C_5</td>
<td>5 osy C_2</td>
<td>5 roviny σ_v</td>
</tr>
</tbody>
</table>
molekul. Označení bodových grup symetrie, použité v tabulce, se nazývá Schönniesova symbolika. Užívá se zejméná v chemických disciplínách, méně běžná je při popisu symetrie krystalů.

Tomu, kdo si chtěl pochopit formální určování symetrie molekul, jejichž atomová konfigurace je známa, lze doporučit, aby pomocí tab. 21-1 splnil tyto úkoly:

a) Vyhledej prvky symetrie, popř. bodové grupy symetrie jednoduchých geometrických útvarů a těles — říkáme (\(\text{S}_{\text{nh}} \)), obecný trojúhelník (\(\text{S}_{\text{h}} \)), rovnoramenný trojúhelník (\(\text{S}_{\text{v}} \)), rovnostranný trojúhelník (\(\text{S}_{\text{a}} \)), čtverec (\(\text{S}_{\text{d}} \)), obdélník (\(\text{S}_{\text{ab}} \)), osmiúhelník (\(\text{S}_{\text{hh}} \)), pravidelný n-gonální (\(\text{S}_{\text{gh}} \)), trigo-

nální pyramidu (\(\text{S}_{\text{py}} \)), trigosálová pyramida (\(\text{S}_{\text{py}} \)), tetragonalní bipyramidu (\(\text{S}_{\text{bp}} \)), a tetragonalní bipyramidu (\(\text{S}_{\text{bp}} \)), a tetraedru (\(\text{S}_{\text{t}} \)), a ukáze (\(\text{S}_{\text{w}} \)), a vše (\(\text{S}_{\text{aw}} \)), a).

b) Uvědomte si, že běžnější idealizovaných tvarů, vyskytujících se v přírodě — lidské tělo (\(\text{S}_{\text{b}} \)), většina savců (\(\text{S}_{\text{b}} \)), většina ryb, ptáků, hmyzu (\(\text{S}_{\text{b}} \)), dešťová kapka (\(\text{S}_{\text{b}} \)), vejce (\(\text{S}_{\text{b}} \)), ulita hlemýžď (\(\text{S}_{\text{b}} \)) atd.
c) Nejčet zmeny symetrii v řádcích molekul vznikajících postupnou náhradou některých atomů jinými, např.

\[
\begin{align*}
\text{CH}_4(\sigma_0) & \rightarrow \text{CH}_3\text{Cl}(\sigma_1) \rightarrow \text{CH}_2\text{Cl}_2(\pi_3) \rightarrow \text{CHCl}_3(\pi_2) \rightarrow \text{CCl}_4(\sigma_0)

[\text{PtCl}_4]^2- (\sigma_{eq}) & \rightarrow [\text{PtCl}_2\text{Br}_2]^+ (\pi_3) \rightarrow \text{cis}[\text{PtCl}_2\text{Br}_2]^+ (\sigma_{eq}) \rightarrow \text{trans}[\text{PtCl}_2\text{Br}_2]^+ (\sigma_{eq}) \rightarrow \ldots

\text{PCl}_3(\pi_3) & \rightarrow \text{PCL}_3F(\sigma_1) \rightarrow \ldots

\text{SF}_6(\sigma_3) & \rightarrow \text{SF}_5\text{Cl}(\sigma_3) \rightarrow \text{transSF}_5\text{Cl}(\pi_3) \rightarrow \text{cisSF}_5\text{Cl}(\sigma_3) \rightarrow \ldots
\end{align*}
\]

21.3 SYMETRIE KRystalů a KRystalových MŘÍZEK

Ideálně vyvinuté krystaly mají zpravidla tvar poměrně pravidelných geometrických těles. Úhly sestrojené určitou dvojicí sousedních ploch na povrchu krystalu chemického jídle jsou neměnné a nezávislé na velikosti krystalu, ani na tom, jak dokonale je vytvořen. Toto pravidlo se nazývá „zákon stálosti kryštalů“. Zajímá v minulosti měl významně použití v mineralogii, neboť zjišťováním těchto úhlů bylo možno identifikovat krystaly minerálů.

Oba uvedené zákony platí proto, že krystaly mají vysoce pravidelnou vnitrní strukturu, v niž se pravidelně opakuje poměrně jednoduchý, často jen několikaatomový motiv – základní (elementární) buňka. Pravidelné a geometricky poměrně velmi přesně specifikovaný tvar krystalu je tedy makrokopickým projevem a odradou mikroskopické struktury kryštalických tuhých látek.

Kryštalografické soustavy a oddělení

Zkoumání symetrie minerálů a kryštalů všechn uměle připravených chemických látek vedlo k zajímavému zjištění, že při popisu jejich bodové symetrie se vždy vystačí s prvky symetrie \(\pi \), \(S_n = i, C_1, C_2, C_3, C_4, C_5, S_1 \) a \(S_2 \). Ostatní prvky se v symetrii vnějšího tvaru krystalu nikdy neuplatňují. Uvedenéme-li si, že kryštal je vybudován ze základních buněk podobně jako např. zeď domu z cibul, tedy jejich mnohonábozného opakování v prostoru, a že všechny tyto buněky musí být v prostoru orientovány stejným způsobem a přitom jejímu dokonale vyplňovat, stává se nám uvedené zjištění pochopitelným. Buňky totiž mohou být pouze tvar takových geometrických těles, jako je např. krychle, kvádr, pravidelný trojbočky hranol nebo šikmý hranol s čtvercovou, kosočtvercovou nebo kosošestiúhlinkovou základnou, jímž lze při vhodném způsobu uložení vyplnit prostor bez mezér. Tuto vlastnost nemají např. hranoly se základnou tvořenou pravidelným pětiúhelníkem, osmiúhliněm a j. Z obr. 21-5 je zřejmé, že rovnostranné trojúhelníky, čtverce, obdélníky, kosočtverce, kosošestiúhlinky nebo šestiúhelníky mohou skutečně běžce buňky vyplnit rovinu, avšak u pětiúhelníků, šestišestiúhliníků a osmiúhelníků to již nesmí být. Poněvadž se tedy obvykle raději obdélníkova a osmiúhelníkova, tedy \(n > 6 \) nemohou objevit při popisu symetrie základní buňky kryštalu, nemohou být přítomny ani v grupě symetrie kryštalu jako celkem. Omezení počtu prvků bodové symetrie kryštalů vedle k omezování počtu grup, do kterých lze tyto prvky kombinovat. Existuje proto pouze 32 kryštalografických oddělení, sdružujících se do 7 kryštalografických soustav.
Krystalografické soustavy a jejich jednotlivá oddělení by sice bylo možno definovat podle obsahu prvků symetrie, ale běžnější je použít k jejich charakterizaci osový kříž a délky hrán elementární buňky. To v konečném důsledku znamená, že se souměrnost krystalů v běžné chemické praxi nevyjadřuje jejich příslušnosti ke grupě symetrie, nýbrž pouze určením příslušnosti krystalu do jedné ze sedmi krystalografických soustav.

Obr. 21-5. a) až f) Pravidelné n-úhelníky, které při vhodném těsném způsobu připojení vytvářejí celistvou rovinou plochu.

Obr. 21-6. Vznik různých tvorů krystalu výstavbou z elementárních krychlových buněk. a) Krychle;
b) oktaedr; c) dodekaedr;
d) průnik krychle s oktaedrem.
<table>
<thead>
<tr>
<th>Systém</th>
<th>Elementární buňka</th>
<th>Parametry elementární buňky</th>
<th>Příklady</th>
</tr>
</thead>
<tbody>
<tr>
<td>trojklonná</td>
<td></td>
<td>$a + b + c$ $\alpha + \beta + \gamma = 90^\circ$</td>
<td>H_3BO_3 $CuSO_4 \cdot 5H_2O$ $K_2Cr_2O_7$</td>
</tr>
<tr>
<td>(triklinická)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>jednoklonná</td>
<td></td>
<td>$a + b + c$ $\alpha = \gamma = 90^\circ + \beta$</td>
<td>S (modifikace β) $CaSO_4 \cdot 2H_2O$ $FeSO_4 \cdot 7H_2O$</td>
</tr>
<tr>
<td>(monoklinická)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kosočtvercová</td>
<td></td>
<td>$a + b + c$ $\alpha = \beta = \gamma = 90^\circ$ σ (modifikace α)</td>
<td>$CaSO_4$ $MgSO_4 \cdot 7H_2O$</td>
</tr>
<tr>
<td>(kubická)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>čtvercová</td>
<td></td>
<td>$a + b + c$ $\alpha = \beta = \gamma = 90^\circ$</td>
<td>TiO_2 (rutil) $CaWO_4$ $CuFeS_2$</td>
</tr>
<tr>
<td>(tetragonální)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trigonální</td>
<td></td>
<td>$a + b + c$ $\alpha = \beta = \gamma = 90^\circ$</td>
<td>SiO_2 (β) Al_2O_3 $CaCO_3$ (kalcit)</td>
</tr>
<tr>
<td>(ramboedrická)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>šestéhelníková</td>
<td></td>
<td>$a + b + c$ $\alpha = \beta = \gamma = 90^\circ + \gamma = 120^\circ$</td>
<td>C (grafit) Mg SiO_2 (α) ZnS (wurtzit)</td>
</tr>
<tr>
<td>(hexagonální)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>krychlová</td>
<td></td>
<td>$a + b + c$ $\alpha = \beta = \gamma = 90^\circ$</td>
<td>C (diamant) $NaCl$ CaF_2 Cu ZnS (sfořítk)</td>
</tr>
</tbody>
</table>
Přehled krystalografických soustav je uveden v tab. 21-2. Jsou v ní znázorněny tvary jednoduchých elementárních buněk, z nichž musí být krystal patřicí do příslušné soustavy vystaven, a uvádí též vzájemnou polohu os a relace délky elementárního rovnooběžnosti.

Tabulka 21-3. Soubor čtrnácti elementárních Bravaisových buněk

<table>
<thead>
<tr>
<th>Typ</th>
<th>P</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trojúhelníkový</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jednouhelníkový</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kosočtvercový</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Šestiúhelníkový</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krychlový</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

424
Základní buňky krystalových mřížek

Podrobnou analýzou prostorové symetrie rozlišených krystalových mřížek, již provedl Bravais, se zdálo, že nejméně možný počet základních buněk (elementárních rovnoběžností), jejichž translace lze odvodit strukturu libovolné krystalové mřížky, je čtverce. Tyto základní buňky se kromě svého tvaru, a tím i příslušnosti k určité krystalografické soustavě, od sebe liší prostorovým roz- místěním stavebních částí.

Pokud jsou atomy nebo ionty obsazeny pouze vrcholy základních buněk, hovoříme o buňkách *primitive* (označovaných P); když k obsazení vrcholů přibude obsazení středů obou základ rovnoběžností, nazývají se také buňky *basální centrované* (C). Sou-li kromě vrcholů obsazené středy všech povrchových ploch buňky, jde o buňky *plošně centrované* (F). A konečně sestavením použitím všech vrcholů buněk i jejich středů (těžiště) vznikají, elementární buňky *prostorně centrované* (I). Soubor čtvereční Bravaisových buněk je uveden v tab. 21-3. Je vidět, že krystalové mřížky příslušející k trojúhelní, trigonální a šestéčké soustavě mohou být vytvořeny translačním buněk P, mřížky ostatních soustav mohou být kromě toho vytvářeny z translační buněk typu C, F nebo I.

Bravaisovy základní buňky uvedené v tab. 21-3 jsou ovšem pouze jedním z možných (ale nejčastěji používaných) souborů elementárních rovnoběžností. Bylo by možné sestavit i jiné obdobné soubory základních buněk, které by také dovolovaly odvození všech existujících krystalových mřížek, avšak počet buněk v židněm z těchto dalších souborů by nebyl menší než čtverce.

Krystalové mřížky kovů

Krystaly elementárních kovů obsahují atomy jediného druhu, a mají proto poměrně jednoduchou mřížku. Strukturu těchto mřížek lze odvodit pomocí představy o nejčastějším vyplnění prostoru koulami jednotného poloměru.

Obr. 21-7. Nejčastější uspořádání kouli: a) v jedné vrstvě; b) ve dvou vrstvách; c) Hexagonální; d) kubic.
Rovinná vrstva kouli v jejich nejčasnějším uspořádání je znázorněna na obr. 21-7a. Položíme-li na ni další vrstvu, stejně uspořádanou, zapadá na její koule částečně do mezery (jamek) prvé vrstvy. Poněvadž mezery je v první vrstvě dvakrát více než kouli, zůstane polovina mezery prvé vrstvy po přiložení druhé vrstvy neobsazená (obr. 21-7b). Mezery v druhé vrstvě kouli jsou však nyní dvojího druhu. Za první druh můžeme považovat mezery, které leží nad středy atomů prvé vrstvy, a za druhý druh mezery, jež jsou nad mezerymi prvé vrstvy. Třetí vrstva nejčasnější uspořádaných kouli tedy může být přiložena na druhou vrstvu dvojím způsobem: buď tak, že koule prvé a třetí vrstvy leží přesně nad sebou, čímž vzniká nejčasnější hexagonální prostorové uspořádání kouli (obr. 21-7c), nebo tak, že koule třetí vrstvy leží nad mezerymi prvé vrstvy a vzniká nejčasnější krychlové uspořádání (obr. 21-7d). Oboji uspořádání je z hlediska kompaktnosti stejně výhodné, koule se v obou případech vypouští 75 % prostoru a každá z nich se dotýká dvanácti sousedních kouli. Nejčasnější hexagonální uspořádání může být odvozeno translatií primitivní hexagonální Bravaisovy buňky, uspořádání krychlové posouváním krychlové plošně centrován Bravaisovy buňky.

Elementární kovy většinou tvoří tři mřížky odpovídající třem z uvedených tří struktur.

Na první pohled by se zdalo, že energeticky nejvýhodnější mohou být jen obě uspořádání nejčasnější. Nejčasnější mřížky atomové orbitály obsazené elektrony jsou zcela reálné útvary, jejichž překryv energie a symetrie ovlivňují – někdy i zásadně – způsob, jakým se atomy vzájemně koordinují.

Krytové mřížky iontových sloučenin

Většina iontových sloučenin s neplně složitou stechiometrií vytváří poměrně jednoduché krytové mřížky, jejichž uspořádání lze zdůvodnit obdobnými úvahami, jaké jsme použili při výkladu mřížek kovů.

Poněvadž iontová vazba má vždy nevýznamnou směrovou orientaci, rozhodují o vnitřní uspořádání iontových krytových mřížek. První uspořádání podobná nejčasnějším uspořádaním kouli, avšak nyní jí kouli dvou různých poloměrů, nebo kationy a anionty přihloubené v mřížce se obvykle rozměrově od sebe liší. Zastoupení kouli v mřížce musí odpovídat zastoupení iontu v stechiometrickém vzorce sloučeniny. Poněvadž kationy jsou obvykle podstatně menší než anionty (str. 121), lze často úspěšně použít představy, že v iontových mřížkách jsou kationty umístěny do mezer, které vznikají uvnitř skupin dotýkajících se aniontů.

Poměr poloměru kationtu a aniontu je proto často, které ovlivňuje způsob koordinace kationtu aniontu v mřížce. Toto závislost ukazuje tab. 21-4.
Ionové složeniny s kationty velmi malými v poměru k aniontům obsahují ve své míře lineární strukturální motiv složený z dvojice aniontů koordinovaných na jediný kation. Se vzrůstem relativní velikosti kationtu dochází u reálných ionových mířek ke zvýšení jeho koordinačního čísla. Kation je umístěn v důsledku trojice tetraedricky nebo tetragonálně uspořádané čtverce či oktaedricky uspořádané šestice aniontů. Přibližně se rozměr kationtu rozměru aniontu, může dojít i k jeho krychlové koordinaci osmi anionty. Pokud by rozměr kationtu byl stejný jako rozměr aniontu, mělo by vznikat nejčastější hexagonální nebo kubické uspořádání. Takováto struktura však není výhodná z hlediska elektrostatických sil, neboť udržuje přímo kontaktní velký počet stejnojmenných nábojů a jejich elektrostatické odpuštování brání u reálných látek jejím vzniku.

<table>
<thead>
<tr>
<th>Poměr poloměrů kationtu a aniontu (r_k : r_A)</th>
<th>Způsob koordinace</th>
<th>Koordinační číslo kationtu</th>
<th>Znázornění</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\leq 0,155)</td>
<td>lineární</td>
<td>2</td>
<td>[Diagrama 1]</td>
</tr>
<tr>
<td>(0,155 \leq 0,255)</td>
<td>trojúhelníkový</td>
<td>3</td>
<td>[Diagrama 2]</td>
</tr>
<tr>
<td>(0,255 \leq 0,414)</td>
<td>tetraedrický</td>
<td>4</td>
<td>[Diagrama 3]</td>
</tr>
<tr>
<td>(0,414 \leq 0,732)</td>
<td>čtvercový</td>
<td>4</td>
<td>[Diagrama 4]</td>
</tr>
<tr>
<td>(0,732 \leq 1,000)</td>
<td>oktaedrický</td>
<td>6</td>
<td>[Diagrama 5]</td>
</tr>
<tr>
<td>(\geq 1,000)</td>
<td>krychlový</td>
<td>8</td>
<td>[Diagrama 6]</td>
</tr>
</tbody>
</table>

Hranění poměry poloměrů kationtů a aniontů, uváděné v tab. 21-4 pro jednotlivé způsoby koordinace, velmi dobře souhlasí s představou, že ionty při tvorbě ionové mířky vyhledávají takové způsoby vzájemné koordinace, při nichž dochází k jejich nejčastějšímu kontaktu. Například tetraedrická dutina vzniká u vnitřního trojúhelníkové čtvrce aniontů bude obsazena kationtem jen tehdy, jestliže jeho rozměr bude takový, aby se do této dutiny průvodně vejeli. Jestliže kation bude značně menší, než je rozměr dutiny, ke vzniku mířky s takovýmto strukturálním motivem nedojde a s velkou pravděpodobností se kationy umístí do dvojího tetraedrických dutin uvnitř trojice aniontů. Bude-li naopak kation přilší velký na to, aby se vejeli do tetraedrické dutiny, dojde pravdě-
podobně k jeho tetragonalní nebo oktaedrické koordinaci anionty. Výpočtem lze dokázat, že v rozsáhlé, prakticky nekonečné mřížce jsou geometricky výhodná uspořádání optimální i z hlediska elektrostatických sil působících mezi ionty.

Způsoby, jimiž se uvedené strukturní motyly mohou umísť t v mřížce a vytvořit tak určitou specifickou strukturu látky, jsou velmi rozmanité. Záleží zejména na stehiomeetrii sloučení, ale i na řadě dalších faktoru.

Krystalové mřížky kovalentních sloučení

U látě s kovalentní vazbou, zejména u takových, v nichž systém kovalentních vazeb tvorí prostorovou nebo rovinovou síť, popř. četězec (str. 165), ustupuje požadavek kompaktnosti mřížky do pozadí a rozhodujícím faktorem se stává směrová orientace vzniklých vazeb σ.

Například atom, který zapoju do tvorby vazeb orbital s a trojici orbitalů p (tzn. čtyři HAO sp³), bude svými partnery koordinován tetraedricky bez zřetele na rozměrové relace zúčastněných atomů. Obdobně účast tří HAO sp³ na určitém atomu vede k jeho trignální koordinaci, pět HAO dsp³ vytvoří koordinací trigonální bipyramidální apod.

U některých sloučení se může tento faktor uplatnit v takové míře, že se v jejich mřížce vytvářejí více či méně objemné dutiny. Tento jev je častý u některých hliníkřemičitanů (str. 392), jež jsou sloučeny ionovými sloučeninami, ale obsahují rozsáhlé polyanionty s kovalentními vazbami.

Typickými příklady krystalových mřížek, jejichž struktura je vytvořena prostorovým uspořádáním kovalentních vazeb σ, je vrstevnatá mřížka grafitu (str. 281), prostořová mřížka diamantu (str. 281) a karbidu křemičitu (str. 378), lineárně řetězovitá struktura PNC₁₂ (str. 362), SiS₂ (str. 386) i řada dalších.

Krystalové mřížky molekulových látěk

Nejednodušší je situace u krystalů vázaných plynů, které jsou vystaveny z jednoatomových molekul. Van der Waalsova vazba mezi molekulami nemá směrový charakter, a proto se vytváří nejší nehexagonální nebo kubické uspořádání.

U látě s vícemolékulovými molekulami nacházejí podobnou strukturu, pokud jsou jejich molekuly natolik symetrické, že se celkovým tvarem blíží kouli. Těžiště molekuly leží ve vrcholech a centrujících bodech buněk nejmenšího uspořádání. Molekuly přitom nejčastěji kolem svého těžiště volně rotují. Takovou strukturu nacházíme např. u krystalů H₂, CO, HBr, HI, H₂S, CH₄ i u některých dalších látěk.

Díky za pozornost a bohužel bez dalších údajů o kontextu, celkově je však zápis čitelný a výkladový.

Vytvářejí-li krystalovou mřížku molekuly, které jsou schopné pouštět se intermolekulárním vodíkovým můstkem, má to obvykle rozhodující vliv na její uspořádání. Přestože vazba vodíkovým můstkem je poměrně slabá, dochází k jejímu uplatnění ve struktuře látky. Vzájemná orientace molekul je (zejména při nižších teplotách) taková, aby síly vodíkových můstků bylo co nejrozsáhlejší. Stejně jako u kovalentních látek pozorujeme i zde vznik struktur s dutinami, popř. struktur vrstevnatých a řetězovitých. Dobrým příkladem je uspořádání mřížek ledu (str. 224), kyseliny borité (str. 410) a prakticky všech kyslíkatých organických i anorganických kyselin.

- **Izomorfie, izotypie a polymorfie látek**

Z dosavadního výkladu vyplývá, že o uspořádání částic v krystalové mřížce rozhodují především:

1. relace velikosti všech zúčastněných částic,
2. směrová orientace vaze,
3. stehiometrie sloučeniny.

Dvě skutočnosti těchto stehiometrického typu, obsahující částice s podobným poměrem velikosti a poutací vazebnými silami obdobné směrové orientace, nivají proto dosti čistě blízkou nebo prakticky stejnou vnitřní krystalovou strukturou.

O látkách, které krystalizují v těžké krystalografické soustavě a mají tvárové i rozměrové velmi podobné elementární buněky, v nich jsou stavební jednotky uspořádány týmž způsobem, a které často nivají i krystaly podobného vejčitého vzhledu, říkáme, že jsou izomorfní (stejnozravé).

Izomorfní látky lze experimentálně poměrně jednoduše identifikovat podle toho, že tvoří směsné krystaly, nebo podle toho, že jsou schopné tzv. přerůstání krystalů.

Tvorba směsných krystalů probíhá tak, že z roztoku nasyaceného oběma látkami nebo z tavenní obou látek se vylučují krystaly jedného typu, obsahující obě komponenty nejčastěji v pro-měnném a nestehiometrickém zastoupení. Za přerůstání označujeme jiná spočívající v tom, že krystal jedné látky po ponoření do nasyaceného roztoku (nebo tavenniny) druhé látky narůstá dál při zachování původního tvaru.

Typickými a již dávno známými izomorfními látkami jsou mnohé síranýy. Izomorfní jsou např. K₂SO₄ a (NH₄)₂SO₄, krystalizující v kosočtverecně soustavě, Jinou izomorfní řadu tvorí Rb₂SO₄, Cs₂SO₄, Ag₂SO₄ a Tl₂SO₄. Izomorfní je i skupina tzv. šalky — MgSO₄·7H₂O, NiSO₄·7H₂O, ZnSO₄·7H₂O a MnSO₄·7H₂O. Známou skupinou izomorfních látek jsou ka-ˈmeny.

Pro vznik izomorfních látek není nutná vyslovená chemická příbuznost látek a dokonce nemusí být na závadu ani rozdíly v oxidacích stavech zúčastněných atomů v náboji ionů. Dokladem je známá nesurová řádu izomorfních látek — K[BF₄], YPO₄, BaSO₄, PbSO₄, KClO₄ a KMnO₄.

Celé rozsáhlé skupiny látek se vyznačují dokonalou tvarovou příbuzností elementárních buněk, a to shodným rozvržením stavebních jednotek v nich se vyskytujících; pouze podmínka
jednotných rozměrů stavebních jednotek u nich není splněno. V takových případech látky spolu netvoří (až na výjimky) směsi krystalov se jejich krystaly nejsou schopné vzájemného přerůstání. Říkáme, že tyto látky jsou izotypické.

Některé látky se mohou v závislosti na vnějších fyzikálních podmínkách vyskytovat ve dvou i více kristalografických formách, lišících se uspořádáním a parametry základních buněk i vnějším tvarem krystalů. Takové látky se nazývají polymorfní (vicenútrní). Jejich jednotlivými formami se řád modifikace (viz str. 154). Zkazují-li polymorfní prvek, nazývá se tento jev allotropie a modifikace prvku se jmenují allotropické modifikace.

Příkladem polymerofního chování prvků jsou allotropické modifikace síry (str. 275), uhlika (str. 281), fosforu (str. 279) aj. U kvůj vykazuje allotropii např. cín (krychlový α-Sn, čtverecní β-Sn, šestéhornej γ-Sn).

U složení vyskytujících se v přírodě je nejznámější svou polymorfovou oxid hliněité; tvorí osm modifikací — křemen α a β, tridymit α a β, cristobalit α, β a β η přívalových tlačích uměle připravený stálou. Také oxid titánový vytváří modifikace, jež se v mineralogii rozlišují názvy brookit, rutil a anatas. Polymorfní jsou i některé chlorkohlenidy, např. Ag₂S a Ag₂Se, a rozšiřují řada dalších látek. Příkladem polymerofních sloučení nevsykajících se v přírodě jsou AgI, Ag₃HgS₂, PbI₂, PbO, RbCl. U některých z nich je změna modifikace provázena změnou barvy, elektrické vodivosti, popř. dalších fyzikálních vlastností, což se jistě využívá i v technické praxi.

- Uspořádání některých nejvícejších typů krystalových mřížek

Isotropé krystalové mřížky je úzkou složenou velmi rozšířenou. Existují rozdílné skupiny látek vyznačujících se isotropickým uspořádáním elementárních buněk. Bývají obvykle označována skupinu názvem nebo vzorcem nejvícejší látky, která tuto mřížku vytváří. S několika nejdůležitějšími a přítom poměrně jednoduchými typy krystalových mřížek se nyní seznámíme.

Nejdříve si povšimneme těchto typů krystalových mřížek, v nichž krystalují binární složení obecněho stechometrického vzorce XY.

1. Typ NaCl (mineral halit). Úsek kubické krystalové mřížky NaCl je znázorněn na obr. 21-11. Na každý ion Na⁺ je koordinováno šest iontů Cl⁻ a naopak každý chloridový ion je
obklopen šesti ionty sodnými. Mřížka NaCl je v podstatě tvořena dvojicí identických kubických plošně centrováných mřížek, z nichž jedna je vystavena z iontů Na⁺ a druhá z iontů Cl⁻. Tyto mřížky jsou proti sobě posunuty o polovinu délkov elementární buňky.

Typ NaCl je velmi rozšířen, krystalizují v něm mnohé hydry a halogenidy alkalických kovů, oxidy, sulpidy, selény a tellury kovů alkalických zemin a dále též AgF, AgCl, AgBr, GaP, SnTe, MnO, MnS, MnSe, FeO, CoO, NiO, CdO, PbS, PbSe, PbTe a některé nitridy a karbidy. K typu NaCl patří i stoichiometricky složitéjší složeniny, v nichž uzlové body mřížky NaCl jsou obsazeny složitými (komplexními) ionty přibližně kulového tvaru.

Obr. 21-11. Kubická mřížka NaCl

Obr. 21-12. Kubická mřížka CsCl

Obr. 21-13. a) Hexagonální mřížka NiAs.
b) Elementární buňka mřížky NiAs

Obr. 21-14. Kubická mřížka sfaleritu ZnS

Od mřížky NaCl můžeme formálně odvodit elementární buňky i jiné než kubické soustavy, a to tak, že si představíme uzlové body obsazené ionty mříži než kulové symetrie. Taková mřížka je samozřejmě v jednom nebo víc směrech deformována. Deformovanou mřížku NaCl mají některé dusičnan, uhlíkaty, chloridnici, strany, chromany a karbidy.

2. **Typ CsCl.** Je poměrně méně rozšířen než strukturální typ NaCl. Každý kation je v mřížce CsCl obklopen osmi anionty, a naopak na každý anion je koordinováno osm kationtů. Struktura je zřejmá z obr. 21-12. Ze těch fakcí — a uvedený obrázek to dokazuje — že struktura CsCl je tvořena dvěma mřížkami, primitivní kubickou mřížkou kationtů a primitivní kubickou mřížkou aniontů. Mřížky jsou proti sobě posunuty o polovinu tělesové úhlopříčky elementární buňky.

431
Uspořádání měříky CsCl vyhovuje především iontovým sloučeninám, neboť uvádí každý z iontů měříky do přímého styku s osmi ionty nesoucími opačný náboj. Strukturu CsCl mají především některé chloridy, bromidy a jodidy (Co\textsubscript{2}, Pb\textsubscript{2}, NH\textsubscript{4} aj.).

Stejně jako tomu bylo v případě NaCl, lze i od struktury CsCl odvodit uspořádání měřízek několika složitějších látek, např. Ag[\text{NbF}_{6}]	extsubscript{3}, [\text{Ni(H\textsubscript{2}O)}\textsubscript{6}][\text{SnCl\textsubscript{4}}].

3. Typ NiAs (minérál nikelit). Jeho struktura je znázorněna na obr. 21-13. Atomy As leží v těžištích trigonálních prizmatů, z nichž každé je tvořeno šestí atomů Ni. Na atomech Ni je naproti tomu koordinována v podstatě oktaedricky uspořádaná šestice atomů As, ale mimo také dvojice sousedních atomů Ni. Měříka tedy uvádí do kontaktu s stavební jednotkou šestice druhu, to ovšem nevyhovuje iontovým sloučeninám, ale naopak je vhodné u sloučenin, v nichž se uplatňuje kovová vazba.

Strukturu typu NiAs zjišťujeme u binárních sloučenin XY, ve kterých X je přechodný kov a Y je jiný kov nebo polokov (CoAs, MnAs, FeAs, NiGe, PdGe, IrGe, PtGe, PdSi, PtSi, PdSn, AuGa, ale i CrP, MnP, FeP, CoP, PbSb aj.).

Hexagonální měříka NiAs může být opět výchozí strukturou pro odvození některých komplikovanějších a méně symetrických uspořádání.

Struktura tohoto typu se vyskytuje u sloučenin, v nichž alespoň jednomu ze stavebních kamenů vyhovuje – bud ze sterických, nebo z vazebních důvodů – koordinace tetraedrická a jejich vazebná síla vyšší než aj. Vzniká většinou těto struktury patří zejména SiC, ZnO, MnS, CdS, HgS, MnSe, ZnSe, CdSe, HgSe, dále některé telluridy a fosfidy a třeba CuCl, CuBr, CuSe a Na\textsubscript{2}F.

Sfaleritová měříka, pokud je obecná atomu těhož druhu, vytváří strukturu izotypickou s měříkou diamantu (např. měříkou Ge a Si).

Uspořádání měříky vyhovuje sloučeninám s určitým podílem iontovosti ve vazbě a s takovými poměry poloměrů stavebních jednotek, jež jsou příznivé pro tetraedrickou koordinaci. Wurtzitová struktura se vyskytuje u některých oxidů (BeO, ZnO), sulfidů, selenidů a telluridů (Zn\textsubscript{2}, Mn\textsubscript{2}, Cd\textsubscript{2}), nitridů (Al\textsubscript{3}, Ga\textsubscript{3}, In\textsubscript{3}) a – stejně jako v případě předchozího typu sfaleritového – u halogénidů měděných a stříbrných.

Obr. 21-15. Hexagonální měříka wurtzitu ZnS a její elementární buňka
Další strukturní typy mřížek, kterými se nyní budeme zabývat, se uplatňují u sloučení se stechiometrií XY_2 nebo X_2Y.

Obr. 21-16. Krychlová mřížka fluoritu CaF$_2$

Strukturní typ CaF$_2$, fluoritový, nacházíme většinou u látek se stechiometrií XY_2, a to zejména tehdy, když elektropositivní stavbou jednotka X je relativně větší než elektronegativní složka Y. Tato situace není běžná, neboť kationty obvykle mají menší rozměry než anionty, a proto tento typ struktury není u iontových sloučenin rozšířen. Fluoritovou strukturu vykazují např. fluoridy BaF$_2$, CdF$_2$, HgF$_2$, SnF$_2$, PbF$_2$, SrF$_2$, oxidy CeO$_2$, PrO$_2$, HfO$_2$, ThO$_2$ a některé intermetalické sloučeniny, např. PtSn$_2$, PtIr$_2$ nebo AuAl$_2$. Také sloučeniny vyšší než binární, např. některé koordinativní sloučeniny, mohou vytvářet mřížku uvedeného typu. Jsou to např. $[\text{Fe(NH}_3)_6]\text{Cl}_3$, $[\text{Ni(NH}_3)_6](\text{ClO}_4)_2$, $[\text{K}_2\text{PtCl}_4]$, $[\text{NH}_4]_2[\text{SnBr}_4]$, $\text{Cs}_2[\text{SiF}_4]$. Uzlové body mřížky těchto látek jsou obsazeny skupinami atomů.

Sloučeniny se stechiometrií X_2Y mohou rovněž vytvářet mřížky tohoto typu, avšak s vyměněnou úlohou kationtů a aniontů. Mřížka se v tomto případě nazývá *antifluoritová*. Vyskytuje se...
např. u oxidů, sulfidů a selénidů lithních, sodních a draslivých, u některých sloučenin intermetalického typu (Mg₂Si, Mg₂Ge, Mg₂Sn, Mg₂Pb a j.) a tež u sloučenin koordinačních.

Rutilová struktura je dosti běžná. Vyskytuje se u některých fluoridů (MgF₂, MnF₂, FeF₂, CoF₂, NiF₂) a u četných oxidů (H₂O₂, Nb₂O₅, Cr₂O₃, MoO₂, WO₂, MnO₂, Re₂O₅, Ru₂O₅, Os₂O₂, Ir₂O₅, Rh₂O₅, Sn₂O₅, Pb₂O₅, Te₂O₅ a j.)

Obr. 21-19: Vrstvená hexagonální mětařka CdI₂.

Strukturu kupritu má např. Ag₂O, Pd₂H i několik málo dalších sloučenin. Existují i anti-kupritové struktury, tedy takové uspořádání, v něž jsou zaměněny polohy části nebo všech elektronegativitních a elektronapozitivitních stavebních jednotek látek. Tomuto typu mětařky je velmi blízká struktura kristalloju.

Mětařku typu CdI₂ nacházíme např. u sloučenin CdBr₂, CdI₂, MgBr₂, MgI₂, Cd₂, Ca(OH)₂, PbI₂, ZnI₂, MnI₂, Mn(OH)₂, FeBr₂, FeI₂, Fe(OH)₂, CoBr₂, CoI₂, Co(OH)₂, NiBr₂, Ni(OH)₂, TiCl₄, VCl₄, TiS₂, PtS₂, Sn₂S₄ a tež u některých sloučenin intermetalických.

Sloučeniny sumárního vzorce X₂Y₃ nebo XYZ₃ se dosti často vyskytují ve formě dvou dále uvedených strukturálních typů:

434

Mřížka typu Al₂O₃ vytváří značná část oxidů X₃Y₄Z, Z látě typu XYZ₃ v některých případech např. Fe₃O₄, Mg₃O₄, Mn₃O₄ aj. Uspořádání mřížky látě typu XYZ₃ následuje tomu, že atomy X a Y v ní z hlediska vazby a způsobu koordinace mají stejnou úlohu a že je třeba považovat tyto látky za podvojné oxidy, a nikoli za soli, v nichž jeden z atomů X a Y je středovým atomem komplexního aniontu.

Perovskitové typ mřížky se vyskytuje např. u látě SrTiO₃, BaTiO₃, CuZrO₃, BaZrO₃, Sr₂HfO₃, Sr₂SnO₃, BaCeO₃, BaThO₂, NaZnO₂, AgTaO₃, KMF₃, KNiF₃ aj. Je pozoruhodné, že

1) Te se samovolněm projevuje i v nomenklaturě těchto látek. Například Fe₃O₄ je oxid železnato-titanový. Rozhodně jej nelze označit název titanomědan železnatý.
perovskitové struktury se velice blíží i uspořádání mřížky jodidu draselného KI\textsubscript{3} a některých obdobných látek, obsahujících komplexní oxoanionty.

Vzorec XY\textsubscript{3} představuje další stoichiometrický typ binárních složenin. U látek tohoto složení zjišťujeme poměrně velké množství strukturních typů. Zminíme se pouze o třech nepříliš komplikovaných a dosti častých strukturách.

Obr. 21-21. Kubická mřížka perovskitu
\[
\text{CaTiO}_3
\]

Obr. 21-22. Kubická mřížka BiF\textsubscript{3}

12. Typ BiF\textsubscript{3}. Byl prokázán pouze u jediné binární složeniny, již je BiF\textsubscript{3}. Avšak vyskytuje se u komplexních složenin a dosti běžně je jeho inverzní podoba s vyměněnou ulohou kationtů a aniontů. Uspořádání mřížky BiF\textsubscript{3} je zřejmé z obr. 21-22. Kationty Bi3+ vytvářejí nejčastější krychlové uspořádání. Anionty F- pak vyplňují všechny oktaedrické a tetraedrické dutiny v této kationtové mřížce. Uvedenou strukturu má např. [Cr(NH\textsubscript{3})\textsubscript{6}]Cl\textsubscript{3}, kde kationtové moření bylo nalezeno u K\textsubscript{3}[Fe(CN\textsubscript{6})]. Polohy atomů Bi z mřížky BiF\textsubscript{3} jsou ve struktuře těchto složenin obsazeny komplexními ionty, v prvním případě kationtem [Cr(NH\textsubscript{3})\textsubscript{6}]3+, v druhém případě aniontem [Fe(CN\textsubscript{6})\textsubscript{3}]3-. Kompenzuje ionty Cl- a K+ v mřížce zajišťují polohy obsazené v původní mřížce ionty fluoridovými.

13. Typ FeF\textsubscript{2}. Vyskytuje se u složenin se stoichiometrií XY\textsubscript{3}, u nichž X je relativně nevelký kation nebo atom. Anionty vytvářejí přibližně nejčastější krychlové uspořádání, v němž část (jedna čtvrtina) poloh není obsazena a část oktaedrických dutin v aniontové mřížce je vyplněna kationty, čímž je aniontová mřížka poněkud deformována (obr. 21-23). Každý kation Fe3+ je oktaedricky obklopen šesti ionty F-. Naproti tomu v bezprostředním sousedství každého aniontu
jsou pouze dva kationty Fe\(^{3+}\). Uvedená struktura byla zjištěna u ScF\(_3\), RhF\(_3\), WO\(_3\), ReO\(_3\) a několika dalších látek.

\[
\text{Obr. 21-23. Hexagonální mřížka FeF\(_3\)} \quad \text{Obr. 21-24. Hexagonální mřížka BiI\(_3\)}
\]

Strukturu izotypickou nebo téměř izotypickou s BiI\(_3\) vytvářejí mnohé halogenidy kovů v oxidačním stupni III (CrCl\(_3\), FeCl\(_3\), AlCl\(_3\), aj.).

Z dalších stěchiometrycky složitějších složení si povinnou ještě látka obecného vzorce XY\(_2\)Z\(_4\). Pokud je Z kyslík a pokud je součet oxidačních stavů atomu X a dvou atomů Y roven osmi, jde většinou o podvojné oxidy, mají strukturu typu spinelu.

15. Typ MgAl\(_2\)O\(_4\) (minerál spinel). Má krychlové nejčasnější uspořádání atomů O. Do dutin této mřížky jsou rozmístěny atomy Al a Mg způsobem znázorněným na obr. 21-25. U izotypických složení rozlišujeme podle způsobu rozdělení kationtů do oktaedrických a tetraedrických dutin dva typy spinelové struktury — *normální* a *invertní*. Normalní spinelovou strukturu, tedy uspořá-
dáni ze souvislé analogické struktury MgAl₂O₄, vykazují např. MgMn₂O₄, Co₃O₄ (tj. Co⁹⁰Co³⁰O₄, FeAl₂O₄ a CdCr₂O₄. Inverzní spinelovou strukturu mají Fe₃O₄ (tj. Fe²⁺Fe²⁺⁴O₄), NiFe₂O₄, Zn₂TiO₄, Co₂SnO₄ aj.

Je třeba ještě jednou zdůraznit, že uvedené strukturní typy zdáleka nepředstavují úplný soubor známých krystalografických mířek. Neuvěděli jsme je jen několik komplikované struktury vyskytují se u sloučení se složitou stochiometrií (jako jsou některé minerály, koordinační sloučeniny, organické a organokovové sloučeniny atd.), u sloučení s lineárním, roviným nebo prostorovým síťovou kovalentní vazeb a u některých dalších typů sloučení.
22 Vazba v tuhých látkách

Výklad chemické vazby, který jsme podali v kap. 5, objasňuje podstatu vazebných interakcí uvnitř poměrně malých skupin atomů. Vysvětluje vznik, strukturu i některé vlastnosti molekul a vicenatomových iontů, popt. radikálů, ale nemůže být přímo použit k uspokojivému popisu vazebných situacích v takových systémech atomů, které se vyznačují velkým počtem jedinců a v nichž navíc nejsou atomy srovnaté do molekul. Seznamí se do objašťování takových vlastností sourodého výpočtu, které jsem měl mít přibližně — jen při dostatečné velikosti daného souboru. Jsou to např. mechanické vlastnosti tuhých látek, jejich elektrická nebo tepelná vodivost, optické vlastnosti kristalů a řada dalších.

V této kapitole se pokusíme názvě o vyšetření používání při výkladu vazby a vlastností tuhých látek. Výjeme případ kde je slova stejných principů jako při objašťování vazby a podstaty vazby v molekulách, avšak do vytvořeného modelu věnují ještě představu nesmírně rozšířeného mědí, o niž se atlomv vyznačují vysočně koordinace čísly a tím, že vteření síly všech sousedních atomů se vzdálené výrazně pronikají. Poznamenáme, že tak do objašťování tuhé obě vlastností takových látek, které jsou s několika dobře popsané představě klasickými chemickými vazáb (kristaly iontových látek, vysokokomolekulařích látek apod.).

22.1 PÁSOVÝ MÓDELELEKTRONOVÉ STRUKTURY V TUHÝCH LÁTKách

Rozšířime nyní počet zúčastněných atomů, a tím orbitálu p, na čtyři a představme si, že se překryvají v polohách znažorněných na obr. 22-1b. V tomto případě překryvem vznikají čtyři nové orbitály, , a . Obrázek znažorněuje těch jejich energii. Uvedený způsob překryvu velmi
připomíná situaci v molekule butadienu [str. 109], kde orbitály \(\psi_1^a \) a \(\psi_2^a \) jsou obrazeny dvěma elektronovými páry\(^1\) a vytváří tak delokalizovanou vazbu \(\pi \).

Další rozdílení počtu zúčastněných lineárně uspořádaných atomů \(A_1, A_2, \ldots \) např. na dvancet vede k situaci znázorněné na obr. 21-1c. Tvoří se dvacet nových orbitálů \(\psi_1^b \) až \(\psi_{20}^b \). Přímom energeticky rozdíl mezi oběma okrajovými orbitály \(\psi_1^b \) a \(\psi_{20}^b \) se ve srovnání s rozdílem mezi orbitály \(\psi_1 \) a \(\psi_2 \) z předchozí interakce čtyř atomů (resp. orbitály \(\pi^a \) a \(\pi^b \) z interakce dvou atomů) v podstatě nemění.

Obr. 22-1. Představa překryvu typu \(\pi \) v souboru lineárně uspořádaných atomů.

a) Překryv dvou atomů; b) překryv čtyř atomů; c) překryv dvaceti atomů; d) překryv \(N \) atomů.

Levá část obrázku znázorňuje prostoruovou, pravé energetickou stránek překryvu orbitálů \(p \).

Despíváme ke zjištění, že překryv orbitálů \(p \) v řadě atomů \(A_1, A_2, \ldots, A_N \) – když \(N \) je velmi velké číslo – nutné musí vést ke vzniku souboru \(N \) nových delokalizovaných polycentrických orbitálů, které vytvoří v podstatě souvislé (ksustkové) energetický páv (obr. 22-1d).

Představou delokalizovaného překryvu typu \(\pi \) jsme zde zahájili výklad jen proto, že delokalizovanou vazbu \(\pi \) známe z důvěrného popisu vazby v molekulách. Ve skutečnosti ovšem v lineárně uspořádaných skupinách atomů dochází mezi jejich orbitaly těž k delokalizovanému

\(^1\) V molekule butadienu nejsou čtyři atomy uhlíku uspořádány lineárně, nýbrž do lomeného řežce tak, jak to vyžaduje vzniklý systém vazeb \(\sigma \) (obr. 5-38).
překryvům typu π, popř. σ (str. 86). Všechny tyto překryvy mají stejné důsledky jako překryv π, tj. vedou ke vzniku delokalizovaných orbitalů, které z energetického hlediska vytvářejí kvazi-kontinuační pás. Na obr. 22-2 vidíme možnosti překryvu orbitalů s a orbitalů p.

Krystaly kovů, popř. i dalších látek největších molekulárních struktur, jsou prostorové mřížky vytvořené z atomů. Lze v nich najít nesčetné množství atomových řad, jakému jsme se právě zabývali. Na věci nic nemůžeme, že v těchto mřížkách jsou atomy uspořádány trojrozměrně, takže možnosti delokalizovaného překryvu jsou ještě pestřejší a složitější. Předpokládá se, že v mřížkách kovů mohou kromě již uvedených překryvů π, π' a σ existovat i delokalizované formy i překryvy podobné těm, které jsme poznali u boranu (str. 402).

Obr. 22-2. Představa delokalizovaného překryvu typu σ v solenoru N lineárně uspořádaných atomů.

Překryv vzniká průnikem: a) orbitalů s, b) orbitalů p. Vlevo je znázorněna prostorová, vpravo energetická podoba překryvu.

Obr. 22-3. Schematické vyjádření energie orbitalů v izolovaném atomu (vlevo) a v trojici atomů, jež jsou součástí rozšiřující atomové mřížky (vpravo). E je energetická a x prostorová souřadnice. Obsazení orbitalů a pásů elektronů není vyjadřeno.

Výsledkem složitého způsobu překryvu v prostorově uspořádané mřížce kovu je vždy přeměna původních valenčních AO na energetický pás vytvořený z velkého množství nových delokalizovaných orbitalů. Tyto pásy představují svým horním a dolním okrajem rozměr energii, jaké může nabývat elektron, který se v pásu vyskytuje. Nažývají se proto dovolené pásy nebo přesněji pásy dovolených energii. Oblast energies mezi těmito dovolenými pásy se označují jako pásy zakázáné. Energetická šíře obou pásů, jež jména však pásů zakázaných, má zásadní význam při objedovávání některých vlastností látek.
Hlubší teoretická analýza a výsledky experimentálního studia ukazují, že dovolené pásy v libovolné krystalové mřížce mají principiálně takovou strukturu, jakou ukazuje obr. 22-3:

a) **AO ležící pod valenční sférou každého atomu** a v základním stavu atomu plně obsazené elektrony jsou minimálně ovlivněny tím, že se atomy uspořádaly do mřížky, a zůstávají bez změny energie lokalizovány na jednotlivých atomech.

b) **AO valenční sféry atomu se huboce vzájemně pronikají a mění se na soubory výrazně delokalizovaných orbitalů, vyplývajících poměrně široké energetické pásy.** Jak uvidíme dále, způsob obsazení těchto pásek elektrony určuje mnohé fyzikální vlastnosti vzniklé mřížky.

c) **AO vyšších kvantových čísel, situované vně valenční sféry, také formálně huboce interagují.** Poněvadž jsou energeticky umístěny velmi vysoko a nejsou obsazeny elektrony, nemají na vlastnosti souboru atomů vliv.

Uspořádání elektronů v energetických pásech tuhých látek

Obsazování dovolených energetických pásek v tuhých látkách se řídí týmiž principy jako obsazování lokalizovaných orbitalů v molekulách. To znamená, že:

1. **Elektrony zaplňují jednotlivé hladiny v páse tak, aby měly co nejmenší energii.**

2. **Při zaplňování pásu elektrony se uplatňuje Pauliho princip.** Do dovoleného pásu o N hladinách může být umístěno maximálně $2N$ elektronů.

3. **Teprve po úplném obsazení pásu energeticky nižšího obsazují elektrony páš energeticky vyšší.**

Je samozřejmé, že uvedené zásady platí jen tehdy, když v dané soustavě atomů nedochází k velkému tepelnému pohybu nebo když nepříznivě jiné fyzikální vlivy vyvolávají excitaci elektronů v soustavě přítomných. Tak je tomu v tuhých látkách např. při teplotě blízké 0 K, je-li současně zahrnuto styku látky s elektromagnetickým zářením apod.

Je-li celý systém elektronů tuhá látka na nejnižší možnéch hladinách, nabývá zvláštního významu i samostatného označení nejvyšší energetická hladina v dovoleném páse, která je právě

![Diagram](image)

Obr. 22-4. Hypotetický pásové diagram (při teplotě 0 K):

a) kovu, b) štěrbanu, c) polovodíku.

Šrafované části pása označují oblast hladin plně obsazených elektrony. Fermiho hladina je označena F, valenční páš va, vodivostní páš vo, valenční-vodivostní páš va-vo a zakázaný páš z

1) Poněvadž každý reálný soubor atomů uspořádaných do prostorové mřížky by vyztužoval znázornění ve čtyřrozměrném prostoru (3 souřadnice prostorové a 1 souřadnice energie), je na obr. 22-3 schematizován. Znázorňuje vztah mezi jedinou prostorovou souřadnicí a energii orbitalů.
ještě zaplněná dvojicí elektronů. Nazývá se *Fermihův* hladina a podle jejího umístění v dovoleném energetickém páse při teplotě 0 K můžeme vždy vyskytovat zásadní soud o některých fyzikálních vlastnostech a o povaze vazby v daném souboru atomů:

1. Jestliže Fermihovo hladina při teplotě 0 K leží uvnitř dovoleného pásu − jinak řečeno, postačuje-li počet elektronů přítomných v soustavě atomů jen k částečnému zaplnění dovoleného pásu, vytváří se při velmi nízkých teplotách takové uspořádání elektronů, jaké je znázorněno na obr. 22-4a. Tato elektronová konfigurace je charakteristická pro elementární kovy, slitiny, intermetallické sloučeniny a další tuhé látky vyznačující se vybornou elektrickou vodivostí. Zčásti zaplněný pás a relativní snížení energie valenčních elektronů, které se v pásu vyskytují, je příčinou vzniku vysokodelokalizované *kotové vazby* (str. 444), poutají celý soubor atomů v poměrně velmi pevný celek. Pás takto obsazený elektrony bývá označován jako pás *vodicnostně-valenční*.

Pokud je energetický rozdíl mezi horním okrajem valenčního pásu a dolním okrajem nejbližšího energeticky vyššího příslušného dovoleného pásu větší než 5 eV, pak ani značný tepelný pohyb v látky látky nepostrádá k excitaci elektronů z valenčního pásu do prázdného pásu ležícího nad ním. Materiál s takto uspořádanými pásy a elektrony je *isolantem* a zůstává jim i za vysokých teplot. I v tomto případě se neobsazený dovolený pás nazývá pás vodicnostní a energetický interval mezi jeho horním okrajem a Fermihovou hladinou se označuje jako *šířka zakončeného pásu*.

3. Jestliže stojí jako v předchozím případě Fermihovo hladina splývá při teplotě 0 K s horním okrajem valenčního pásu, avšak vodicnostní pás je vzdálen o méně než 3 eV, dochází k tomu, že při dostatečně tepelném pohybu nebo při jiněm způsobě excitace mohou elektrony z valenčního pásu částečně přecházet do pásu vodicnostního. Takovéto materiály vykazují určitou nenulovou elektrickou vodivost a některé vlastnosti typické pro skupinu látek zvaných *polarodie*.

22.2 **ELEKTRICKÝ VODIVÝ TUHÉ LÁTKY**

Pod pojmem elektricky vodivé tuhé látky budou v této kapitole rozumět látky, jejichž *měrná elektrická vodivost* (*konduktivita*) při vložení stejněsouměřeného nebo nižšehofrekvenčního štíťového elektrického pole leží v rozmezí od 1 do 10⁶ Ω⁻¹ cm⁻¹. Hlavními reprezentanty této skupiny materiálů jsou především kovy, slitiny kovů, intermetallické sloučeniny a vůbec všechny látky, v jejichž struktuře se uplatňuje kovová vazba.

- **Kovová vazba**

 Na obr. 22-5 je schematicky znázorněn vznik a obsazení valenčné-vodicnostního pásu u tuhého sodíku. Na tvorbě látku se podílejí hlavně orbitály 3s a 3p. V základním stavu atomů je na orbitálech 3s po jednom elektronu, na orbitálech 3p elektrony nejsou. Po sdržení atomů do krystalové miříky přejdu všechny elektrony 3s² do valenčné-vodicnostního pásu, ale zaplní jej jen závěr. V souboru N atomů sodíku tvoříciho prostoru miří sodíkového krystalu vznikne

1) Energie odpovídající Fermihovo hladině se nazývá *Fermův energie*. Rozlišení těchto dvou pojemů je jen formální a velmi často se proto zaměňuje. Je třeba velmi zdůraznit, že pojmy Fermihovo hladina a Fermův energie mají v textu uvedený význam právě pro teplotu 0 K a pro situaci, kdy všechny elektrony jsou na energeticky nejnižších možných hladinách. Při vysokých teplotách, kdy se elektrony statisticky rozdělí (platí Fermihovo–Diracova statistika) i na hladany energeticky vyšší a rozhraní mezi obsazenými a neobsazenými hladinami nabude „diferentní charakter“, jsou oba pojemy definovány jinak.
valenčně-vodivostní pás se 4N hladinami (N hladin vytvoří orbitaly s, 3N hladin orbitaly p). Na tyto hladiny by se při jejich úplném zaplnění mohlo umisťit nejvýše 8N elektronů. Ponevadž každý atom sodíku přináší pouze jediný valenční elektron 3s\(^1\), bude celý valenčně-vodivostní pás obsazen jen z jedné osminy, tj. 4N elektronů.

Obr. 22-5. Vznik valenčně-vodivostního pásu z AO jednotlivých atomů Na v krystale sodíku. Jsou znázorněny obsazené hladiny pásu (brašováním) a poloha Fermioho hladiny při teplotě 0 K.

Připojený graf v pravé části obrázku znázorňuje rozdělení hustoty hladin ve valenčně-vodivostním pásu

Z obrázku je těž vidět, že energie elektronů 3s\(^1\) se při vzniku mřížky z jednotlivých atomů změněuje. Tvoří se tak kolektivní chemická vazba, vyzařující se výraznou delokalizací, neboť všechny vzniklé MO jsou polycentrické a rozprostírají se po celém objemu krystalu sodíku. Vzniklá vazba mezi atomy kovu se označuje jako Kovová vazba.

Na obr. 22-5 je schematicky znázorněna i další zjištěná skutečnost, týkající se struktury valenčně-vodivostního pásu v kovech. Hustota hladin tvorících pás dovolených energií není po celé šířce pásu konstantní. Přibližně ve středu pásu jsou hladiny největší, směrem k okrajům pásu jich ubývá. Pokud se pás valenčně-vodivostního charakteru skládá ze dvou nebo více dříve dovolených pásů – jak tomu je právě u valenčně-vodivostního pásu sodíku – má tolik maxim hustoty, z kolika dříve pásů se skládá.

Zcela obecně řečeno, lze na mřížce kovů pohlídat jako na prostorové síť, v nichž jsou uzlové body obsazeny kationty a valenční elektrony, v podstatě oddělené od původních atomů, se v této mřížce pohybují jako tzv. elektronový plyn nesoucí záporný náboj (obr. 22-6). Elektrostatická interakce mezi kationty a elektronovým plynom vyvolává soudržné síly v mřížce a převládá nad repulzi stejnojmenně nabitých kationtů. I když je toto představa velmi hrubým zjednodušením skutečnosti, umožňuje kvalitativně vysvětlit některé vlastnosti kovů. Podstatného zpřesnění tohoto modelu
Le však dosáhnout, věříme-li se do jeho matematicko-fyzikálního popisu představa všuvých vlastností elektrolytů a použije-li se předpoklad, že elektronový plyn, jako soubor částic majících spin, se řídí jiným statistickým rozdělením energie než molekuly plynných látek.

Vlastnosti kovů

K prvním úspěchům pásového modelu patří objasnění řady fyzikálních vlastností kovů, především jejich elektrické a tepelné vodivosti, způsobu interakce kovové vazby s elektromagnetickým zářením a těch mekanických vlastností kovů.

K vedení elektrického proudu v kovech dochází pohyblem elektronů, a proto říkáme, že nositeli elektrického proudu jsou v kovech elektrony. Valenční-vodivostní pás je v kovech jen zčásti zaplněn elektronky. To umožňuje jejich velmi snadnou excitaci na vyšší hladiny (na Fermiové hladině) v působení nízkých případů. Poněvadž tyto hladiny jsou tvořeny vysoko delokalizovanými orbitály, mohou se na nich elektrony vysoko pohybovat po celé krystalové míře a nabývat poměrně velké kinetické energie. Teplotní kinetické energie — periodické změny vzdáleností mezi sousedními atomy — však způsobuje, že elektrony musí při utévé od atomu k atomu překonávat drobné energetické bariéry proměnlivé výšky.

Vložíme-li na kovový materiál vnější stejnosměrné nebo střídavé elektrické pole, je často elektrický pohyb elektronů třeba polem do jisté míry usměrněn. Říkáme, že kovem teče elektrický proud. Množství elektrického náboje, procházejícího v materiálu za jednotku času jednotkovou plochou kolnou, na místě siločar elektrického pole, je úměrné gradientu elektrického pole a měří vodivost kovu.

Pokud měrná vodivost materiálu je ovlivňována koncentrací nositelů proudu a tím, jak snadno pohybují se elektronky, čili jejich pohyblivost. Koncentrace nositelů proudu v kovech od- povedá počtu elektronů přítomných ve valenční-vodivostním pásu a nemění se s teplotou, poněvadž počet elektronů je na teplotě nezvýšený. Výrazně však na teplotě zvýší pohyblivost elektronů.

Při zvysování teploty je zmanipulován pohyb elektronů po krystalové míře, neboť vzrůstá průměrná výška drobných energetických bariér, jež elektrony musí překonávat.

Jednoduchá aplikace pásové teorie tak kvalitativně objasňuje, proč u některých kovů a nekterých materiálů elektrická vodivost se stoupá její teplotou klesá (tj. se stoupají teplotou vzrůstá měrná odporní kovů).

Naopak v oblasti velmi nízkých teplot (od 0 do 10 K) je u kovů velmi častým jevem supra- vodivost. Snížením teplotního pohybu částice v teplotě vzrůstá u některých kovů průnik pohyblivost elektronů a dojde tak k extrémnímu zvýšení vodivosti. Supravodivost byla až dosud zjištěna u 21 kovových prvků a asi u 500 slitin.

U některých slitin se supravodivost projevuje i při teplotách nad 10 K. U složeného hřídeli materiálu, u nichž by supravodivost zůstávala zachována až do vysokých teplot při normální teplotě. Technické využití takových slitin by nesmělo zřízkat vývoj elektrotechniky a energetiky.

Struktura valenční-vodivostního pásu u kovů vysvěhuje i jejich velkou tepelnou vodivost. Elektrony jsou v páse velmi pohyblivé a mohou se po krystalu pohybovat za mnoho rychlostí. Podstatně část tepelné energie teče v krystalové pásu, čímž se máte vize průběhu větvích elektroneforských a pohybových krystalů. Používá se u nekterých materiálů některých kovů (ne učivá světla), pohybových kovů v průměru podstatně vyšší než u materiálů s jiným charakterem vodivé a jiným uspořádáním a obsazením dolových pásů.

1) Pro reálné molekuly plynné platí tzv. Maxwellova—Boltzmannova statistika, pro elektronový plyn statistika Fermiovo—Diracova.

2) Supravodivé jsou dokonce některé sloučeniny s vazbou, která má jen čestné kovový charakter (někteří sulididy, karbidy aj.).

Dostí typickou a častou vlastností kovů je jejich jasný a tvrdost. I tato jejich mechanická vlastnost je podminěna charakterem vazby uplatňující se v kovech. Kovová vazba se svým složitým způsobem překrývá AO často nemá vyhraněnou směrovou orientaci. V takovém případě nezpůsobí mechanická deformace mířky, vyslovená působením vnějších sil, zásadní změnu pevnosti vazby mezi atomy. Lze tedy, že jeden způsob překryvu AO je při probíhající deformaci mířky nahrazován jiným, stejně nebo tamější energeticky výhodným, a soudržnost mířky kovu není narušena (obr. 22-7).

Stejně jako u všech ostatních látek souvisí i u kovů bod tání a bod varu i mechanické vlastnosti mířky s energií vazby uplatňující se v látku. Čím pevnější je vazba mezi atomy, tím větší je mechanická pevnost látky a tím vyšší je její bod tání i bod varu. V hrubých rychlostech platí tvrzení, že vazba v kovech je tím pevnější, čím větší počet elektronů odevzdušují atomy kovů do valenčního pásu. Tento počet lze - opět jen velmi zhruba - odhadnout z nejvyššího běžného oxidacího stavu, ve kterém se daný kov vyskytuje ve svých sloučeninách. Vyšší maximální oxidací stav kovu ve sloučeninách znamená větší pevnost kovové vazby, a tím i vyšší bod tání a bod varu i větší mechanickou pevnost kovu v elementárním, nesloučeném stavu (tab. 22-1).

Poruchy výstavby kovové mířky

Pevnost v tahu a další experimentálně zjištěné mechanické vlastnosti kovů jsou nejméně o 1 až 2 řády nižší, než udává vypočtená teorie. Též bylo z jistoty, že většina kovů, jak bylo jisté, že v roce 1934 experimentálně dokázáno, obsahuje ve svém uspořádání velké množství nepříznivostí. Nejvyšší vyskytují se v kovových poruchách tzv. lineárních typu, nazývaných dislokace.

Na obr. 22-8a je znázorněna tzv. hronová (průměrová) dislokace vytvořená v modelu kubického, resp. čtvercového lesku, dislokace vzniká tím, že jedna ze struktur (na obrázku) vrstev atomů končí.
<table>
<thead>
<tr>
<th></th>
<th>Li 1330</th>
<th>Be 2770</th>
<th>Na 892</th>
<th>Mg 1107</th>
<th>K 760</th>
<th>Ca 1440</th>
<th>Sc 1539</th>
<th>Ti 1668</th>
<th>V 1900</th>
<th>Cr 2150</th>
<th>Mn 1245</th>
<th>Fe 1536</th>
<th>Co 1495</th>
<th>Ni 1453</th>
<th>Cu 1083</th>
<th>Zn 964</th>
<th>Ga 2237</th>
<th>Ge 817</th>
<th>As 613</th>
<th>Al 2450</th>
<th>Ga 660</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>1277</td>
<td>1317</td>
<td>98</td>
<td>650</td>
<td>838</td>
<td>1428</td>
<td>1539</td>
<td>1668</td>
<td>1900</td>
<td>2150</td>
<td>1245</td>
<td>1536</td>
<td>1495</td>
<td>1453</td>
<td>1083</td>
<td>964</td>
<td>2237</td>
<td>817</td>
<td>660</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>1440</td>
<td>2730</td>
<td>2927</td>
<td>3580</td>
<td>5560</td>
<td>4900</td>
<td>4500</td>
<td>3980</td>
<td>2210</td>
<td>765</td>
<td>2000</td>
<td>2270</td>
<td>1380</td>
<td>3980</td>
<td>2210</td>
<td>765</td>
<td>2000</td>
<td>2270</td>
<td>1380</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>768</td>
<td>1509</td>
<td>1852</td>
<td>2468</td>
<td>2610</td>
<td>2140</td>
<td>2500</td>
<td>1966</td>
<td>1552</td>
<td>961</td>
<td>321</td>
<td>156</td>
<td>232</td>
<td>631</td>
<td>156</td>
<td>232</td>
<td>631</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>920</td>
<td>1640</td>
<td>3470</td>
<td>5425</td>
<td>5930</td>
<td>5900</td>
<td>5500</td>
<td>5300</td>
<td>4530</td>
<td>2970</td>
<td>357</td>
<td>1457</td>
<td>1725</td>
<td>1560</td>
<td>357</td>
<td>1457</td>
<td>1725</td>
<td>1560</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>47</td>
<td>700</td>
<td>1050</td>
<td>1750</td>
<td>1230</td>
<td>1132</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabulka 22-1. Body tání a body varu kovů (hodnoty jsou udány ve °C)
na pomyslné přímce procházející krystalem (kolmo na rovinu nízkou). Ostatní vrstvy se pak této anomálii tvarově přizpůsobují.

Mechanické síly působící na mřížku mohou pohyb hranové dislokace v krystalu ve směru kolmém na dislokační přímku. Hranová dislokace může „vyplout“ až na povrch krystalu (obr. 22-8b, c).

Obr. 22-9. Šroubová dislokace

Obr. 22-8. a) Hranová (přímková) dislokace v modelu kubické, resp. čtvercové mřížky. b) Změna polohy hranové dislokace v krystalu působením sil vyvolávajících plastickou deformaci krystalu. c) „Vyplutí“ hranové dislokace na povrch krystalu

Na obr. 22-9 je schematicky znázorněna tzv. šroubová dislokace v reálném krystalu. Podstatu poruchy si lze představit tak, že sled rovnoběžných vrstev atomů v krystalu je jakoby nastřízen až k ose dislokace Q_0, a atomy, které leží v rovině střihu, jsou o určitou vzdálenost posunuty. Původní ideálně rovinné vrstvy se tím v podstatě mění na šroubové plochy. Také tato dislokace může být vnějšími mechanickými vlivy v krystalu posouvána, popř. může porucha „vyplout“ až na povrch krystalu.
U některých elementárních kovů a slitin kovů se podařilo vypůlčovat tenké jehlicovité krystaly neobstarající prakticky žádné dislokace\(^1\). Jejich povrch v tabu je již velmi blízká teoretické hodnotě vylýhující z ideální struktury mřížky.

Kromě uvedených poruch lineárního typu se u kovových krystalů vyskytují i poruchy jiného druhu. Nejsou pro kovy příliš typické, a zejména se s nimi proto na jiném místě (str. 450).

22.3 IZOLANTY

Mezi izolanty řadíme látky, jejichž měrná elektrická vodivost při vložení stejnosměrného nebo nízkofrekvenčního elektrického pole se pohybuje v rozmezí od \(10^{-10}\) do \(10^{-20} \text{Ω}^{-1} \text{cm}^{-1}\). Tuto hodnotu vodivosti obvykle nalézáme u všech látek s vazbami iontové, kovalentní nebo iontové kovalentní povahy. Z rámce této skupiny se vymykají všechny tuhé látky, u nichž se – i když jen málo výrazně – uplatňuje kovový charakter vazby nebo ve kterých je přítomna rozsáhlé delokalizovaná kovalentní vazba.

- **Iontové izolanty**

Na obr. 22-10a je uveden diagram MO dvojice atomů Na a Cl, které se k sobě přibližily a – v důsledku velkého rozdílu elektronegativity – vytvořily dvojici iontů peutajících se iontovou vazbou. Diagram byl sestaven na základě stejných úvah jako obdobné diagramy MO, např. diagram MO LiH nebo HF.

Z obrázku vyplyvá, že oba vazební elektryny, tj. elektrony umístěné na vazebném orbitalu \(\sigma_{2s}\), jsou energeticky velmi blízké původnímu orbitalu atomu chloru \(3p_z\). Proto je elektronový pár i prostorově lokalizován do oblasti tohoto původního AO.

\[
\text{Obr. 22-10. a) Diagram MO iontové "molekuly" NaCl, b) Pásový diagram krystalu NaCl}
\]

Zahývejme se nyní tím, jak se uvedený diagram MO změní, pokusíme-li se znázortnit tímto způsobem vazebnou situaci v takovém množství atomů Na a Cl, v jakém spolu vytvářejí rozsáhlou iontovou mřížku tuhého NaCl.

Podíváme-li se na prostorově uspořádané mřížky NaCl (obr. 21-11), zjistíme, že každý atom Cl je v ní obklopen šesti atomy Na. Žádný z orbitalů \(3p\) atomu Cl proto již nemůže mít vyslovené nevazebný charakter, jak tomu bylo u izolované dvojice \(Na^+ - Cl^-\). Všechny orbitaly \(3p\) se dostávají do styku s orbitaly \(3s\) atomů Na. Energeticky úrovně orbitalů \(\sigma_{2s}\) a \(3p\), a \(3p\), v každé jednotlivé dvojici iontu \(Na^+ - Cl^-\) se vytvořením mřížky vyrovnan. Poněvadž vazba nabude do jisté míry delokalizovaného charakteru, energetické hladiny splnou v jediný energetický pás. Aniž bychem vznikající překryv podrobněji analyzoval, můžeme určit počet hladin v tomto pásu přítomných. Vytvořilo-li krystal chloridu sodího \(N\) atomů sodíku a \(N\) atomů chloru, bude tato obsahovat \(3N\) hladin, neboť každá dvojice atomů sodík–chlor přispívá čtyřmi hladinami. Pás na-

\(^1\) K označení těchto krystalů se používá název whiskery.
zvemc valenčním. Obdobně se změní i protivazebný orbitál σ^*_p na pás obsahující N hladin: budeme jej nazývat vodivostní. Diagram MO krystalu NaCl je uveden na obr. 22-10b.

Povinněme si nyní počtu elektronů přítomných v systému a jejich umístění do pásů. Každý z N atomů sodíku vnes je do systému jediný elektron ($3s^1$), tedy celkem N elektronů. Jeden atom chloru přináší do mřížky 5 elektronů ($3p^5$) z celkového počtu 7 valenčních elektronů. Elektronový pár $3s^2$ je umístěn energeticky velmi nízko a do tvorby pásu pravděpodobně významně nezasahuje. Celkový počet elektronů vnesených do krystalu NaCl atomů chloru tedy bude $5N$. Do pásu na obr. 22-10b musíme umístit $6N$ elektronů. To je přesně tolik, kolik činí maximální kapacita valenčního pásu tvořeného 3N hladinami.

Vidíme, že u NaCl naslává situace, kterou jsme již probírali (obr. 22-4b). Je charakteristická pro všechny izolanty. Šířka zakázaného pásu byla pro NaCl experimentálně zjištěna a činí 7,7 eV.

Prakticky všechny iontové látky se vyznačují uvedeným obsazením a uspořádáním valenčního a vodivostního pásu. Iontové látky se proto chovají v tuhé fázi jako elektrické nevodiče a jsou těžší, většinou teplá a propuštějí elektromagnetické záření, pokud jejich vlnová délka není tak malá, že energie fotónů postačuje k excitaci elektronů z valenčního do vodivostního pásu.

** Poruchy výstavby iontové mřížky **

Stejně jako u kovů objevují se i u iontových mřížek poruchy v jejich pravidelné výstavbě. Běžně je u iontových látek tvorba dislokací (str. 446), jež jsou poznamenáni při výkladu o poruchách mřížek kovů.

Pokud je u iontové mřížky a mřížky kovové kovalentní, ale vyskytující se i v mřížkách kovových, jsou tzv. bodové poruchy. Vznikají tak, že v mřížce budou

a) chybět atom (ion) na místě, které má být v ideální mřížce obsazeno, nebo

b) v místě, které je v ideální mřížce prázdné, je nadbytečný atom (ion).

Poruchy první skupiny — chybějící atomy v mřížce — se nazývají vakance a označují se též jako Schottkyho porucha. Vznikají např. tak, že při dostatečně vysokých teplotách (bílých

\[\begin{align*}
\text{Obr. 22-11: Příklady Schottkyho poruch krystalové mřížky.} \\
\text{a) Kationtové vakance v mřížce NaCl: b) aniontové vakance v mřížce NaCl se zachycenými elektrony; c) schematizovaná mřížka NiO s kationtovými vakancemi vykompensovanými přítomností atomů Ni v oxiдаčním stavu III} \\
\end{align*} \]

\footnote{1) Po roztažení nebo rozpuštění iontových látek se situace podstatně mění. Pohyblivost kationtů a aniontů se stává přílusou elektrické vodivosti.}

450
bodu tání iontového krystalu) opustí některé atomy svou řádnou polohu a difundují na povrch krystalu. Princip elektronneutrality vyžaduje, aby počet kationtových a aniontových vakancí byl v krystalu zhruba stejný (obr. 22-11a).

Vakance mohou v krystalu vznikat i jinou, v podstatě opačnou cestou. Do iontového krystalu vystaveného účinku par kovu, který tvoří kation iontové sloučeniny, difundují atomy kovu a zaujímají polohy a funkci kationtů. Uvolňují přítom elektrony, které se zachytí na vytvářejících se aniontových vakancích (obr. 22-11b).

Právě tak může do mřížky difundovat prvek tvořící elektronegativní komponentu iontové sloučeniny. Jeho atomy se mění v anionty, a proto vznikají kationtové vakance a nedostatek elektronů je nahrazen např. tím, že některé kationty zvyšují svůj oxidační stav – samozřejmě jen tehdy, jestli to principiálně možné (obr. 22-11c).

Druhou skupinou poruch, zvaných též Frenkelovy poruchy, tvoří atomy vmezšené do ideální krystalové mřížky. Také ony vznikají migrací iontů po mřížce, tedy tím, že ionty opustí své řádné polohy a proniknou do nestandardních poloh, které označujeme názvem intersticiální (obr. 22-12).

Poruchy obouho druhu jsou významné i technicky. Ovlivňují zejména optické vlastnosti iontových krystalů. Procesy související s jejich vznikem i zánikem se využívají při indikaci a dozimetrii radioaktivního záření, při aplikaci speciálních druhů ské apod.

Kovalentní izolanty

Aplikujeme-li představy působivého modelu na krystaly vystavené z izolovaných molekul nebo na krystaly, ve kterých se vyskytují prostorové kovalentní struktury tvořené síťovin kovalentních vazeb, porozumíme přičinám nepatrné elektrické a malé tepelné vodivosti těchto látek.

Na obr. 22-13 je uveden diagram MO krystalu diamantu. Vidíme, že opakující se tetraedrický motiv mřížky diamantu (str. 281) si u jednotlivých atomů uhlíku vynutil hybridizaci SP3

Obr. 22-12. Schematická představa Frenkelových poruch v mřížce AgCl

Poruchy obojího druhu jsou významné i technicky. Ovlivňují zejména optické vlastnosti iontových krystalů. Procesy související s jejich vznikem i zánikem se využívají při indikaci a dozimetrii radioaktivního záření, při aplikaci speciálních druhů ské apod.

Obr. 22-13. Vznik valenčního a vodivostního pasu při srovnání N atomů uhlíku do krystalu diamantu
východích AO. Každý atom bude mít čtyři HAO sp³, které vytvoří čtyři vazby s poutající jej k jeho čtyřem tetraédricky koordinovaným vazebním partnerům — atomům uhličí. Sestavení v atomů uhličí do mřížky diamantu vznikne 4N hladin, z nichž 2N bude mít vazebný a 2N protivazebný charakter. Ponevadž N atomů uhličí přinesou do krystalu diamantu 4N valenčních elektronů, zaplní se pás tvořený valenčními hladinami bezce zbytku a zůstávající charakter pásů je čistě valenční.

Dovolený pás vytvořený z protivazebných orbitalů zůstane neobsezen. Nazveme jej pás vodivostní, ale protože je od elektronů ve valenčním pásu oddělen poměrně širokým zakázaným pásem, bude mít vzniklý krystal vlastnosti izolanta.

K obdobným závěrům — které jsou potvrzeny i experimentálně — dosáhnete při analýze uspořádání a obsazení pásů v mnoha dalších kovalentních (nebo i iontově-kovalentních) látkách.

Popsané příklady nám umožňují pochopit zásadní rozdíl mezi tvorbou struktury dovolených pásů v kovu a její tvorbou v kovalentní (ale i iontově) látech. Zatímco u kovů splývají valenční orbitaly atomů ve jediný široký valenčně-vodivostní pás v důsledku vysoce delokalizovaného překryvu, tvoří se u vzniku kovalentního (iontového) krystalu dvojice poměrně úzkých pásů, neboť delokalizace vazeb je malá. Oblast mezi oběma dovolenými pásy je oblastí zakázaných energií a je u kovalentních látek vždy značně široká.

22.4 POLOVODIČE

Měrná elektrická vodivost polovodičů ve vložením stejnosměrném nebo nízkofrekvenčním střídavém elektrickém poli se při normální teplotě pohybuje obvykle v rozmezí od 10⁻¹⁰ do 10⁻⁴ Ω⁻¹ cm⁻¹. Přitom se polovodivost látky projevuje spíše tím, jak je vodivost látky zvýšena na teplotě, popř. některými dalšími efekty, než samotnou hodnotou měrné elektrické vodivosti.

Z čistě chemického hlediska lze říci, že jako polovodiče se nejčastěji chovají prvky a sloučeniny, v nichž chemické pojítko má charakter kovalentní nebo kovalentně-iontové vazby s určitým malým podílem vazby kovové. Tento podíl kovové vazby se projevuje pouze v tom, že překryv valenčních orbitálů atomů tvořících mřížku je poněkud delokalizován, než tomu bylo u typicky kovalentních látek. Vznik delokalizace vede k zvětšení zakázaného pásu.

Polovodivé vlastnosti proto nejčastěji zjišťujeme u prvků stojících v periodickém systému blízko rozhraní mezi kovy a někovy (Si, Ge, Se aj.) a u četných jejích sloučenin (AlAs, AlSb, GaAs, InP, CdTe, ZnTe, CuInSé₂, BiTeI aj.).

Vlastní polovodiče

Vlastní polovodiče jsou látky, které jako chemická individua, tedy jako látky chemicky čisté, mají polovodivé vlastnosti. Mechanismus vedení elektrického proudu těmito látkami je znázorněn na obr. 22.14. Vlastní polovodič je uspořádáním a obsazením valenčního i vodivostního

Obr. 22.14. Schematické vyjádření uspořádání elektronů v dovolených pásech vlastního polovodiče při teplotě postačující k termické excitaci elektronů
pásu obdobou izolantů. Rozdíl je ovšem v tom, že šířka jeho zakázaného pásu je malá (měně než 3 eV). Při nízkých teplotách (blízkých 0 K) se proto vlastní polovodič chová jako izolant. Elektrony jsou v plné obsazeném valenčním pásu, vodivostní pás je prázdny, látku nevede elektricky proud.

- Nevládní (přírodní) polovodič

Připravuji se tak, že do můžou vlastních polovodičích nebo i některých látek majících charakter izolantu se umívat vnesou určité atomy jako příměši, a tím se podstatně ovlivní určité fyzikální vlastnosti těchto látek.

Dobrým příkladem je křišťál křemíku, v jehož můžce je malá část atomů Si nahrazena atomy prvku buď z 5., nebo ze 3. skupiny periodické soustavy.

![Obr. 22-15. Křemík jako nevládní polovodič typu n.](image)

On abr. 22-15a je symbolicky znázorněn úsek můžky křemíku se dvěma tzv. substitučními poruchami, v nichž polohy atomu Si jsou obsazeny atomy As. Poněvadž atomy As mají o jeden valenční elektron více než atomy Si, zbude na každém atomu As po vytvoření čtyř vazeb s okolními atomy Si právě tento jeden nadbytečný elektron. V pásovním diagramu MO se to projeví tak, že v oblasti zakázaného pásu křemíku se objeví jednotlivě lokalizované hladiny obsazené téměř elektrony (obr. 22-15b). Poněvadž tyto hladiny jsou od vodivostního pásu energeticky jen malo vzdáleny, jsou pro něj ideálním zdrojem elektronů. Již poměrně velmi malý tepelný pohyb vyzvedne elektrony z těchto tzv. donorových hladin do vodivostního pásu a způsobí jeho elektrickou vodivost. Nositeli proudu v polovodiči tohoto typu jsou elektrony, a látku se proto nazývá polovodič typu n (negativní).

Obrázk 22-16a ukazuje jinou obdobnou situaci, kdy substituční porouchy krystalové můžky křemíku jsou podmíněny přítomností atomů boru. Poněvadž bor má o jeden valenční elektron méně než křemík, bude ve čtverci jeho vazeb se sousedními atomy chybět vždy jeden elektron.
Mřížka bude elektronově deficitní. MO neobsazené elektrony, vzniklé v místech poruch, se energeticky poněkud vysunou nad valenční pás krystalu křemiku (obr. 22-16b). Tyto hladiny se již při poměrně nižších teplotách mohou stát akceptorové elektrony z valenčního pásu. Říká se jim proto hladiny akceptorové. Elektrony, které jsou tepelným pohybem vyneseny na tyto hladinu z valenčního pásu, nemohou větší elektrický proud, protože orbitály tvůrců akceptorové hladiny nemají deloka lithizovaný charakter. Zato díky vzniklé ve valenčním pásu mohou migravat po celé krystalové mřížce. Říkáme, že látka je polovodičem typu p (poztitivní).

a) Znázornění substitučních poruch v mřížce křemíku při nahrádě některých atomů Si atomy B;
b) pásové diagram křemíku s uvedeným typem substitučních poruch při teplotě 0 K.

Akceptorové hladiny v zakázaném pásu jsou označeny AH. Možnost tepelné excitace elektronu z valenčního pásu na akceptorové hladiny (centra) je znakovaná šipkami.

Je samozřejmé, že vznik substitučních poruch v krystalových mřížkách látě není jedinou cestou, jak u tehdejší látě využít nebo ovlivnit polovodivost. Také přítomnost vakancí v krystalové mřížce, uvedení atomů do intersticiałów poloh a další obdobné jevy mohou mít týž účinek. Podrobnější popis tehdejší situace a postupů a jejich klasifikace se vymyká z rámce chemického výkladu této problematiky.

- Vlastnosti polovodičů

Mimořádný význam má charakter závislosti elektrické vodivosti polovodičů na teplotě. Stejně jako u kovů je vodivost polovodičů určena koncentrací nositelů proudu a jejich pohyblivostí. Avšak koncentrace nositelů proudu ve vlastních i nevlastních polovodičích se na rozdíl od kovů velmi mění s teplotou. Při nižších teplotách je malá nebo prakticky nulová, tepelný pohyb přenáší do vodivostního pásu elektrony buď z nepravděpodobně vzdáleného valenčního pásu (vlastní polovodič), nebo z donorových hladin (nevlastní polovodič typu n), a látka se stává elektricky vodivá. Elektrony mohou být také vyvážovány ze závazí polovodičů a v němčím pásu může vzniknout děrová vodivost (nevlastní polovodič typu p). Protože efekt zvýšování koncentrace nositelů proudu při zvětšení tepelného pohybu převládá nad efektem zmenšování jejich pohyblivosti při vzrůstu teploty, pozorujeme, že vodivost polovodičů je při vysších teplotách větší. Tím se polovodiče zásadně liší od kovů.

Na krivkách, které vystihují tepelní závislost vodivosti polovodičů, pozorujeme často někde změny jejich charakteru. Je tomu tak proto, že někdy u větších teplot dochází u polovodičů ke změně převažujícího (majorního) mechanismu vedení proudu. Například u směšeného polovodiče typu p je při relativně nižších teplotách majorním mechanismem vedení elektrického proudu dírátí ve valenčním pásu. Jakmile se však při vzrůstu teploty zaplní excitovanými elektronky všechna akceptorová centra (hladiny), koncentrace děr ve valenčním pásu s teplotou již dále nevzníká, a poněkud pohyblivost děr se se stropně vzdálené teplotě zmenšuje, může vodivost látky přechodně klesnout. Po dosažení určité teploty začne energie tepelného pohybu postačovat k excitaci elektronů přes celou látku zakázaného pásu do pásu vodivostního. Přítomnost elektronů vytváří prudký růst vodivosti a jejich pohyb se stane majoritním mechanismem vedení proudu.
Z dalších fyzikálních vlastností je důležitý význam nabízuť fotoelektrická vodivost. Tento efekt patří do skupiny fotoelektrických jevů. Fotoelektrická vodivost je projevem tzv. smíšeného (objemového) fotoelektrického jevu. Polovodič pochází z vzniku příslušných fotony s nižší energií, než jaký by postačoval k vyražení elektronů z valenčního pásu mimo krystal. V takovém případě jsou absorpce světelných kvant elektrony vynášeny do vodivostního pásu a vodivost lítky proto při osvětlení zvýší. Složitější mechanismus vodivosti polovodiče popř. složitější interakce elektronů s fotony, mohou vytvořit anomální fotoelektrickou vodivost, při níž s osvětlením materiálu jeho vodivost klesá.

Mimořádný význam má u polovodičů Hallů jev. Spočívá v tom, že v polovodiči, kterým pro-
teká proud obvodem vnějšího stejnoměrného elektrického pole a který je příměsněm do homogenního magnetického pole, jehož siloči jsou kolmé k siloči pole elektrického, se na protilehlých plochách objevují elektrické náboje, a tím i nové elektrické pole (Hallův napětí). Je to způsobeno tím, že na nositele proudu v materiálu polovodiče působí při jejich pohybu v homogenním magnetickém poli Lorentzova síla. Význam Hallova jevu je převážně v tom, že umožňuje přímo experimentálně určovat jak koncentraci, tak i pohyblivost nositelů proudu v polovodiči.
23 Elementární kovy

V této kapitole se budeme zabývat průmyslovou výrobou a čistěním kovů, tedy metalurgii a také surovinovou základnou těchto výrob.

- **Rozšíření kovů v přírodě**

Z tab. 13-1 (str. 262) vyplývá, že mezi pravou desítkou prvků nejrozšířenějších v přírodě je sedm prvků kovových. Jsou to hliník, železo a vápník, dále dva nejběžnější alkalické kovy sodík a drasík a konečné květěk a titan. Je vidit, že u kovů stejně jako u nekovů jsou v přírodě nejvíce rozšířeny prvky s poměrně malým atomovým číslem.

Relativní zastoupení kovů v přírodě, vyjádřené v hmotnostních procentech, je v forme periodické tabulky prvků ukázáno v tab. 23-1.

- **Exploatace kovů z přírodních zdrojů**

Názvem ruda se označuje nerost nebo směs nerostů, z nichž lze v dané etapě technického rozvoje v průmyslovém měřítku a s prospektem, tedy ekonomicky, vyrábět elementární kovy, jejich slitiny nebo i složeniny.

Tabulka 23-2 umožňuje učinit si názory o množství jednotlivých kovů, jejich červeně v celosvětovém měřítku z průmyslově měřítkem a s prospektem, tedy ekonomicky, vyrábět elementární kovy, jejich slitiny nebo i složeniny. Jako rudy se často označují suroviny složené průvody nebo technických kovů, přestože tomu tak být mělo. Naopak se název ruda dává některým nerostům, zčásti se jich v daném místě a čase k výrobě kovů neustává. Příkladem je nerost pyrit, je-li používán k výrobě kyselin srovně a nikoli elementárního železa.
<p>| | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>Be</td>
<td></td>
</tr>
<tr>
<td>10^{-3}</td>
<td>10^{-4}</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>Mg</td>
<td></td>
</tr>
<tr>
<td>2.68</td>
<td>1.95</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
<td>Co</td>
<td>Ni</td>
<td>Cu</td>
<td>Zn</td>
<td>Gd</td>
<td>Ce</td>
</tr>
<tr>
<td>2.40</td>
<td>3.38</td>
<td>10^{-3}</td>
<td>0.41</td>
<td>0.01</td>
<td>0.02</td>
<td>0.08</td>
<td>4.7</td>
<td>10^{-3}</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>10^{-3}</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>Rb</td>
<td>Sr</td>
<td>Y</td>
<td>Zr</td>
<td>Nb</td>
<td>Mo</td>
<td>Te</td>
<td>Ru</td>
<td>Rh</td>
<td>Pd</td>
<td>Ag</td>
<td>Cd</td>
<td>In</td>
<td>Sn</td>
</tr>
<tr>
<td>0.03</td>
<td>0.01</td>
<td>10^{-6}</td>
<td>0.02</td>
<td>10^{-3}</td>
<td>10^{-3}</td>
<td>–</td>
<td>10^{-3}</td>
<td>10^{-3}</td>
<td>10^{-6}</td>
<td>10^{-3}</td>
<td>10^{-3}</td>
<td>10^{-3}</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>Cs</td>
<td>Ba</td>
<td>La</td>
<td>Hf</td>
<td>Ta</td>
<td>W</td>
<td>Re</td>
<td>Os</td>
<td>Ir</td>
<td>Pt</td>
<td>Au</td>
<td>Hg</td>
<td>Tl</td>
<td>Pb</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>0.03</td>
<td>10^{-3}</td>
<td>10^{-5}</td>
</tr>
<tr>
<td>Fr</td>
<td>Ru</td>
<td>Ac</td>
<td>Th</td>
<td>Pa</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{-21}</td>
<td>10^{-10}</td>
<td>–</td>
<td>10^{-3}</td>
<td>10^{-10}</td>
<td>10^{-8}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce</td>
<td>Pr</td>
<td>Nd</td>
<td>Pm</td>
<td>Sm</td>
<td>Eu</td>
<td>Gd</td>
<td>** Tb**</td>
<td>Dy</td>
<td>Ho</td>
<td>Er</td>
<td>Tm</td>
<td>Yb</td>
<td>Lu</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>10^{-4}</td>
<td>10^{-3}</td>
<td>–</td>
<td>10^{-3}</td>
<td>10^{-4}</td>
<td>10^{-3}</td>
<td>10^{-6}</td>
<td>10^{-3}</td>
<td>10^{-3}</td>
<td>10^{-3}</td>
<td>10^{-3}</td>
<td>10^{-3}</td>
<td>10^{-5}</td>
</tr>
<tr>
<td></td>
<td>Li 10^2</td>
<td>Be 10^2</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Na 10^2</td>
<td>Mg 10^3</td>
<td></td>
</tr>
<tr>
<td>K 10^2</td>
<td>Ca 10^5</td>
<td>Sc 10</td>
<td>Ti 10^4</td>
<td>V 10^4</td>
<td>Cr 10^6</td>
<td>Mn 10^7</td>
<td>Fe 10^9</td>
<td>Co 10^5</td>
<td>Ni 10^6</td>
<td>Cu 10^7</td>
<td>Zn 10^7</td>
<td>Ga 10</td>
<td>Ge 10^2</td>
</tr>
<tr>
<td></td>
<td>Rb 10</td>
<td>Sr ?</td>
<td>Y ?</td>
<td>Zr 10^4</td>
<td>Nb 10^4</td>
<td>Mo 10^3</td>
<td>Tc ?</td>
<td>Ru ?</td>
<td>Rh ?</td>
<td>Pd ?</td>
<td>Ag 10^4</td>
<td>Cd 10</td>
<td>In 10</td>
</tr>
<tr>
<td>Cs 10</td>
<td>Ba 10</td>
<td>Lanthanoïdy 10^3</td>
<td>Hf ?</td>
<td>Ta 10^3</td>
<td>W 10^5</td>
<td>Re 1</td>
<td>Os ?</td>
<td>Ir ?</td>
<td>Pt 10</td>
<td>Au 10^7</td>
<td>Hg 10^4</td>
<td>Tl 10</td>
<td>Pb 10^7</td>
</tr>
<tr>
<td>Fr –</td>
<td>Ra 10^4</td>
<td>Ac –</td>
<td>Th 10</td>
<td>Pa –</td>
<td>U 10^3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Základním pochodem, kterým se vytvořily nerosty obsažené v zemské kůře, bylo tahnutí magmatu. Z původní kapalné vrstvy magmatu, tvorící vrchní obal Země, při chlazení vznikla primární zemská kůra. Výchozí chemické složení magmatu bylo přítomno značně proměnlivé a měnilo se i při pokračujícím poklesu teploty v důsledku odlučování kapalných i krystalických fází.

Magnum, které po celou dobu geologické historie Země a občas ještě i dnes proniká v oblastech zlomů zemské kůry směrem k zemskému povrchu a někdy se vylévá i na něj, je komplikovanou směsí - taveninou převážně křemíčitanů mnoha různých kovů. Diferenciaci magmatu na jednotlivé fáze je proto rovněž velmi složitý proces, jehož průběh závisí na výchozím složení magmatu, na stavových veličinách systému (především teplotě a tlaku), ale i na dynamice změn těchto veličin a na různých dalších faktorech. Přesto bylo možné na základě výsledků studia struktury zemské kůry, zejména jednotlivých magmatických bazénů\(^1\), vypracovat obecně platné schéma vyjadřující sled hlavních dějů, které probíhají při tahnutí magmatu. Jednotlivé kroky tohoto procesu byly

\(^1\) Pod pojmem magmatický bazén se rozumí vytvářející magmatický útvar, který prošel procesem chlazení.
ověřeny experimentálně metodami fyzikální petrográfie, tj. především studiem stavových diagramů příslušných vícesložkových tavenin.

Velními zjednodušeného schema diferenciacie magnatu při poklesu teploty je uvedeno na obr. 23-1. V podstatě homogenní magnatický směs podléhá v prvé fázi svého chladnutí tzv. likvací, tj. odměňování dvou kapalných fází. Nejčastěji šlo o oddělování kapalného FeS (často s obsahem NiS) od vlastního kapalného magnatu.

Při dalším poklesu teploty začaly probíhat první krystalizační fáze. Vznikly především oxidy, křemíčany a fosforečany kovů (mnohdy se izomorfně zastupující) FeO, Fe₂O₃, SiO₂, Al₂O₃, MgO, MnO, TiO₂, CaO, ZrO₂ atd., a využívaly se též elementární platinné kovy. Do této časové fáze chladnutí spadá i krystalizace diamantů, probíhající za výjevemních podmínek.

Minerály, které vznikly v této etapě krystalizace, se uspořádávají v stále ještě převážně kapalném magnatu dvojitým způsobem podle toho, jak dále se jejich hustota liší od hustoty magnatu. Při velkém rozdílu hustot se vznikají krystaly a jejich aglomeráty pohybovaly v gravitačním poli a posléze vytrvaly segregační oddělení ložiska. Při malém rozdílu hustot zůstaly krystaly vznikajících nerostů v magnatu ve vzduchu a v pozdějí ztuhlí hornině jsou proto přítomny ve velmi rozptýlené formě jako tzv. accessorické nerosty.

V druhé fázi krystalizace magnatu nastalo spontánní tlušení vlivem části dosud kapalného magnatu. Přítom vznikly krystalky horninotvorných nerostů. Většina těchto minerálů jsou křemíčany a hlinotkřemíčany, popř. oxid křemíčky a v malé míře též sirány. Minerály vznikající na konci této fáze tlušti obsahují mnohdy ve své struktuře také ionty F⁻ a skupiny OH. Elektro- pozitivními součástmi minerálů jsou Mg²⁺, Fe²⁺, Ca²⁺, Al³⁺, K⁺, Na⁺ a některé další. Oxid křemíčky vzniká ve formě tridymitu a cristobalitu.

Je velmi zajímavé, že křemíčany krystalují z magnatu v pořadí určeném strukturou jejich aniontů. Nejprve se vytvoří křemíčany obsahující v struktuřní míře izolované tetraedry SiO₄ (str. 391), např. olivín (Mg,Fe)₂SiO₄, pak pyroxeny s jednoduchými řetězemi tetradrických křemíčkovaných aniontů [např. Mg₂SiO₄, (Mg,Fe)₂SiO₄, CaMgSi₂O₆, CaFeSi₂O₆], amfiboly s dvojžilnými řetězci aniontů [např. (Mg,Fe),Si₂O₆(OH)], a obdobné sloučeniny vápenatého-hořčíkatého, směs s vstavovatěm uspořádanými aniontů [např. biotit K(Mg,Fe),Al₃,Al₄,OH,Fe³⁺] a nakonec orthoklas a křemen s prostorovou sítí tetraedrů. Jak vyplývá z uvedených vzorců, je v těchto minerálech izomorfní přítomno železo, které jím dodává tmavé zbarvení, a proto někdy bývají označovány názvem melanokrat. Orthoklas a další řečové, muskovit a modifikace SiO₂ krystalují jako světle zbarvené, leukskrušní minerály teprve tehdy, když jsou v magnatu vyčerpany železnaté, hořčíkaté a do značné míry i vápenaté soli.

Třetí etapou tlušti magnatu je krystalizace jeho posledních kapalných zbytků. Je to opět tavenina převážně křemíčatou s kationty kovů, které v původním magnatu byly přítomny jen ve velmi malém zastoupení, ale diferenciaci při chladnutí se zkoncentrovaly. Taveniny vznikají nejčastěji již jen žíli nerosty vyplňující mezery mezi bloky horninotvorných minerálů. Tyto nerosty obsahují kromě křemíčkových aniontů hlavně anionty fluoridové a chloridové a hydrierové skupiny, ale též anion boritanový, titanitánový a některé další. Charakteristická je přítomnost kationtů Li⁺, Be²⁺, Mn²⁺, kationtů kovů vázaných zemin a též Ti⁴⁺, Zr⁴⁺, Hf⁴⁺, Ta⁵⁺, Nb⁵⁺, U⁵⁺ aj. Nerosty této tzv. pegmatitové fáze tvoří rozsáhlou skupinu minerálů velmi pestrého chemického složení, z nichž mnohé jsou technicky významnými rudami. Pro některé je typický velký obsah hliníku, pro jiné velký obsah boru. V uvedeném období vznikly i nerosty, které svým chemickým složením jsou křemíčany nebo fosforečany kovů vázaných zemin apod.

Po ztuhlnutí velšerického magnatu dochází ke čtvrte etapě tvorby minerálů, tzv. pneumatolytickým pochodům. Voda i řada dalších těkavých sloučenin, zejména fluoridy a chloridy těžších kovů, jsou ve ztuhlem magnatu přítomny jako plynné komponenty. V důsledku tepelného gradientu se plyny pohybují a spolu navzájem nebo s již vzniklými nerosty chemicky reagují (uplatňují

Pokleslé teplota v hornině pod kritický bod vody (374°C), jsou v ní přítomny přehráte vodné roztoky rozličných sloučenin. Krystalizací z těchto roztoků vznikají pak další minerály. Hovoríme o hydrotermálních procesech vzniku nerostů. Tak vzniká křemen, některé uhličitaney (Ca₂⁺, Mg²⁺, Fe⁺⁺), fluoridy (Ca⁺⁺), síraný (Ba⁺⁺) a především sulfidy těžkých kovů, které tvoří monomóřadé významná ruční ložiska (Bi, As, Cu, Zn, Pb, Sn, Hg, Au, U). Ložiska mají nájacejší polymetalický charakter, což je znamená, že jsou tvořena sulfidy skupu kovů.

Ani hydrotermální vznik nerostů neznáméné ještě ukončení procesu tvorby minerálů. Mnohé primárně vzniklé nerosty nejsou totiž při teplotách a podmínkách působících na zemském povrchu stálé. Kontakt s vodou, s látkami v ní rozpuštěnými a s látkami obsaženými v zemské atmosféře, ale též působením mechanických vlivů a účinky živých organismů způsobuje jejich přeměnu na další, druhohorně minerály.

Dohlívá v místě, kde zemská kára je již ztužila a zchladla, popř. kde se dokonce již působením hydrofyry a atmosféry vytvořily druhohorně minerály, k novému vyvěření magmatu, mění se vlivem chemického a tepelného účinku vytvořeného magmatu v jeho nejbližším okolí složení a struktura minerálů. Obdobné následky, ale většího rozsahu, má samozřejmě též nesení povrchových oblastí zemské káry do hloubek při geologických jevech katastrofického rázu, např. při vznášení zemského povrchu horotvorným procesem. V takových případech se hovoří o metamorfních procesech vzniku minerálů.

Nerosty mohou vznikat i různými dalšími cestami, které však podstatněji neprispívají k vytváření nerostných surovinových zázemí pro metallurgické účely, a nebudeme se jimi zde proto zabývat.

Z uvedeného výkladu vyplývá, že nerosty ve svrchních vrstvách zemské káry dostupných člověku nejsou rozptyleny nahodilé. Vytvářejí společenstva a struktury řídící se zcela přísnými zákonnostmi. To umožňuje nejen vyhledávat další lokality surovin, ale i odladovat celkové jejich zásoby v zemské káře. Vyplyví z toho i skutečnost, že globální složení surovinové zázemí, jež je důsledkem uspořádání zemské káry, je neměnné a naše požadavky, dnešní i budoucí, musí s touto realitou počítat.

23.1 OBECNÉ METODY VÝРОBY KOVŮ

Průmyslová výroba těměř všech kovů spočívá v uskutečňování řady operací, již lze obecně rozdělit takto:

1. těžba rud, nechémek separační postupy sloučení ke zvýšení poměrného zastoupení aktivní komponenty,
2. chemické separační postupy postupu, kterým se upravuje chemická kvalita surovin, chemického děl vedoucí přímo ke vzniku surového elementárního kovu, řešení que postupu zlepšující čistotu kovu. Těžba rud nespádá do oblasti chemických disciplín, neboť jde o pouhou mechanickou manipulaci s materialem.

Operace druhé skupiny mají náhodně charakter mechaničky-fyzikálního nebo fyzikálně-chemického separačního procesu a jsou založeny na fyzikálních a fyzikálně chemických jevech a principech. Jde např. o magnetickou separaci, plavení a sedimentaci, flotaci, frakční rozdělení a další operace.

Třetí skupinu tvoří děje vyslovené chemické, kterým je aktivní složka surovin oddělována
od balastních komponent, popř. je převáděna na takovou chemickou složeninu, která je vhodná pro uskutečňování finální reakce vedení k získání surového kovu. Příkladem je termit suroviny s některými lítmi, její rozklad kyselinami, rozložení hydroxidů alkaliických kovů a rozložení komplexo-
trvorny látek, termicky rozklad za nepřítomnosti vzduchu, pražení suroviny na vzduchu, vyhřevání směsi z roztoků atd. Velmi často jsou tyto chemické děje zahrnovány fyzikálně chemickými
separačními postupy, jako je filtrace, destilačce, krystalizace, extrakce, sedimentace a mnohé další.

Do čtvrté skupiny opět patří chemické děje vedoucí přímo k získání elementárního kovu.
Obvykle právě podle téhož reakci rozděluji a označujeme způsoby výroby kovů a dělíme je na
a) redukční postupy,
b) tepelné rozklady,
c) elektrolyt.

Tyto jednotlivé výroby nyní podrobněji probereme a seznáme se též s podstatou rafinovaných
postupů zlepšujících čistotu kovu.

Výroba kovů redukčními pochody

Tyto pochody spočívají v redukci sloučeniny kovu, nejčastěji jeho oxidu nebo halogenidu,
na elementární kov chemickým účinkem vhodného redukovače. Většinou se uskutečňují při
evšich teplotách, a mohou se proto často o pochodech *termoredukčních*.

Jako redukovače se běžně používají

1. **elementární nektory** (H₂, C aj.),
napr.

\[
\begin{align*}
2 \text{AgCl} + \text{H}_2 &\rightarrow 2 \text{Ag} + 2 \text{HCl} \\
\text{WO}_3 + 3 \text{H}_2 &\rightarrow \text{W} + 3 \text{H}_2\text{O} \\
2 \text{Sb}_2\text{O}_3 + 3 \text{C} &\rightarrow 4 \text{Sb} + 3 \text{CO}_2
\end{align*}
\]

2. **elementární kovy a polokovy** (Al, Mg, Ca, Ba, Na, Si, Zn, Zr, Fe aj.),
napr.

\[
\begin{align*}
\text{Fe}_2\text{O}_3 + 2 \text{Al} &\rightarrow 2 \text{Fe} + \text{Al}_2\text{O}_3 \\
\text{BeF}_3 + \text{Mg} &\rightarrow \text{Be} + \text{MgF}_2 \\
\text{TiCl}_4 + 4 \text{Na} &\rightarrow \text{Ti} + 4 \text{NaCl} \\
2 \text{V}_2\text{O}_5 + 5 \text{Si} + 5 \text{CaO} &\rightarrow 4 \text{V} + 5 \text{CaSiO}_3
\end{align*}
\]

3. **sloučeniny** (CO, SO₂, CaC₂, KCN aj.),
napr.

\[
\begin{align*}
\text{PbMoO}_4 + \text{CO} + \text{Na}_2\text{CO}_3 &\rightarrow \text{Pb} + \text{Na}_2\text{MoO}_4 + 2 \text{CO}_2 \\
\text{As}_2\text{O}_3 + 3 \text{NaCN} &\rightarrow 2 \text{As} + 3 \text{NaNO}_2 \\
\text{MgO} + \text{CaC}_2 &\stackrel{2200 ^\circ \text{C}}{\rightarrow} \text{Mg} + \text{CaO} + 2 \text{C} \\
2 \text{AuCl}_3 + 3 \text{SO}_2 + 6 \text{Na}_2\text{CO}_3 &\rightarrow 2 \text{Au} + 3 \text{Na}_2\text{SO}_4 + 6 \text{NaCl} + 6 \text{CO}_2
\end{align*}
\]

Redukce vodíkem jsou techniky velmi „elegantní“ a poskytují relativně čisté kovy. Jsou však
poměrně drahé a náročné i z hlediska bezpečnosti práce. Uskutečnění redukce spočívá v prostém
žhání sloučeniny kovu v proudu vodíku; některé halogenidy se však vodíkem redukují v plynné
fázi. Nejsnadněji se redukují vodíkem oxidy a halogenidy kovů, popř. těch sloučenin obsahující oxi-
aniony. Sulfidy kovů většinou přímo vodíkem neredukujeme, žiháni na vzduchu se převádějí
nejprve na oxid. Pro přípravu neúlečitých kovů nelze redukci vodíkem použít.
Redukce oxidů kovů uhličím patří k běžně užívaným postupům. Směs oxidu a koksu se vyhřívá v elektrické peci nebo se potřebné teploty dosahuje spalováním uhlíku. V reakčním prostoru probíhá řada chemických reakcí. Většinou se jedná o přímou redukci uhličím, protože nejčastěji podíl kovu je obvykle vyředěnou účinkem vznikajícího CO₂, záleží ovšem na podmínkách, v nichž je proces uskutečňován. Výrobky založené na tomto principu patří k nejstarším, jsou dobře propracovány a nejsou nákladné, ale čistota takto připravených kovů není vysoká a postačuje jejen pro některé účely. Nedostatkem postupu je i to, že silné elektropozitivní kovy tvoří s uhličím karbidy, takže se nemohou takto vyrábět. Totéž platí i o některých ušlechtilých kovech. U těch sklidě tvoří buď kaolin až tím, že se uhličiem redukuje směs oxidů železa a oxidu žádaného kovu, popř. oxid smíšený. Získá se tak slitina kovu s železem, což není na závadu, zejména má-li být kov použit k ztlustění oceli apod.

Redukce oxidů kovů elementárními kovy nebo polokovy bývají označovány názvem metaloterme, popř. termotwiré reakce. Charakteristické je, že tyto reakce jsou velmi exotermické. Slouží k připravě milo ušlechtilých kovů, totož těch, jejichž výroba redukci vodíkem nebo uhličím je obtížná nebo nemožná. Ale mohou se tak vyrábět i četné ušlechtilé kovy. Jako redukující kov se používají hliník, křemič, hořčík aj.

Určitou obdobou metalometrie jsou redukce halogenidů kovů roztavenými neutříšitelnými elementárními kovy, označované jako Krollova metoda. K redukci slouží roztavený hořčík, vápník, sodík a některé další kovy. Metaloterme i Krollova metoda jsou dosti druhé postupy, neboť spotřebovávají jiné kovy, které se obtížně připravují. Navíc se někdy musí pracovat za sníženého tlaku nebo pod ochranou atmosféry inertního plynu.

Chemicky obdobné, avšak technickým provedením odlišné jsou technologie založené na substitučních reakcích, při nichž je v tavenině nebo v roztoku ušlechtilý kov vyv刘备kovan kovem méně ušlechtilým. Příkladem je „strazení“ rtutí ze železem v tavenině HgS

HgS + Fe → Hg + FeS nebo „cementace“ médií z vodného roztoku síranu měděného:

Cu²⁺ + Fe → Cu + Fe²⁺

Velmi rozmanité, ale jako celek nepříliš využívané jsou technologie, při nichž se kov získává redukčním pěchovením nějaké sloučeniny. Patří k nim žíhání v průdu CO₂, termická reakce s CaC₂ (tzv. karbidoterme), redukce tavení s kyanidy alkalických kovů a řada dalších, ještě méně běžných postupů, mezi nimiž jsou i redukce prováděné v roztocích účinkem peroxidi vodíku, formálněy důvodu apod. Poměrně větší uplatnění má důvěrný postup používaný při výrobě kovů z kvalitních sulfidických rud, při němž se čistí rudý pěvádě pražení na oxid, např.

2 PbS + 3 O₂ → 2 PbO + 2 SO₂

a po uzavření přívodu vzduchu se vzniklý oxid redukuje zbytkovým sulfidem za vzniku elementárního kovu:

2 PbO + PbS → 3 Pb + SO₂

Kovy připravené chemickými redukemi bývají vysoce půsivité, popř. houbovité, nebo to jsou dokonce prášky. Musí se proto někdy ztvorovat na kompaktní materiál. Převedějí se do vany pod vlivem některých anorganických solí (boritanů, halogenidů aj.) a směs se roztaví. Mohou se těž sínovitě tlačit při zvýšené teplotě, většinou pod ochranou atmosféru, aby se zabránilo povrchové reakci kovu s komponentami vzduchu (O₂, N₂). Pokud kov vyráběný redukčním postupem destiluje ze zóny svého vzniku nebo vzniká-li kapalný, uvedené operace ovšem odpadají.
Výroba kovů tepelným rozkladem sloučenin

Pro rozklad sloučenin, které jsou při teplotě rozkladu v plynném skupenství, se používá jiné zařízení než pro dekompoziční tuhlých látek.

Tepelný rozklad tuhlých látek se obvykle provádí v trubicích nebo ve válích, v nichž je látku uložena na lodičce nebo přímo na dně reakčního prostoru. Reakční prostor se zahřívá zvenčí a destilací, odsáváním nebo procházejícím ochranným plynem se odvádějí těkavé produkty.

Plynové látky se nejčastěji rozkladají v přívěském kovovém vláknu, drátu, kontaktním tělese nebo na lokálně vyhřívané části rozkladné trubice. Vlákna a dráty se vyhřívají příchozem elektrického proudu, oheň trubice a kontaktů tělesa může být odpovědný nebo indukční.

Metallurgicky se nejčastěji využívají rozklady oxidů a azidů kovů, výjimečně i některých dalších sloučenin. Oxidy většiny kovů jsou termicky staže. Labilní, a tedy pro tento postup vhodné, jsou oxidy vysoce ušlechtilých kovů. Například rtuť lze získat reakcí

\[2 \text{HgO} \rightarrow 2 \text{Hg} + \text{O}_2 \]

U azidů je termická labilita pravidlem a přípravu kovu rozkladem azidu lze uskutečnit jen tehdy, když azid nemá sklon k explozivnímu rozkladu. Neexplotivní jsou azidy vysoce elektropozitivních, neušlechtilých kovů. Lze tedy tímto postupem vyrábět např. baryum:

\[\text{Ba(N}_3\text{)}_2 \rightarrow \text{Ba} + 3 \text{N}_2 \]

Z rozkladových reakcí plynných látek jsou pro metalurgii významné zejména tepelné dekompozice některých karbonylů, halogenidů a hydridů. Například velmi čistý průkrový nikl se vyrábí Mondovým procesem:

\[[\text{Ni(CO)}_4] \rightarrow \text{Ni} + 4 \text{CO} \]

Arsen lze získat dekompozicí arsany:

\[2 \text{AsH}_3 \rightarrow 2 \text{As} + 3 \text{H}_2 \]

Řada kovů (Ti, Zr, Si, Hf, V, Nb, W aj.) se může připravovat cestou Arkelsoou-de Boerovou metodou, tj. rozkladem jodidů (nebo bromidů) na žhaveném vláknu:

\[\text{TiJ}_4 \rightarrow \text{Ti} + 2 \text{I}_2 \]

Tato metoda a v podstatě i Mondův proces plní v metalurgii úlohu rafinační technologie. Slouží většinou k přečištění surových kovů získaných jiným metalurgickým pochodem. Například surový titan získaný redukcí TiCl₄ kapalným hořčíkem se v evakuované nádobě uvede při potřebné teplotě do styku s prásmi jodu. Vzniklý TiJ₄ se rozkladá na žhaveném wolframovém vláknu. Kovy velmi vysoké čistoty zůstávají na vláknu, uvolněný jod znovu reaguje se surovním titanem a proces neustále pokračuje až do vyčerpání navazky titanu. Podobně se převádí surový nikl, připravený ze sulfidických rud, reakcí s plynným CO na [Ni(CO)_4] a tato těkavá látká se pak tepelně rozkládá v žhaveném reakčním prostoru na čistý průkrový kov.

Výroba kovů elektrolytickými postupy

Elektrolytické postupy patří k nejpoužívanějším metalurgickým technologiím. U některých kovů je elektrolyza jedinou vhodnou cestou jejich průmyslové výroby. Rozlišujeme postupy, při nichž jsou elektrolyzované vodné roztoky jednoduchých nebo komplexních solí, a technologie využívající elektrolyzu tavenin obdobných látek.

Elektrolyza vodních roztoků se uskutečňuje většinou při normální teplotě, méně často při teplotách vyšších (do 100 °C). Do roztoku v tzv. elektrolytické vaně jsou ponořeny vodivé elektrody
pod stejnosměrným napětím. Na katodě dochází k redukčním dejím, anoda působí na složky při-
těrně v roztoku oxidace.

Za příznivých podmínek se na katodě z vodného roztoku určité soli vyhýuje příslušný
elektrometrický průběh díky elektrolýze, popřípadě ale některé z uvedených
reakcí. Uvedený proces se nazývá elektrolytická redukce.

Četné kovy se na katodě z vodného roztoku nevyhýejí. Především to platí o kovech, které
jsou vysloveně neúčelnité a jejich účinným elektrolytickým potenciálem (str. 211) je vysoce záporný
(Ca, Li, K, Sr, Ca, Na, La, Mg, Be, Al, Zn at.). Při pokusu vyloučit tyto kovy z vodného roztoku
běžným způsobem dochází na katodě přednostně k redukci protonů na elementární vodík:

\[2\text{H}_2\text{O}^- + 2e^- \rightarrow H_2 + 2\text{H}_2\text{O} \]

Případný vodík uniká z prostoru katody a kov se nevyhýjí, neboť na povrchu katody probíhá pouze
děj popsaný uvedenou rovnancí. Pouze při použití vrstvy rtu jako katody lze některé z uvedených
reakcí vodní roztoků v důsledku anódického oxi-

dace, které se mění pořadí elektrolytických reakcí. Reakce vybíjení kationtů kovů na
povrchu elektrody se tak stává reálnou i pro kationty neúčelnitého kovu, a to tím splní, že
vyložený kov se okamžitě rozpouští ve rtu za vzniku amalgámu.

Některé kovy (Ge, Mo, W, Ti) se z vodných roztoků nevyhýjí. Přestože jejich
elektrolytické potenciály jsou příjemné hodnoty a naznačuje to, že tato redukce těchto kovů
měla být uskutečnitelná. Příčiny jsou složité a nejsou dosud plně objasněny. Jej pravděpodobné
sovisí s kinetickou závislostí, stojí v cestě elektrolytické reakce.

O části a krystalit kovů vyložených z vodných roztoků rozhoduje řada různých faktorů. Zaleží především na tom, o jaký kov jde a při jakém teplotním a kovové hustotě a napětí je
vylučován; vliv má složení vodného roztoku, tj. koncentrace iontů kovu, kvalita a koncentrace
aniontů, přítomnost povrchových aktivních liték, míchání atd. Přítomno této závislosti jsou do značné
muží pro každý systém specifické.

Elektrolytické různé tary silně se samozřejmě uskutečňují při podstatně vyšších teplotách,
než tomu bylo při elektrolyze vodných roztoků. Vysokých teplot se dosahuje především výhyně
plutika při průduchu proudu lizoně, někdy tak němým ohřevem. Kory vyvýkousovaný na katodě
je nejčastěji kapalný, poněvadž proces probíhá při vyšších teplotách, než je bod tání kovu. Kapalný
kov se z elektrolyzuje buď odeerzejává, nebo je v určitém místě chlazen pod teplotu bodu tání

Mechanicky se odstranuje. Pracuje-li elektrolyzér za teploty menší, než je bod tání kovu, bývá

Z taveniny se moží katodickou redukcí získávat i nejneúčelnější kovy. Tento postup
je proto vhodný pro výrobu alkalických kovů, kovů alkalických zemin a některých dalších.
Elektrolyzuje se obvykle taveniny halogenidů, halogenokomplexů, hydroxidů a oxidů vyráběných kovů.
Mohou se vytvářet i mnohé účelitě kovy, ale k stejněmu účelu lze sloužit materiálové a zejména
energeticky méně náročné elektrolyzy vodných roztoků, popř. jiné výrobní postupy.

Energetická náročnost tavených elektrolyz je skutečně mimořádná. Elektrolyzéry pracují s
velkou průduchou hustotou, mnohdy s nepříliš velkými průduchy výšky, a v průběhu elektrolyz

Musí být uskutečněna uhrazení obrovské tepelné ztráty elektrolyzéru vyřazeného na několik
set stupňů.

Jen výjimečně se při tavených elektrolyzích používají jednosložkové taveniny. Příslušný
další komponent většinou výrazně snižuje bod tání taveniny, což umožňuje pracovat při

Teplotách a za některých tepelných ztrát.

Taveniny kromě úlohy kapalného média, ve kterém migruje ionty k elektrode, plní i funkci
ochrannou, neboť znemožňuje přímý styk kapalného neúčelného kovu se vzduchem.
Exhalace provázející tavné elektrolýzy jsou ekologickým problémem. Reakce na anodě jsou zdrojem znečištěného kyslíku nebo halogenů a plynně uvolňované z prostoru elektrolýzera v důsledku korozí elektrody se obtížně zachycují.

- **Rafinace kovů**

Čistota primárně vyráběného kovu je závislá na tom, o jaký kov jde, jaká metoda byla použita k jeho přípravě, dále na výchozí surovině i na parametrech výrobního postupu. Obecně platí, že primárně vyrábený kov obvykle nevyhovuje svou čistotou účelům, pro které je přípravován, a musí se čistit. K tomu slouží rozličné více či méně účinné a více či méně nákladné chemické, fyzikálně chemické a fyzikálně postupy, které se nazývají *rafinace*. Pokud se při výrobě určitého kovu používá několika čistících operací, nazývají se první z nich *předrafinace* a následně *rafinace* je vyhrazeno pro procesy finální.

Chemické rafinace bylo vypracováno velmi mnoho. V podstatě jsou založeny na dvou rozdílných postupech.

Podstatou prvého je převedení kovu na vhodnou sloučeninu, která se pak fyzikálně chemickou separační metodou odliší od reakčních zbytků. Již tím se odstraní mnoho nečistoty, které provázely surový kov. Sloučenina se pak může dále čistit a nakonec redukovat na elementární kov.

Druhou cestou je postup, kdy naopak jsou chemicky atakovány nežádoucí příměsi přítomné v surovek kovu. Reakce jsou převedeny na snadno separativní formu. Čistěné kovy sami reakce nepodléhají.

Příkladem postupů prvého typu je již uvedené čištění surového niklu jeho převedením na \([ext{Ni(CO)}_3]\), který se potom termicky rozloží, a čistílo titanu van Arkelovou-de Boerovou metodou. Patří sem též klasická rafinace zlata, při níž se surový kov rozpouští v lučavce královské, následně se z vodného roztoku vyrábějí sulfidy stříbra, olova a mědi, tedy kovy, jež zlato znečištělova, a zlato se z roztoku vyloučí v elementární formě redukci oxidem sířičtem. Na tomto principu je založen i velmi progresivní postup, při němž se surové kovy \{Nb, Ta, As, Sb, Si\} převedou na přítisně těžký chlorid, ten se rekristalizuje a pak se jeho pár reaguje s vodíkem v plynné fázi za získání vhodně čistého kovu.

Příkladem postupů druhého typu je tavení surového cínu s bezvodým chloridem cinátním.

Zeleso a olovo, přítomné jako nečistoty, se odstraňují reakcími

\[
\text{Fe + SnCl}_2 \rightarrow \text{FeCl}_2 + \text{Sn}
\]

\[
\text{Pb + SnCl}_2 \rightarrow \text{PbCl}_2 + \text{Sn}
\]

Obě vzniklé sloučeniny přechází do strusku. Obdoby lze vyčíst bismut obsahující olovo tavením s červeným fosforem. Olovo předeje na fosfád, který se shromáždí ve strusce. Surove indium s při-

měsí thália se čistí reakcí s thlaloum. Za vhodných podmínek reaguje spontánně thalium, kdežto thalium zůstává nesloučené. Zcela obdobného typu jsou i známé technologie používané při výrobě železa, kdy se takto odstraňují některé nežádoucí prvky, zmenšuje obsah uhličitúk užívaní železa apod.

Chemické způsoby čištění kovů ve velmi často používají jako postup předrafinační. Vysoce čisté kovy se tak mohou získat jen výjimečně, protože látky použité k reakcím zaručí do systému další nečistoty a příměsi. Kovy získané chemicky rafinací využívají svou čistotou např. jako konstrukční materiály, jako složky alumin pro konstrukční materiály, jako výchozí látky pro pří-

pravu některých sloučenin apod. Nejsou vhodné pro přímou přípravu materiálů užívaných v polovodičové technice, jaderné technice a jiných speciálních oblastech, kde se požaduje vysoká čistota. Pouze van Arkelovou-de Boerovou metodou a redukcí některých halogenidů v plynné fázi lze získat kovy opravdu vysoké čistoty.
Fyzikálně chemické metody rafinace kovů jsou představovány především elektrolyzou, extrakčními postupy, dělením na měnník i tontú, destilací a rekristifikací, termickými rozklady a řadou dalších operací. Již u uvedeného výstu vu ide, že současně každé fyzikálně chemické metody je téměř vždy důležité chemické povahy a že dělení na chemické a fyzikálně chemické metody je vlastně do známé míry jen formální!

Z hlediska objemu produkce kovů zaujímají mezi fyzikálně chemickými metodami prováděné místo především elektrolyzu. Jsou dobře propracovány a poměrně snadno realizovatelné. Jelikož rafinační efekt je založen na tom, že kationy kovů se využívají na katodě trpěv, když dosáhne svého depolarizačního potenciálu. Významnou je použití amalgámové elektrolyzu, při níž katodou je rtuť. Zvlášť výhodně je použít při přípravě vysokočistých kovů (Ga, In a j.) vlastupňovou elektrolyzu. Císlený kov se v případě několikrát rozpouštění a opět vylučuje. Běžně jsou jednoduché electrotelelyze s rozpuštěnou anodou, kterou tvorí surový kov (Cu, Pb, Sn, Sb, Cr a j.). K separaci nečistost dochází jako při rozpuštění anod (pod elektrodu se hromadí tzv. anodové kály), tak i při katodické redukci kovu na katodě. Také taková elektrolyza může být rafinačním postupem a posloužit ke zlepšení čistoty surového kovu.

Situ však se v průmyslové rafinace kovů uplatňuje postupy, které byly dříve realizovány len laboratorně. Do této skupiny separačních metod patří především extrakce, spočívající v tom, že vodní roztok soli kovů se uvede do styku s určitým organickým rozpuštědlelem. Kovy, vstřícnou ve formě komplexu iontu, se v takovéto případě často od sebe liší různou tendencí přejít do organické fáze, což se může využít k jejich dělení. Extrakci v kolonách různého typu se jednak dělí chemickými postupy získané koncentráce sloučenin kovů, jednak se rafinuje surový kov (s obsahem nežádoucích kovových složek) po předvedení na vhodnou sloučeninu.

Omezovány využívání mají menší ionty, tj. přírodní nebo umělé nerozpustné vysokomolekulární látky, které mají schopnosti zachycovat na svém povrchu v důsledku chemické (acidobazické) reakce ionty z roztoku elektrolytu (str. 233). Méně iontu se zatím používají hlavně k získávání kovů z odpadních vod, tedy z roztoků velmi zředěných, které by se jinak munuly zahustovat, což je energeticky nákladné. Spíše vyjmačně nalezy menší iontu upotřebení k dělení některých vzácných kovů.

Fyzikálně chemické rafinace kovů slouží převážně k získávání materiálů vysoké čistoty. Jsou vždy povětšinou finalními. Řadíme mezi ně pochody za sníženého tlaku, zonalní rafinace a pěstování monokrystalů kovů.

Pochody za sníženého tlaku využívají k dělení rozdílně těžkosti kovů a komponent její nečistých. Základní materiál se za velmi sníženého tlaku odporově nebo indukčně zahřívá (v poslední době se s velkou výhodou užívá elektromagnetový nebo plazmový ohřev) a dochází k jeho těkání. Kov se takto zahvívá těžkosevící komponent a posléze sám těká a zanechává ve zbytku nečistoty netěkavé.

Zonalní rafinace spočívá v opakování jednoměrném průchodu protažitého ingotu kovu místem (zónou), kde je kov vylučen na teplotu blízkou jeho hmotně tání. Příměs d Hiblo rozpuštěné ve kapalině kovu přitom v materiálu migrují a jsou po mnohonásobném opakovaném opakování opakované shromažďeny na otevřeném konci ingotu (tom, kde ingot zónu opouští). Příměs málo rozpuštěné se naopak koncentruje na straně, kterou ingot do zóny vstupuje. Střední část ingotu je po skončení rafinace tvořena vysokočistými materiálem. K podobné segregaci nečistost dochází i tehy, když se z taveniny kovů, polokovů a jejich sloučenin nažením nebo jiným postupem přesuji jejich monokrystaly.

1 Van Arkelovu-de Boerovu metodu lze považovat za postup chemický i fyzikálně chemický, stejně jako dělení kovů chlorací jejich taveniny, končící vyšuváním některých chloridů nebo naopak jejich shromažďováním ve strusce acid.
23.2 VÝROBA A POUŽITÍ KOVŮ. SUROVINOVÉ ZDROJE

- **Lithium**

 Z: Hlavně křemičitany (lepidolit, spodumen LiAlSi2O8), mimoto také fosforečany [trislylin (Li,Na)(Fe,Mn)PO4] a některá ložiska chloridů (Na+, K+, Mg+) s izomorfí přítomným lithium.

 V: 1. **Tamno elektrólyzou** směsi LiCl a KCl při 400°C: na grafitové anodě vzniká chlor, na železné katodě kapalné lithium.
 2. **Metalotermsky** (působením Ca nebo Al) z Li2O nebo LiOH při 800 až 1000°C. Raffinace destilací za sníženého tlaku.

 P: 1. Záslechující a deoxidační příspěv v metalurgii Al, Cu, Zn a Fe.
 2. Teplonosné médiu v jaderných reaktorech
 3. Příprava organolithinových sloučenin, redukční prostředek v organické syntéze, polymerační katalyzátor.

- **Sodík**

 Z: Hlavně chloridy (halit NaCl), mořská voda; ostatní v přírodě velmi rozšířené minerály obsahující sodík (křemičitany) se v jeho metalurgii neuplatňují.

 V: **Tamno elektrólyzou** směsi NaCl s některými dalšími halogenidy (CaCl2, KCl, NaF aj.) při 600 až 650°C; na grafitové anodě vzniká chlor, na železné katodě kapalný sodík. Raffinace destilací za sníženého tlaku.

 P: 1. Při výrobě tetraethylolova, v organické syntéze.
 2. K výrobě kovů (Ti, Zr, Th, U) redukční kapalným sodíkem.

- **Draslík**

 Z: Hlavně chloridy (sylvín KC1, karnalit KMgCl3, 6H2O aj.); ostatní v přírodě velmi běžné minerály s obsahem draslíku se k výrobě kovu prakticky neužívají.

 V: 1. **Karbidotermicky** při 600 až 800°C z KF nebo KCl:
 $$2KF + CaC_2 → 2K + 2CaF_2$$
 2. **Metalotermsky** z KCl redukci sodíkem při 840°C (vzniká slitina sodíku s draslíkem).
 3. **Tamno elektrólyzou** KOH, KNO3 nebo K2CO3 rozpuštěných v tavenině KCl. Raffinace destilací za sníženého tlaku.

 P: 1. Teplonosné médium v jaderných reaktorech.
 2. Sítina se sodíkem jako redukovaní v organické syntéze.

- **Rubidium a cesium**

 Z: Některé draslíkové soli (karnalit KMgCl3, 6H2O, lepidolit aj.) obsahující izomorfí přítomné Rb⁺ a Cs⁺. Přímým zdrojem jsou matečné louhy po zpracování karnalitu.
V: 1. **Metaloměrný** redukcí oxidů, chloridů, hydroxidů nebo i chrománů obou kovů příspěvem elementárního Mg, Ca, Zr, Ba nebo Al v proudu vodíku nebo za sníženého tlaku při teplotách 500 až 800 °C.
2. **Tinovou elektrolýzou** chloridů nebo i hydroxidů.

P: 1. Pro výrobu speciálních těžkotavitelných skel (Rh).
2. V elektronice (obrazovky, fotónasvícení), v osvětlovací technice (výbojky Rb, Cs).

Beryllium

Z: Hlinitokřemičitán (beryl Be₃Al₂Si₆O₁₈) a křemičitany (fenakit Be₂SiO₄).
V: 1. **Tinovou elektrolýzou** směsi BeCl₂ a NaCl při 350 °C; na grafitové anodě vzniká chlor, na niklové katodě praškové beryllium.
2. **Metaloměrný** redukcí BeF₂ nebo BeCl₂ roztaženým hořčíkem v elektrické peci.

P: 1. Modifikátor neutronů v jaderných reaktorech.
2. Výroba slitin berylia s některými kovy (zejména s Cu – berylliové bronzové); jsou velmi tvrdé a houževnaté a jsou tepelně i chemicky značně odolné.

Hořčík

Z: Hlavně chloridy (karnalit KMgCl₂,6H₂O, bischofit MgCl₂,6H₂O) a uhličity [dolomit CaMg(CO₃)₂, magnesit MgCO₃]. Ostatní minerály obsahující hořčík (křemičitany) nejsou využívány.
V: 1. **Tinovou elektrolýzou** MgCl₂ s přidávkem KCl, LiF, NaF nebo CaCl₂ při teplotách 650 až 750 °C; na grafitové anodě vzniká chlór, na železné katodě kapalný hořčík. Raffinace přetavením a destilací za sníženého tlaku.
2. **Redukce MgO uhličtem, karbídum vápenatým nebo křemičitým** (ferrosilikiem) při teplotách 1200 až 2200 °C:

\[2\text{MgO} + \text{Si} + 2\text{CaO} \rightarrow 2\text{Mg} + \text{Ca}_2\text{SiO}_4 \]

Raffinace destilací za sníženého tlaku.

P: 1. K zušlechťování kovů, zejména hliníku (lehké a pevné slitiny Al-Mg), mědi a železa.
2. Výroba kovů Krolovým způsobem.
3. Organické syntézy (Grignardova činidla).

Vápník

Z: Hlavně uhličité [vápenec CaCO₃, dolomit CaMg(CO₃)₂] a fluorit (kazivec) CaF₂.
V: 1. **Tinovou elektrolýzou** směsi CaCl₂ a CaF₂ při teplotě 700 až 800 °C; na železné katodě narůstá vrstva vápníku, elektroda se zvvolá mechanicky zvedá a z taveniny se vytahuje ingot surového Ca.
2. **Metaloměrný** reakcí CaCl₂ s elementárním hliníkem:

\[3\text{CaCl}_2 + 2\text{Al} \rightarrow 2\text{AlCl}_3 + 3\text{Ca} \]

Raffinace destilací za sníženého tlaku.

P: 1. Výroba kovů kalciotermí.
2. Slitina Pb-Ca má použití jako ložiskový kov.
3. Deoxidační přísada při výrobě oceli.

469
- Stroncium
Z: Je izomorfně přítomno v některých minerálech obsahujících výponk. Má těž vlastní (vzácné) minerály (stroncianit SrCO₃ a celestin SrSO₄).
V: 1. Tavrou elektrolýzou sněši SrCl₂ a KCl při 700 °C.
2. Metatromický z SnO (aluminotermium).
P: Není významně.

- Baryum
Z: Hlavně sran (baryt BaSO₄) a uhličitan (witherit BaCO₃).
V: 1. Elektrolýzou sodného roztoku BaCl₂ za použití rtuťové katody.
2. Metatromický redukči BaO účinkem Al nebo Si:
 \[3 \text{BaO} + \text{Si} \rightarrow \text{BaSiO}_3 + 2 \text{Ba} \]
3. Tavrou elektrolýzou BaCl₂; vrstva roztaženého olova tvoří katodu, vzniká slitina Pb–Ba.
P: 1. Spíše výjimečně v metatromie.
2. Slině Pb–Ba se používá jako ložiskový kov.

- Radium
Jako kov se nevyráží. Jeho sloučeniny lze získat z koncentrátu připravených při zpracovávání uranových rud.

- Hliník
Z: Hlavně oxid-hydroxydy [baurus Al₂(OH)₃, Al(OH)₃ s obsahem Fe⁺⁺⁺, Mn⁺⁺⁺, SiO₂, a. j.], výjimečně též hliníkfrněčitany (nefelín Na₂Si₂O₅), ostatní hliněné minerály s obsahem hliníku prozatím nezloučí jako surovina pro jeho výrobu.
V: 1. Tavrou elektrolýzou Al₂O₃ rozpouštěného v tavenině kryolitu (Na₃AlF₆) nebo chlortu (Na₂AlF₄). Na katode (grafitové vaně elektrolýzery) vzniká kapalný hliník, na anodě (rovněž grafitové) se vyvíjí O₂ a poskytuje s uhlíkem elektrody CO a CO₂. Čistý Al₂O₃ je připravován z baurusu, a to nejčastěji Bayerovou metodou; na baurus se působí roztokem NaOH za zvýšeného tlaku a zvýšené teploty:
 \[\text{AlO(OH)} + \text{NaOH} + \text{H}_2\text{O} \rightarrow \text{Na}[\text{Al(OH)}_3] \]
Touto operací se oddělí Fe⁺⁺⁺, Mn⁺⁺⁺ a SiO₂. Karbonataci (zaváděním CO₂) se z roztoku Na[Al(OH)] vyloučí Al(OH)₃:
 \[2\text{Na}[\text{Al(OH)}_3] + \text{CO}_2 \rightarrow 2\text{Al(OH)}_3 + \text{Na}_2\text{CO}_3 + \text{H}_2\text{O} \]
 a ten se dehydratuje kalcinací při 1200 °C. Připravený hliník se rafinuje opět tavrou elektrolýzou; požaduje-li se jeho čistota, použije se zonální tavení.
2. Chemickou subhalogenidovou metodou, využívající existence nestálého chloridu hliníkového AlCl₃:
 \[\text{AlCl}_3 + 3 \text{C} + \text{AlCl}_3 \rightarrow 1200^\circ \text{C} \rightarrow 3 \text{AlCl} + 3 \text{CO} \]
 \[3 \text{AlCl} \rightarrow 600^\circ \text{C} \rightarrow 2 \text{Al} + \text{AlCl}_3 \]
AlCl₃ se připraví redukčním chlorací Al₂O₃. Použitý oxid hliník může být znáčně nečistý. Touto metodou dnes pruji nejvyšší tří průmyslové závody na světě. Je velmi náročná na kvalitu materiálu výrobního zařízení.
• **Gallium**

 Z: Nemá samostatný minerál, je přítomno izomorfně v bauxitu, sfaleritu a spolu s germaniem v některých druzích uhlí.

 V: 1. **Elektrolýzou vodních roztoků gallitanu sodného.** Roztoky se nejčastěji ziskávají úpravou výluků ze zpracování bauxitu Bayerovou metodou.

 2. **Tvaron elektrolýzou GaCl₃.** Rutiluje se operacemi za sníženého tlaku a zonální tavnou.

 P: Polovodičová technika, sluneční články.

• **Indium**

 Z: Provádí olovo, zinek a cín v některých jejich rudách.

 V: **Cementací zinkem z vodního roztoku síranu inditého.**

 P: 1. Polovodičová technika.

 2. Zušlechťující komponenta ložiskových kovů.

• **Thallium**

 Z: Provádí olovo a zinek v některých jejich rudách. Přímým zdrojem je uletavý prach z pražení těchto sulfidických rud.

 V: 1. **Redukci TICI kyanidem draselným.**

 2. **Cementací zinkem z vodního roztoku síranu thallíného.**

 3. **Elektrolýzou vodního roztoku síranu thallíného.**

 V předrazených postupech se sloučeniny thallia oddělují od sloučenin olova a zínku extrakcí.

 P: K přípravě slitin s některými kovy (Pb, Ag, Au, Hg).

• **Germanium**

 Z: Hlavně uletavý prach (popílek) při spalování některých druhů uhlí; provádí těž některé zinkové rudy.

 V: 1. **Redukci GeO₂ vodíkem při 550 °C.**

 2. **Redukci GeCl₄ získaném při 930 °C.**

 Popílek se přetaví, rozpustí se v kyselině chlorovodíkové a destiluje se GeCl₄ (v proudu Cl₂). Hydrolyzou lze GeCl₄ převést na GeO₂.

 P: V oblasti polovodičové techniky.

• **Cín**

 Z: Hlavně oxid (kassiterit SnO₂), méně běžně je využíváno nečetných sulfidických rud.

 V: **Redukci SnO₂ uhličtem při teplotě 1300 °C:**

 \[
 \text{SnO}_2 + 2 \text{C} \rightarrow \text{Sn} + 2 \text{CO}
 \]

 Velmi nečistý produkt se rafinuje chemickými metodami, elektrolytickým, popř. při požadavku vysoké čistoty destilací za sníženého tlaku.

 P: 1. K protikorozní ochraně kovových materiálů (pocištěný plech).

 2. Pro výrobu pájecích kovů a řady dalších speciálních slitin.
Olovo
Z: Hlavně sulfidické rudy (galenit PbS); neběžné je využití minerálů odpovídajících složením uhličitanu (cerussit PbCO₃) nebo siranu olovnatému (anglesit PbSO₄).
V: 1. **Redukce PbO uhličitem** při 1000 °C:
 \[\text{PbO} + C \rightarrow \text{Pb} + \text{CO} \]
 \[\text{PbO} + \text{CO} \rightarrow \text{Pb} + \text{CO}_2 \]

Pochod se nazývá pražně-redukční, neboť uvedené redukci předchází pražení sulfidické rudy:
2. **Redukce PbO tříčtou PbS při teplotě 1000 °C.** Pochod se nazývá pražně-reakční, časté rudy se nejprve pražením předvede na oxid a pak po uzavření přístupu vzduchu dochází k reakci
\[2 \text{PbO} + \text{PbS} \rightarrow 3 \text{Pb} + \text{SO}_2 \]
Rafinace je možná chemickými cestami a elektrolytickými.

P: 1. Surové olovo je meziproduktem pro výrobu kovů doprovázejících olovo v jeho rudách (Ag, Au, In, Ti aj.).
2. Výroba akumulátorů.
3. Konstrukční materiál pro některá chemická zařízení, půjčí kovy, litéřina, ležískové kovy atd.
4. Výroba tetraethylololu.

Arsen
Z: Hlavně sulfidické rudy (arsenopyrit FeAsS), arsenid (löllingit FeAs₂) a odpady vznikající při pražení sulfidických rud jiných kovů.

V: 1. **Tepelným rozkladem arsenopyritu** při 700 až 800 °C:
 \[\text{FeAsS} \rightarrow \text{FeS} + \text{As} \]
2. **Tepelným rozkladem löllingitu** při 700 °C:
 \[\text{FeAs}_2 \rightarrow \text{FeAs} + \text{As} \]
Arsen v obou případech sublimuje z reaktérního prostoru, a tím se i čistí.

P: 1. Polovodičová technika.
2. Příprava slitin (s olovením aj.).

Antimon
Z: Hlavně sulfidické rudy (antimonit Sb₂S₃), sulfidické rudy olovnaté s obsahem Sb, popř. i oxidů (valentinit Sb₂O₃). Většina zdrojů je velmi málo kvalitní, musí se obohatit flotací nebo vytavováním (Sb₂S₃) apod.

V: 1. **Redukce Sb₂O₃ uhličitem** po předchozím pražení Sb₂S₃ na Sb₂O₃:
 \[\text{Sb}_2\text{S}_3 + 5 \text{O}_2 \rightarrow 2\text{Sb}_2\text{O}_3 + 3 \text{SO}_2 \]
 \[4 \text{Sb}_2\text{O}_3 + \text{C} \rightarrow 2\text{Sb}_2\text{O}_3 + \text{CO}_2 \]
 popř. **redukce Sb₂O₃ uhličitem**:
 \[2 \text{Sb}_2\text{O}_3 + 3 \text{C} \rightarrow 4 \text{Sb} + 3 \text{CO}_2 \]
2. Redukce \(\text{Sb}_2\text{S}_3 \) elementárním železem při 1200 °C (tzv. „srážení“ antimonu železem v tavenině sulfidu):

\[\text{Sb}_2\text{S}_3 + 3 \text{Fe} \rightarrow 2 \text{Sb} + 3 \text{FeS} \]

Antimon se předrafinuje buď chemicky, nebo elektrolytickou cestou, a rafinuje se destilací za sníženého tlaku a zonalní tavbou.

P:
1. Výroba slitín (litery, ložiskových kovů, olóvčených bronzů atd.).
2. Ochranné povlaky na některé kovy.

• Bismut

Z:
Hlavně sulfidy (bismutinit \(\text{Bi}_2\text{S}_3 \)), oxid-solí (bismutit \(\text{Bi}_2\text{O}_3\cdot\text{CO}_3 \)) a izomorfní příměsi v sulfidických rudách (\(\text{Pb}, \text{Ni}, \text{Co}, \text{Sn} \) aj.).

V:
1. \(\text{Redukce Bi}_2\text{S}_3 \) elementárním železem při 700 °C („srážení“):

\[\text{Bi}_2\text{S}_3 + 3 \text{Fe} \rightarrow 2 \text{Bi} + 3 \text{FeS} \]

2. \(\text{Redukce Bi}_2\text{O}_3 \) uhlíkem při 900 °C:

\[\text{Bi}_2\text{O}_3 + 3 \text{C} \rightarrow 2 \text{Bi} + 3 \text{CO} \]

3. \(\text{Cementaci sodných roztoků bismutitých solí železem}:
\[2 \text{Bi}^3+ + 3 \text{Fe} \rightarrow 2 \text{Bi} + 3 \text{Fe}^2+ \]

Rafinace chemickými cestami a potom elektrolytický.

P:
Výroba mnohých speciálních slitin (páječích kovů, lehkotavitelných slitin používaných v jaderné technice, magnetické slitiny \(\text{Bi-Mn} \)).

• Skandium, yttrium a lanthanoidy

Z:
Prvky s větším poloměrem kationtů (\(\text{La, Ce, Pr, Nd, Sm} \) — tzv. ceritové zeminy) tvoří jednu skupinu minerálů — křemičitany (cerit, orthit), fosforečany (monazit, některé apatity) a fluorid-uhlíčitany (hastait). Ostatní lanthanoidy o menší poloměru iónů (\(\text{Tb, Dy, Ho, Er, Tm, Yb, Lu} \) a spolu s nimi \(\text{Sc} \) a \(\text{Y} \) (tzv. yttriové zeminy) tvoří druhou skupinu — křemičitany (gadolinit, thortveitit), fosforečany (xenotit) a navíc těž nobilečany a tanta-

V:
1. \(\text{Tanou elektrolýzou soli} \) při relativně vysokých teplotách.
2. \(\text{Meta} \)termicky, redukci alkalicí kovy, hořčíkem, vápníkem, křemičíkem, lantanem aj.
3. \(\text{Elektrolýzou sodných roztoků příslušných soli} \) za použití různých katody.

P:
Některé lanthanoidy, většinou neoodělené (v formě slitiny), se používají jako desulfurační a dioxidaciční přísady v hutnictví železa, popř. jako součást slitin niklu, hliníku a mědi. Čisté elementární kovy samy o sobě mají malé použití (a jsou velmi dražší); jsou však mezistupněm při připravě svých sloučenin, jejichž aplikace v technice a vědě je stále rozsáhlejší.

• Titan

Z:
Oxidické rudy (rutit, anatas, brookit \(\text{TiO}_2 \), perovskit \(\text{CaTiO}_3 \), ilmenit \(\text{FeTiO}_3 \)).

V:
1. \(\text{Redukce plynného TiCl}_4 \) hořčíkem (měně často sodíkem) při 900 °C (Krollův postup) za sníženého tlaku nebo pod ochrannou atmosférou vzácného plynu (\(\text{Ar, He} \)). Měně časté jsou dále uvedené postupy.
2. Elektrolýza TiCl₄ nebo taneč elektrolýza K₂[TiF₄]
4. Metalotermie ilmenitových koncentrátů hliníkem nebo křemičtem, popř. uhličtem, za vzniku slitiny železa s titánem (ferrotitan).
TiCl₄ potřebný pro výrobu titanu se vyrábí nejčastěji redukční chlorací TiO₂:

\[
\begin{align*}
\text{TiO}_2 + 2\text{C} + 2\text{Cl}_2 & \rightarrow \text{TiCl}_4 + 2\text{CO} \\
\text{TiO}_2 + 2\text{C} + 4\text{Cl}_2 & \rightarrow \text{TiCl}_4 + 2\text{COCl}_2
\end{align*}
\]

Předrafinace destilací TiCl₄ finální rafovací kovu van Arkelovou-de Boerovou metodou.

P: 1. Konstrukční materiál výnimočných vlastností (lehký, pevný, chemicky odolný, snadno relativně vysoko teploty atd.).
2. Výroba slitín s železem a hliníkem.

• Zirkonium a hafnium
2. Redukci koncentrátů s velkým obsahem ZrO₂ křemíkem nebo hliníkem za přítomnosti oxidů železa. Získá se ferrozirkonium nebo ferrozirkoniarnsilicium. Rafovací obou kovů van Arkelovou-de Boerovou metodou. Dělení zirkoniu a haňnů se provádí extrakčně.
P: 1. Zr jako konstrukční materiál výnimočných vlastností (jaderná technika, chemický průmysl, elektrotechnika).
2. Výroba některých slitin zirkoniu.
Hafnium je málo významné (elektrotechnika, jaderná technika).

• Thorium
Z: Hlavně fosforečany vázných zemin (menazit).
V: 1. Metalotermicky, redukce fluoridu, chloridu nebo oxidu thoritického sodíkem nebo vápníkem.
2. Tavenou elektrolyzou sněží K[ThF₄] s KCl a NaCl při 750 °C (používá se molybdénová katoda).
Rafovací postup za sníženého tlaku a van Arkelovou-de Boerovou metodou.
2. Výchozi látku pro výrobu ²³⁵U jaderným procesem (²³⁵U slouží jako jaderný palivo).

• Vanad
Z: Hlavním zdrojem jsou dny rudy železa s obsahem vanadu (až 1 %), dále rudy olivinato-mědno-níkelné [vanadinit Pb₃(VO₄)₂Cl] a rudy uranové [carnotit K₅(UO₂)₃(VO₄)₂·3H₂O].
Surovinovým zdrojem je též příměs vanadu v mineralní složce některých rop (např. v venezuelské).
V: 1. Kalcotermii nebo silikotermii v V₂O₅ při 900 °C:

\[
\text{V}_2\text{O}_5 + 5\text{Ca} + 5\text{CaCl}_2 \rightarrow 2\text{V} + 5\text{CaO.CaCl}_2
\]
Při silikotermii se používá ferrosilicium a přípraví se tak slitina ferrovanad.
2. Redukci VCl₃ nebo VCl₄ sodíkem, popř. sodíkem, hořčíkem nebo hydridem sodiným.
3. Taenou elektrolýzou směsi VCl₃, KCl a LiCl. Refinace kovu van Arkelovou–de Boerovo metodou.

P:
1. Legování oceli.
2. Výroba magnetických slitin (Co–Fe–V).

● Niob a tantal

Z:
Niobnán-tantalíčnany [columbit, resp. tantalit (Fe,Mn)(Nb,Ta)₂O₆, samarskit]. Příměsi v cín-cíto-wolframových a jiných rudách.

V:
1. Redukce Nb₂O₅ uhličnem za sníženého tlaku (1 000°C). Prvou operací vzniká karbid:

\[\text{Nb}_2\text{O}_5 + 7\text{C} \rightarrow 2\text{NBC} + 5\text{CO} \]

Granule připravené slisováním směsi karbidu a původního oxidu se podrobí zahání při vyšší teplotě:

\[\text{Nb}_2\text{O}_5 + 5\text{NbC} \rightarrow 7\text{Nb} + 5\text{CO} \]

2. Taenou elektrolýzou K₂[NbF₅] nebo K₂[TaF₅] (používá se ocelová katoda).
3. Redukce \(\text{K}_2\text{[TaF}_5\text{]} \) sodkem při 900°C nebo redukce \(\text{TaCl}_3 \) hořlíkem.
4. Redukce Nb₂O₃ nebo Ta₂O₅ hliníkem za přítomnosti oxidů železa vznikají ferroslitiny. Dělení Nb a Ta chemickými postupy a extrakcí. Refinace van Arkelovou–de Boerovo metodou.

P:
1. Konstruktční materiály vysoké pevnosti, chemicky a tepelně odolné (rakietová, letecká, jaderná technika, vysokotlaká chemická zařízení, vakuum technika a elektrotechnika).
2. Ferrotantal a ferromolibdén jako přísady do nerezavějících ocelí.

● Chrom

Z:
Smíšený oxič (chromit, FeCr₂O₄).

V:
1. Redukce chromitu v elektrické peci uhličnem (při 1000 až 1300°C) vzniká ferrochrom.
2. Aluminotermicky z čistého \(\text{Cr}_2\text{O}_3 \).
3. Elektrolýzou rostouchých metokých kyseliny chromové. Refinace pochody za sníženého tlaku, čištění vodního roztoku pro elektrolýzu pomocí měničů iontu.

P:
1. Ve formě ferrochromu jako legující přísada do ocelí.
2. Výroba speciálních slitin (s niklem, kobaltem, manganem aj).
3. Ochranné povlaky na jiný kovový materiál, vytvářené galvanickým pokovováním.

● Molybdénný

Z:
Sulfidické rudy (molybdinit MoS₂); ostatní minerály obsahující molybdén jsou prozatím technicky nevyužitelné.

V:
1. Redukce koncentrátů obsahujících až 90% MoO₃ uhličnem nebo aluminotermicky na ferromolybdén.
2. Redukce MoO₃, resp. MoO₃ rostlini při teplotě 1200°C:

\[\text{MoO}_3 + 3\text{H}_2 \rightarrow \text{Mo} + 3\text{H}_2\text{O} \]

3. Taenou elektrolýzou MoO₃ rozpuštěného v tavenině boritanů, halogenidů nebo fosforo-rečná alkalických kovů. MoO₃ se získá pražením:

\[2\text{MoS}_2 + 7\text{O}_2 \rightarrow 2\text{MoO}_3 + 4\text{SO}_2 \]

Surový kov se refinuje slinutím a kováním.

475
P: 1. Legování ocelí a litině (vzrovnání prášků na ochraně oceli).
 2. Vakuová technika a elektronika.

Wolfram

Z: Wolframy (Fe,Mn)WO₄, scheelite CaWO₄.

V: 1. Z koncentrátu obsahujícího až 75 % WO₃ redukci uhlíkem v elektrické pece nebo alumi
 ninotermický. V obou případech se připraví ferrowolfram.
 2. Redukce uhlíkem (1400 °C) nebo sodíkem (1100 °C) z čistého WO₃.
 Raffinace kovu slínováním, kováním, popálení. Van Arkelovou-Boerovou metodou a zonální tavením.

P: 1. Ve formě ferrowolframu na legování ocelí.
 2. Výroba slínutých karbidů pro ohradby zatlazení.
 3. Výroba speciálních slitin.

Uran

Z: Minerály, v jejichž struktuře je skupina UO₂ nebo UO₃ (uraninit, amalgame), ranadičený
 [carnotit K₃(UO₂)₂(VO₂)₃OH] a tvarů uranové slitiny.

V: Redukce UF₅ hořčíkem nebo vápenkem:

UF₅ + 2Mg → U + 2MgF₂

Raffinace se provádí ještě před vlastní výrobou kovu destilací UF₅. Při ziskávání izotopu ²³⁵U
 se využívá termofúzí UF₅. K separaci uranu od provázejících kovů a k jeho izolaci se
 používají chemické postupy, extrakce a měniči iontů.

P: Zajímá výrobu palivových článků pro jaderné reaktory.

Mangan

Z: Oxidické rudy (burel MnO₂, psilomelany aj.) často v doprovodu železných rud.

V: 1. Redukce oxidů manganu uhlíkem v elektrické pece. Výšší oxid (Mn₃O₄, Mn₃O₆, Mn₃O₇)
 se termicky štěpi na MnO, který se dále redukuje:

MnO + C → Mn + CO

Vzniká též karbid Mn₃C. Je-li přítomno železo, tvorba karbidu je poněkud menší, získává
 se však ferromangan.
 2. Aluminotermický z Mn₃O₄ (někde použit MnO₂ protože reaguje s Al příliš prudce).
 3. Elektrolýzou roztoku řízeného manganu.
 Kov se rafinuje destilací za sníženého tlaku.

P: Deoxidace a zvětrávání příslušného kovu, s platinou a wolframem.

Rhenium

Z: Je velmi vzácné; doprovází molybdén v MoS₂ a je též přítomno v některých rudách mědi.

V: Redukce KReO₄ nebo NH₄ReO₄ vodíkem při 1000 °C:

2KReO₄ + 7H₂ → 2Re + 2KOH + 6H₂O

Rafinace kovu van Arkelovou-Boerovou metodou.

P: Slitiny s platinou a wolfrarem vyznačující se velkou tvrdostí, chemickou odolností.
Zeleno

Z: Oxidické rudy [magnetit Fe₃O₄, hematit Fe₂O₃, limonit Fe₃[OH]₂], uhlikten (siderit Fe₃CO₃), sulfidické rudy (pyrit, markasit FeS₂, pyrithotin FeS). Další hojně minerály obsahující železo pro jeho výrobu většinou nevyužívají.

V: 1. Chemicky čisté železo se získává redukcí oxidů železa vodíkem při 1000 °C, elektrolýzou vodních roztoků železnatých solí a termickým rozkladem [Fe(CO)₅].
2. Redukce oxidů železa uhličtem (oxidační uhelnatým) ve vysokých pecích se získává technické železo s obsahem uhliku (šedé nebo šedé podle toho, zda se uhlik stačil nebo nestačil při chlazení vytvořit v grafitové formě). Další všeobecně známý způsob zpracovávání surového železa spočívá ve zmenšování obsahu uhliku a některých dalších prvků. Přetavením s železným odpadem vzniká litina. Značným zmenšením obsahu uhliku se získávají oceli. Mají výrazně snížený i obsah Si, P aj. Přísadou některých kovů se dosahuje zvětšení (legování) ocelí.

P: 1. Hlavní, univerzální a široce užívaný konstrukční a nástrojový materiál (ocel, litina) uplatňující se ve všech oblastech průmyslové výroby.
2. Některé speciální účely (ferity, magnetické slitiny atd.).
3. Příprava některých sloučenin, jako katalyzátor.

Kobalt

Z: Sulfidické rudy železa, mědi, niklu, zinku a olova s obsahem kobaltu [např. linneit(Co,Ni)₅S₈, karolit CuCo₅S₄, aj.]. Jako samostatné rudy se vyskytují arsenidy [smaltin Co₃As₄, kobaltin Co₃As₆, některé oxidické rudy s komplikovanějším chemickým složením [asbolan (Co,Mn)₅O₅,S₈, Fe₃O₄,4H₂O, aj.]

V: 1. Redukce Co₃O₄ uhličtem při 1100 °C, popř. redukce vodíkem nebo i aluminotermary.
2. Elektrolýzou vodního roztoku síranu kobaltnatého. Rafinace přetavením nebo elektrolýtickou cestou.

P: 1. Speciální vysoce závětné slitiny (pro raketovou a jadernou techniku, tryskové motory atd.), legování ocelí na výrobě motorů, výrobů endoprotéz aj.
2. Výroba cementů (keramickokovových materiálů).

Níkl

Z: Zejména sulfidické rudy [pentlandit (Ni,Fe)₅S₈, milnerit NiS]; méně významným zdrojem jsou rudy křemičitanové a oxidické.

V: 1. Redukce NiO uhličtem (drevěným uhličtem) při 1260 °C, popř. redukci uhličtem v elektrické peci, ale při teplotě nad bodem tání niklu.
2. Redukce NiO směsí CO a H₂ (vodním plynom) při 400 °C. Potom se reakcí niklu s CO při 60 °C získá [Ni(CO)₄], který se v plynné fázi převádí do rozkladné věže a termicky se rozkládá při 200 °C (Monodův proces).
3. Elektrolýzou vodního roztoku síranu nikelažnatého. Elektrolysa je používána též k rafinaci kovu.

P: 1. Konstrukční materiál pro chemické a elektrochemické aparatury.
2. Legování ocelí a dalších kovů.
3. Výroba slitin variabilních magnetických vlastností.
4. Speciální slitiny pro elektrotechnická zařízení (Ni-Mn, Ni-Cr) a letecky průmysl (Ni-Cr-Ti-Al).
Platinové kovy

Z: Ryze přírodní platina provázejí ostatními platinovými kovy, ale těží niklem, železem a dalšími prvky. Malé příměsi platiny a platinových kovů jsou též obsaženy v některých sulfidických rudách niklu, mědi, v rudiach stříbrných a ve zlátě.

V: Termínem rokladem (při 1000 °C) nebo redukcí teplem (při 1000 °C) ze sloučenin typu \([\text{NH}_3]_2[\text{PtCl}_4]\) (mimo Pt těží Rh, Ru, Ir), popř. z \([\text{Pd(NH}_3]_2\text{Cl}_2\) a \([\text{OsO}_2(\text{NH}_3)_2\text{Cl}_2]\). Tyto sloučeniny lze v poměrně čistém stavu připravit složitým chemickým a fyzikálně chemickým separačním postupem, jemuž se podrobí roztok vzniklý rozpuštěním ryze přírodní platiny (popř. platinonomorfních anodových kalů po raňánci Ni, Cu, Ag, Au) v lučavce královské.

P: 1. Redukční neveká chemická a elektrotechnická zatření (Pt vyniká mimořádnou odolností proti korozii).
 2. Hydrogenační a jiné katalyzátory (Pt i platinové kovy a jejich slitiny).

Měď

Z: Hlavně sulfidické rudy (chalkosin Cu₂S, chalcopyrit CuFeS₂, bornit Cu₃FeS₄, covellin CuS), oxidické a oxid-uhlíčitanové rudy (kuprit Cu₂O, tenorit CuO, malachit CuCO₃·Cu(OH)₂, azurit 2CuCO₃·Cu(OH)₂), křemčitanové rudy (chrysokol CuSiO₃·H₂O) a různé čištění rudy polymetalické.

V: 1. Redukci Cu₂O účinkem Cu₂S v tzv. mědašském konvertoru:
 \[\text{Cu}_2\text{S} + 2 \text{Cu}_2\text{O} \rightarrow 6 \text{Cu} + \text{SO}_2 \]
 Toto operaci končí tzv. žarová výroba mědi při zpracovávání sulfidické suroviny.

2. Redukci plynného chloridu mědiho teplým roztokem při 800 °C. Pracuje se v reaktoru s oxidickou rudy křemčitanového typu za přítomnosti malého množství NaCl a uhli. Reakci vodní páry s uhli vzniká vodík. Chlorovodík se tvoří reakcí
 \[2\text{NaCl} + \text{SiO}_2 + \text{H}_2 \rightarrow 2\text{HCl} + \text{Na}_2\text{SiO}_3 \]
 a reaguje s Cu₂O:
 \[3\text{Cu}_2\text{O} + 6 \text{HCl} \rightarrow 2(\text{CuCl})_3 + 3 \text{H}_2\text{O} \]

P: 1. Elektrotechnický průmysl, tepelná technika, potravinářský průmysl.
 2. Slitiny se zinkem (mosazi), s cínem a těž s hliníkem, beryliem, křemičem (bronzy).

Stříbro

Z: Hlavním zdrojem stříbra jsou sulfidické rudy olova, zínu, mědi a niklu. Jen malá část stříbra (20% %) se získává z vlastních stříbrných sulfidických rud (např. z argentínu Ag₂S).

V: 1. Oddešilním stříbra ze surového olova získaného ze stříbrnonsoušových rud, a to buď krystalizací z taveniny olova (pattinsonitním), nebo separací pomocí zínu (parkesovitním). Slitiny takto obohacené stříbrnem (Ag-Pb a Ag-Zn-Pb) se zbavují olova a zínu jednak oxidací (tzv. „šáriečení“ za vzniku PbO), jednak destilačí zínu.
2. Amalgamaci elementárního stříbra přítomného v surovině. Obsahuje-li ruda stříbro sloučené, přidávají se látky, které sloučeninu rozloží (elementární železo, měd apod.):

\[\text{Ag}_2\text{S} + \text{Fe} \rightarrow 2\text{Ag} + \text{FeS} \]

Z amalgámu se získá stříbro oddestilováním rtuti.

3. Kyjanovým tožením (ze suroviny obsahující elementární Ag nebo i jeho sloučeninu) a následnou cementací zinkem:

\[4\text{Ag} + 8\text{KCN} + 2\text{H}_2\text{O} + \text{O}_2 \rightarrow 4\text{K}[\text{Ag(CN)}_2] + 4\text{KOH} \]
\[\text{Ag}_2\text{S} + 4\text{KCN} \rightarrow 2\text{K}[\text{Ag(CN)}_2] + \text{K}_2\text{S} \]
\[2\text{K}[\text{Ag(CN)}_2] + \text{Zn} \rightarrow 2\text{Ag} + \text{K}_2[\text{Zn(CN)}_4] \]

Rafinace oxidací tavenin nebo elektrolytickou cestou.

P: 1. Výroba klenotů, uměleckých předmětů a mincí.
 2. Některá chemická zařízení menší velikosti, katalyzátory, optika (zrcadla), elektrotechnika.

● Zlato

Z: V přírodě se vyskytuje většinou jako elementární kov. Doprovází též některé sulfidické rudy měděné, olovené a zinkové a dostává se při jejich výrobě do surových kovů.

V: 1. Amalgamaci elementárního zlata přítomného v zlatonošné surovině. Oddestilováním rtuti se získá zlato obsahuje zejména přiměsí Ag a Cu.
 2. Kyjanovým tožením podle rovnice

\[4\text{Au} + 8\text{KCN} + 2\text{H}_2\text{O} + \text{O}_2 \rightarrow 4\text{K}[\text{Au(CN)}_2] + 4\text{KOH} \]

a cementací zinkem (byla též vypracována technologie, při níž se zlato z kyanokomplexu zachycuje selektivně měďním iontů).

K rafinaci zlata, k jeho oddělování od stříbra a dalších kovů se používají chemické a elektrochemické postupy.

P: 1. Výroba klenotů a uměleckých předmětů.
 2. Výroba rubínového skla, dekorace porcelánu.
 3. Zubní lékařství.

● Zinek

Z: Hlavně sulfidické rudy (sulfurit ZnS). Měň se využívají oxidické a uhličitanové rudy (např. smithsonit ZnCO₃).

V: 1. Redukce ZnO uhličením při 1200 °C:

\[\text{ZnO} + \text{C} \rightarrow \text{Zn} + \text{CO} \]

Páry zinku destilují z retortové peci a jsou jimány do předlohy.
2. Elektrolytického roztoku síranu zinečnatého za použití olovené anody a hliníkové katody.

Rafinace chemickými i elektrochemickými postupy.

P: 1. Pozinkování kovových materiálů (plech, trubky, dráty).
 2. Slitiny s Cu, Al a jinými kovy.
 3. Výroba organicích sloučenin zinku.
Kadmium

Z: Hlavním zdrojem jsou zinkové rudy s obsahem kadmia.
V: První frakce zinku destilujícího z retorty při jeho výrobě redukce uhlíkem obsahuje značné množství kadmia. Také kaly při elektrolytické výrobě zinku obsahují kadmium. Kadmium lze z těchto zdrojů získat využitím redukce uhlíkem nebo převedením na roztok síranu kadmiového, cementaci zinkem, opětovým rozpuštěním v H₂SO₄ a elektrolyze roztoku CdSO₄. Raffinuje se elektrolyticky.

P:
1. Alkalické akumulátory.
2. Lehkotavitelné slitiny a speciální pájecí kovy.
3. Legování mědi.
4. Pokovování elektrotechnických součástek.

Rtuf

Z: Technicky významným zdrojem je rumělka (cinnabarit HgS). Rtuf se vyskytuje v přírodě i v elementární formě.
V: 1. Prašením rudy na vzduchu při 500 °C a kondenzací rtuvových par:
 \[\text{HgS} + \text{O}_2 \rightarrow \text{Hg} + \text{SO}_2 \]
2. Ruda se může rozkládat též za nepřístupu vzduchu pálením s oxidem vápenatým nebo těm smíšením železem:
 \[4 \text{HgS} + 4 \text{CaO} \rightarrow 4 \text{Hg} + 3 \text{CaS} + \text{CaSO}_4 \]
 \[\text{HgS} + \text{Fe} \rightarrow \text{Hg} + \text{FeS} \]
Rafinaci lze provést promyváním surové rtuti zředěnou kyselinou dusičnanu, ale zpravidla není tato operace nutná.

P:
1. Amalgamační výroba stříbra a zlata.
2. Amalgamové elektrody při elektrolýze.
3. Fyzikální, elektrochemické a elektrotechnické přístroje a zařízení.
24 Chemie nepřechodných kovů

Nepřechodné kovy tvoří v periodickém systému celý blok s a část bloku p prvků. Valenční stěry jejich atomů mají některou z konfigurací ns², ns² np¹, ns² np³, ns² np⁵ (blok s) nebo ns² np³, ns² np⁵, ns² np⁷ (blok p).

Počínaje hlavním kvantovým číslem \(n = 4 \) je u kovů patřících do bloku p přítomena pod vnější částí valenční stěry o konfiguraci ns² np⁴ (\(x = 1, 2, 3 \)) ještě energeticky poměrně nízké ležící skupina deseti elektronů na orbitalech \((n - 1)d\), které jsou tak úplně obsazeny. U kovů, jejichž valenční stěra má strukturu 6s² 6p⁶ (\(x = 1, 2, 3 \)), pod touto vnější částí valenční stěry leží kromě plně obsazených orbitalů 5d¹⁰ ještě orbitaly 4f¹⁰, zaplněné čtrnácti elektrony (tab. 24-1).

Kovy bloku s spolu s nekovovým prvkem vodíkem vytvářejí skupinu 1A a 2A. Kovy bloku p tvoří části skupin 3B, 4B a 5B. Pouze hliník řadíme k prvkům skupin A (str. 188). Pod jeho valenční stěrou 3s² 3p¹ nejsou a ani nemohou být přítomny orbitály \((n - 1)d\).

| Tabulka 24-1. Elektronové konfigurace valenčních stěr nepřechodných kovů |
|------------------|------------------|
| 1A | 2A |
| Li [He] 2s¹ | Be [He] 2s² |
| Na [Ne] 3s¹ | Mg [Ne] 3s² |
| K [Ar] 4s¹ | Ca [Ar] 4s² |
| Rb [Kr] 5s¹ | Sr [Kr] 5s² |
| Cs [Xe] 6s¹ | Ba [Xe] 6s² |
| Al [Ne] 3s² 3p¹ | Ge [Ar] 3d¹⁰ 4s² 4p¹ |
| In [Kr] 4d¹⁰ 5s² 5p¹ | Sn [Kr] 4d¹⁰ 5s² 5p² |
| TI [Xe] 4f¹⁰ 5d¹⁰ 6s² 6p¹ | Pb [Xe] 4f¹⁰ 5d¹⁰ 6s² 6p² |
| | Bi [Xe] 4f¹⁰ 5d¹⁰ 6s² 6p³ |

24.1 ALKALICKÉ KOVY

Alkalické kovy tvoří v periodickém systému skupinu 1A. Jsou to tyto prvky: lithium, sodík, draslík, rubidium, cesium a radioaktivní francium. Valenční stěry atomů všech alkalických kovů mají v základním stavu elektronovou konfiguraci ns¹.

1) Byly by to neexistující orbitály 2d.
Chemické chování alkalických kovů je velmi vyhraněně a poměrně jednoduché. Jsou typickými představitelem kovů z hlediska chemického. Pro svou nestálost na vzduchu v elementárním stavu, celkově značnou reaktivitu, malou mechanickou pevnost a nízký bod tání však rozhodně nejsou typickými reprezentanty kovů z technického hlediska.

Mezi chemickým chováním lithia a ostatních alkalických kovů jsou určité nevýrazné rozdíly. Lithium i jeho sloučeniny v souladu s představou úhlopříčných vazeb v periodické tabulce se některými svými vlastnostmi poněkud blíží vlastnostem hořčíku a jeho sloučením.

- **Vazebné možnosti atomů alkalických kovů**

 Valenční sféry atomů alkalických kovů jsou obsazeny jediným, velmi volně poutaným elektronem. Hodnota ionizační energie alkalických kovů je proto malá a klesá ve skupině směrem shora dolů od lithia k cesiu. Alkalické kovy se vyznačují minimálním průměrem molekulové elektronegativity. Říkáme, že jsou to vysloveně elektropozitivní prvky. Nejmenší elektronegativitu vykazují těžké prvky v dolní části skupiny.

 Za těchto okolností je nejpřirozenější a energeticky nejvýhodnějším způsobem tvorby vazeb mezi atomy alkalických kovů a atomy jiných, elektronegativnějších prvků vznik iontové vazby. Přítom elektron atomu alkalického kovu je po spárování s elektronem druhého atomu umístěn na vazebném orbitálu lokalizovaném do značné míry v oblasti atomu elektronegativnějšího vazebného partnera.

 Vysoká hodnota druhé ionizační energie atomů alkalických kovů (str. 76) je přičinou toho, že při tvorbě iontové vazby se na ni již další elektrony atomu alkalického kovu nepodílejí. Alkalické kovy mají ve svých běžných sloučeninách výhradně kladný oxidační stav I. Elektronová konfigurace iontů alkalických kovů je přitom shodná s elektronovou konfigurací nejbližších vazacích plynů.

 Lithium, z alkalických kovů nejméně elektropozitivní, některými vazebními partnery vytváří vazby s výraznějším podílem kovalentnosti. Projevuje se to mimo jiné zvýšenou rozpustností četných lithných sloučenin v organických rozpouštědlech. Také sloučeniny dalších alkalických kovů mohou být značně kovalentní, pokud jejich vazebním partnerem je mělo elektronegativní prvek. Příkladem jsou prakticky všechny fosfáty alkalických kovů.

 Vyslovené nepolarní kovalentní vazby vytvářejí alkalické kovy ve svých dvouatomových molekulách (str. 92). Přítomných plynů plynutí.

 V tuhých nebo i v kapalných elementárních alkalických kovech se uplatňuje kovová vazba, jejíž podstatu je vytvoření pásu elektronů při sloučení dvojice atomů v koordinaci párů.

 Ionty alkalických kovů mají minimální násobně středovými atomy v komplexních iodoch koordinací sloučenin. Při násobně je jejich minimální akceptorová schopnost a složitost alkalických kovů tvorit příp. z násobně nestabilní iontovou vazbu. Zoila běžně je naopak jejich vystupování ve funkci kompenzujících iontů v koordinaci sloučenin.

- **Chemicke vlastnosti alkalických kovů**

 Jak již bylo uvedeno, charakteristickým znakem alkalických kovů je jejich reaktivita v elementárním stavu, vzorcující se lithia k cesiu. Všechny alkalické kovy na vzduchu poměrně rychle oxidují na svém povrchu za tvorby oxidů, hydroxidů nebo i hlučitů. U lithia při laboratorní teplotě probíhá reakce se vzdušným dusíkem za vzniku nitridu:

 $$\text{6Li} + \text{N}_2 \rightarrow 2\text{Li}_3\text{N}$$

1) Poslední člen skupiny alkalických kovů, francium, je velmi vzácný a silně radioaktivní prvek. Z chemického hlediska nemá praktický význam.

482
Spalováním jednotlivých alkalických kovů na vzduchu a v průdu čistého kyslíku vznikají rozdílné produkty, přehledně uvedené v tab. 24-2. Všechny tyto spalovací reakce jsou exotermické děje, provázené zejména při spalování těžších kovů intenzivním světelným zářením.

<table>
<thead>
<tr>
<th>Tabulka 24-2. Produkty spalování alkalických kovů na vzduchu a v prostředí čistého kyslíku</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Li_2O</td>
</tr>
</tbody>
</table>
| Spalování na vzduchu | oxid | peroxidy
(znečištěný nitrádem a peroxidem) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Li_2O</td>
<td>Na_2O_2</td>
<td>KO_2</td>
<td>RbO_2</td>
<td>CsO_2</td>
</tr>
</tbody>
</table>
| Spalování v kyslíku | oxid | peroxid
(znečištěný peroxidem) |

Reakce alkalických kovů s plynovým vodíkem probíhá za výšších teplot a je dokladem jejich výrazných redukčních vlastností, neboť vede ke vzniku iontových hydridů (str. 220).

Velmi prudce reagují alkalické kovy s ostatními nekovy, např. se sírou za vzniku solídů Me_2S a s halogeny za vzniku halogenidů MeY. S uhličím a křemičím však reaguje pouze lithium, a to za tvorby acetylidu lithního LiC_2 a disilidu hexasilitha Li_4Si_2. Reakce sodiku se sírou a její zpětný průběh při průdu elektrického proudu jsou podstatně dějů probíhajících v tzv. akumulátorových Na–S, které se pro své výhodné parametry možná uplatnit již v nejbližší budoucnosti.

Významná je reakce rozptýlených alkalických kovů s oxidem a halogenidy jiných kovů:

LaCl_3 + 3 K → La + 3 KCl

Reakce tohoto typu se využívají při metalotermické výrobě kovů (str. 462).

Všeobecně známá je reakce alkalických kovů s vodou:

2 Me + 2 H_2O → 2 MeOH + H_2

U lithia probíhá nejpomaleji. Ostatní alkalické kovy se při styku s kapalnou vodou távají a zapalují; vznětuje se, popř. exploduje reakcí vzniklý vodík (jeho směs se vzduchem).

Mnohem pomalejší je obdobná reakce alkalických kovů s alkoholy (označme je obecně ROH), vedoucí ke vzniku alkoholátů:

2 Me + 2 ROH → 2 ROMe + H_2

V kapalném amoniaku se alkalické kovy rozpouštějí za vzniku barevných, silně redukčně působících roztoků. Rovnovážnou reakcí se přítom tvoří solvované elektrony a kationty Me^+ (str. 193). Reakce alkalických kovů s plynovým amoniakem za výšší teploty vede ke vzniku amidů a vodíku:

2 Na + 2 NH_3 → 2 NaNH_2 + H_2

V malé míře probíhá tato reakce i při rozpuštění alkalického kovu v kapalném amoniaku.

483
Řada dalších anorganických sloučenin podléhá reakcím s alkalickými kovy v důsledku jejich možného redukčního působení.

- **Sloučeniny alkalických kovů**

Po přechodu do sloučeného stavu, tj. do oxidačního stavu I, atomy alkalických kovů zcela ztrácí svoji reaktivitu a stávají se vysoce indiferencíčním článkem. Mají konfiguraci vzácného plynu, malý kladný náboj a zejména v případě těžších alkalických kovů - poměrně velký poloměr. To vše jsou faktory podmínící jejich stabilitu těchto útvarů (Fajansova pravidla, str. 123).

Kationty lithních, sodných, draselných, rubidiných a cesných solí jsou bezbarvé, s vodou nehydrolyzuji (str. 258), pouze se hydratují (str. 235). Většina solí alkalických kovů má výrazně iontový charakter, dobře se rozpouště v vodě a chová se jako silné elektrolyty. Ztratelý podíl kovalentnosti je těžko připustit u solí lithních.

Oxidy alkalických kovů lze připravit reakcí peroxidů nebo hyperoxidů (získaných spalováním kovů) s elementárním alkalickým kovem:

\[
\text{K}_2\text{O}_3 + 3\text{K} \rightarrow 2\text{K}_2\text{O}
\]

Li$_2$O se nejlépe připraví rozkladem uhličitanu lithního:

\[
\text{Li}_2\text{CO}_3 \rightarrow \text{Li}_2\text{O} + \text{CO}_2
\]

Avšak uhličitany ostatních alkalických kovů této reakcí nepodléhají.

Hydroxidy alkalických kovů jsou stejně jako oxidy (až na LiOH) silné báze, přičemž jejich bazicitu vzrůstá od hydroxidu lithního k hydroxidu cesnému (str. 258).

Většinu solí alkalických kovů lze připravit klasickou neutralizační reakcí příslušné kyseliny a hydroxidu alkalického kovu, rozpuštěním oxidu alkalického kovu v kyselině nebo reakcí kyselého oxidu s hydroxidem alkalického kovu, např.

\[
\begin{align*}
\text{NaOH} + \text{HBr} & \rightarrow \text{NaBr} + \text{H}_2\text{O} \\
\text{Li}_2\text{O} + 2\text{HClO}_4 & \rightarrow 2\text{LiClO}_4 + \text{H}_2\text{O} \\
\text{KOH} + \text{CO}_2 & \rightarrow \text{KHO}_2 \text{CO}_3
\end{align*}
\]

Sál alkalického kovu s aniontem silné kyseliny se těž ziská vytěsněním slabší kyseliny:

\[
\text{K}_2\text{CO}_3 + \text{H}_2\text{SO}_4 \rightarrow \text{K}_2\text{SO}_4 + \text{H}_2\text{O} + \text{CO}_2
\]

Všechny tyto reakce se nejčastěji uskutečňují v vodných roztocích, ale mohou obdobným způsobem probíhat i v taveninách.

Kromě anorganických soli alkalických kovů jsou běžnými a technicky významnými látkami soli organických kyselin (octan sodný CH$_3$COONa, benzensulfonan draselný C$_6$H$_5$SO$_3$K aj.), alkoholů a fenolů (ethanolát lithní C$_6$H$_5$OLi, fenolát sodný C$_6$H$_5$ONa aj.) a některé další látky.

Významné jsou též organokovové sloučeniny alkalických kovů, tedy látky s vázou uhlik—kove.

Iontovost této vazby obvykle kolísá kolem 50 %, a proto lze jen v některých případech právem znázorňovat elektronové strukturní vzorce těchto látek se spojovací čárkou mezi uhlikem a atomem kovu. Příkladem takových látek jsou iontovější cyklopentadienid sodrý a kovalentnější butyl-lithium. Elektronové strukturní vzorce obou látek jsou uvedeny na obr. 24-1. Většinou lze tyto sloučeniny připravit reakcí příslušného uhlovodíku s alkalickým kovem:

\[
2\text{C}_2\text{H}_6 + 2\text{Na} \rightarrow 2\text{C}_2\text{H}_5\text{Na} + \text{H}_2
\]

Uvedli jsme již, že pro kationty alkalických kovů je zcela neběžná funkce středového atomu koordinační sloučeniny. Příklad této výjimečné struktury nalézáme u smíšených komplexů salicyl-
aldehydu a 2-nitrofenolou s kationtrem sodným (obr. 24-2) a u několika dalších obdobných sloučenin s organicími ligandy.

Sodné a draslík jsou významné biogenní prvky, uplatňující se v metabolismu jednotlivých buněk. Sodné a draslé kationty mají klíčovou úlohu v mechanismu vedení vzduchu po nervové synapsi, ovlivňují osmotické tlaky intracelulárně i extracelulárně kapaliny a jejich přítomnost podnětuje i další procesy probíhající v živé hmotě.

Obr. 24-1. Elektronové strukturní vzorce:
a) cyklopentadienonu sodného (kontentová převyšuje 50 %),
b) butylžlázka (kontentová kolem 50 %)

Obr. 24-2. Elektronový strukturní vzorec komplexní částice se středovým atomem Na⁺. Ligandem je ion 2-nitrofenolový a molekula salicylaldehydu

Výroba a použití technicky významných sloučenin alkalických kovů

V chemickém průmyslu a technice se uplatňují – posuzováno z hlediska objemu výroby – především sloučeniny sodné a draslíčné. Méně významné je použití lithných soli a ještě menší význam mají soli rubidné a cesné.

Suropinovým zdrojem pro výrobu sodných soli je zejména minerál halit NaCl a mořská voda, pro výrobu soli drasléných sylvin KCl, karnaít KMgCl₃.6H₂O, kamit KMgSO₄·Cl·3H₂O, schůnit K₂Mg(SO₄)₂·6H₂O a nitrokaš KNO₃.

Většina sodných a drasléných solí se připravuje reakcemi, popsanými v předchozích odstavcích. Podrobně jsou většinou těchto výrobů uvedení při výkladu chemie nekovů (výroba fluoridů, chloridů, chloročnanů, sulfidů, kyanidů, sůlčanů, sulfidů, dusičanů, fosforečnanů, uhličanů, klemičanů, boritánů, tetrahydridoaboritanů aj.).

Mimořádný význam a objem má výroba hydroxidu sodného a hydroxidu draslého. Usporu tečne se elektrolytickou cestou z vodného roztoku NaCl nebo KCl. Elektrolyzý používané při výrobě pracuje na dvojím principu a podle toho se rozlišují elektrolýza diafragmová a elektrolýza amalgamová.

V diafragmových elektrolýzerech s železnou katodou se uplatňuje katodová reakce

\[2\text{H}_2\text{O}^- + 2e^- \rightarrow 2\text{H}_2\text{O} + \text{H}_2 \]

kdežto na anodě se vyvíjí chlor:

\[2\text{Cl}^- \rightarrow \text{Cl}_2 + 2e^- \]

Diafragma brání difúzi chloru do katodového prostoru. V elektrolytu kolem katody (katolytu) vzrůstá vybíjením iontů \(H_3O^+ \) a migrací iontů \(Cl^- \) koncentrace iontů \(Na^+ \) (resp. \(K^+ \)) a \(OH^- \), tj. vzniká roztok NaOH (resp. KOH). Roztok se kontinuálně odvádí a zahušťuje a získává se tak nepříliš čistý tuhý NaOH (resp. KOH).

V amalgamovém elektrolýzéru tvoří katodu rtuť. V důsledku přepěti vodíku (str. 455) na
povrchu kovové rtuti se na katodě redukují ionty Na⁺ (resp. K⁺) na kov, který se ve rtuti rozpouští na amalgám. Amalgám se odvádí a hydrolyzuje se vodou:

\[2 \text{NaHg} + 2 \text{H}_2\text{O} \rightarrow 2 \text{NaOH} + \text{H}_2 + 2\text{Hg} \]

Hydroxydy alkalických kovů získané amalgamovou elektrolyzou jsou velmi čisté.

V souvislosti s celosvětovým nedostatkem ušlechtilých forem energie, zejména energie elektrické, jsou zrovna zvážovány možnosti již téměř opuštěného způsobu výroby hydroxidu kaustifikací \(\text{Na}_2\text{CO}_3 \) nebo \(\text{K}_2\text{CO}_3 \) vodnou suspenzí \(\text{Ca}()\text{OH}2 \) podle rovnice

\[\text{Na}_2\text{CO}_3 + \text{Cu}()\text{OH}3 \rightarrow \text{CaCO}_3 + 2 \text{NaOH} \]

Kaustifikací postup výroby hydroxidu se běžně používá při získávání hydroxidu lithného (ve formě stažého hydrátu \(\text{LiOH}.\text{H}_2\text{O} \)). Kromě hydroxidu lithného jsou z lithných solí nejdůležitější fluorid a uhličitan. Fluorid se vyrábí neutralizací hydroxidu kyselinou fluorovodíkovou, \(\text{Li}_2\text{CO}_3 \) je nezbytným produktm při výrobě všech lithných solí. Získá se rozkladem spodumen (\(\text{LiAISi}_2\text{O}_6 \)) kyselinou sírovou a konverzí vzniklého litého lithného uhličitanu sodným:

\[\text{Li}_2\text{SO}_3 + \text{Na}_2\text{CO}_3 \rightarrow \text{Li}_2\text{CO}_3 + \text{Na}_2\text{SO}_4 \]

Sodně i draselné soli mají rozsáhlý význam a použití; uplatňují se v všech průmyslových výrobcích, v zemědělství, v potravinářství atd. Význam lithných solí v poslední době poněkud vzrostl v souvislosti s výrobou některých specializovaných sloučení a s jejich použitím k výrobě kyselinovzdorných povlaků, smaltů a glazur a při organické syntéze.

4.2 BERYLLIUM, HORNÍK A KOVY ALKALICKÝCH ZEMIN

Tyto kovy tvoří v periodickém systému skupinu 2A. Valenční síry atomů beryllia, hořčíku, vápníku, stronceia, bary a radioaktivního radia mají elektronovou konfiguraci ns². Rozdíly v chemickém chování nejeléhčího a nejtežšího prvku skupiny jsou poněkud větší než u alkalických kovů. Kromě dominujících chemických vlastností, jež plynou z postavení prvku ve skupině, se v jejich chemii významně uplatňují i vlastnosti plynoucí z tzv. úhlopříčných vztahů. Beryllium má po některých stránkách blízko k hliníku, hořčík se poněkud podobá lithiu, vápník, stronceiu a bary jsou blízke těžším alkalickým kovům.

Vazebné možnosti atomů Be, Mg, Ca, Sr, Ba

U beryllia dokonce již vůbec nedochází k tvorbě iontových sloučení obsahujících kation Be³⁺. Na vzniku polárně kovalentních vazeb atomů beryllia se podílely orbitály 2p a 2s. Při vysvětlování směrové orientace vazeb ve sloučení beryllia vystačíme ve všech případech s představami hybridizace SP, SP² a SP³.

1) Výskudem chemického chování radioaktivního radia, jež má vlastnosti velmi blízké vlastnostem ostatních tři kovů alkalických zemin, se zde nebudeme zahývat.
Hořčík sice vytváří iontové sloučeniny, ale stejně běžná je pro něj tvorba polárně kovalentních vazeb, zejména v prostoru orientované buď tetraedricky (hybridizace SP^3), nebo s využitím účasti průřezných orbitál $3d$ – i oktaedricky (hybridizace SP^3D^2).

Pro vápník, stroncium a baryum je se zřetelem k jejich malé hodnotě elektronegativity příznak nepravidelné tvorby iontových vazeb, ale i u těchto kovů se mohou výjimečně vyskytnout obdobné vazebné situace jako u hořčíku.

U elementárních kovů skupiny 2A se samozřejmě uplatňuje i vazba kovová. V souladu se závěry plynoucími z teorie MO nebyly v případech těchto kovů pozorovány stálé dvojitomové molekuly.

Je pozoruhodné, že některá měření prokázala existenci dvojitého kationtu typu nápl.

Ca^{2+}, vazebnějších vazbou atomu Ca na kation Ca^{2+}. Formálně vypočtený oxiduční stav atomů kovů v těchto kationtech je I, avšak však neodpovídá skutečné vazebné situaci, neboť neodkazuje dvojitomové kationty je diamagnetické.

- **Chemické vlastnosti berylia, hořčíku, vápníku, stroncia a barya**

V chemické reaktivitě těchto elementárních kovů jsou určité rozdíly.

Berylium je lehký tvarový kov s vysokým bodem tání. Je z kovů skupiny 2A nejméně reaktivní. Na vzniku je stálé, neboť jeho povrch se pasivuje. K pasivaci kovu dochází i při pokusu o jeho rozpuštění v koncentrovaných oxidujících kyselinách. Zředěné kyseliny a roztoky alkačických hydroxidů jej však dobře rozpuštějí za vývoje vodíku:

- $\text{Be} + 2\text{HCl} \rightarrow [\text{Be(H}_2\text{O)}_2]^+\text{Cl}_2 + \text{H}_2$
- $\text{Be} + 2\text{NaOH} + 2\text{H}_2\text{O} \rightarrow \text{Na}_2[\text{Be(OH)}_4] + \text{H}_2$

Podstatně níží bod tání, menší mechanickou pevnost a poněkud větší reaktivitu jeví hořčík.

I na jeho povrchu však může za vhodných podmínek nastávat pasivace. S horkou vodou a s roztoky kyselin reaguje za vzniku vodíku. Při vyšších teplotách se slučuje se všemi nekovy.

Vápník, stroncium a baryum jsou měkké, dosti snadno tavitelné a na vzdachu nestálé kovy. Spontánně, i když ne tak budivě jako alkačické kovy, reagují s vodou za vzniku hydroxidů a za vývoje vodíku. Také jejich reakce s nekovy se podobají obdobným reakcím alkačických kovů.

Všem kovům skupiny 2A, snad jen s výjimkou berylia, lze přisoudit silné redukční schopnosti.

- **Sloučeniny berylia, hořčíku, vápníku, stroncia a barya**

Stejně jako u alkačických kovů pozorujeme i u kovů skupiny 2A, že po přechodu do sloučenin stavy, charakterizovaného oxidovaným stavem II, míží jejich reaktivita a sklon k jakékoliv oxidací redukční změně.

Berylinaté sloučeniny, tedy takové látky, v nichž berylium zastává funkci elektropozitivní stavební jednotky (BeCl_2, BeSO_4 aj.), je více užíváno k hydrolytickým reakcím. Hořčinaté kationty hydrolyzují méně a u kationtů vápenatých, stronctatů a barynatů je hydrolytický děj ještě nevyžadující. Je to dále hmotu zvlášť větší mocnosti oxidů a hydroxidů směrem k těžším kovům.

Oxid berylinatý má kompaktní kovalentní strukturu s prostoru síť vazeb, a je proto tvořen látkou s vysokým bodem tání. Rozpuštějí se v tavených hydroxidů alkačických kovů (za vzniku berylinatantu) podle reakce:

$$\text{BeO} + 2\text{NaOH} \rightarrow \text{Na}_2\text{BeO}_2 + \text{H}_2\text{O}$$

Avšak ve vodních roztocích hydroxidů tato reakce neprobíhá. BeO je amfoterům oxid. Amfoterní charakter je ještě zřejmější u hydroxidu berylinatného Be(OH)_2. Tento hydroxid se připravuje z roz-
toků beryllnatých solí přidávánm hydroxidu alkalického kovu. Be(OH)₂ je rozpustný jak v nabytu hydroxidů alkalických kovů, tak i v roztocích kyselin.

Oxid horčnatý MgO a hydroxid horčnatý Mg(OH)₂ stojí jako hydroxidy a oxidy kovů alkalických zemin neprojevují již ani názvům amfoterů, jeho rozpustné je v kyselinách. Všechny tyto oxididy a hydroxidy jsou silně bazické. V sou cementou se běží — obvykle v případě Be(OH)₂ — hydroxidům alkalických kovů. Mnohé binární sloučeniny berylia (Be₂B, Be₂N₂, BeS aj.) mají shodné s BeO polymerový kovalentní strukturu, vznikají sloučeníněm prvků při vysokých teplotách a jsou město reaktivní. Binární sloučeniny horčnaté a hlavně vápenaté, strontnaté a barvitá mají iontovou strukturu a jsou poněkud reaktivnější.

Ternární kyslikaté sloučeniny beryliát, zejména jejich hydráty, jsou dobře rozpustné ve vodě. Naproti tomu u některých horčnatých sloučenin a velmi hojné u soli vápenaté, strontnaté a barvité jsou malá rozpustnost (F⁻, CO₃²⁻, PO₄³⁻, SO₄²⁻, CrO₄²⁻ aj.)

Vystupování kationtů kovů skupiny 2A v ulože středových atomů kompleksních částic není zdaleka běžné, přesto se s ním však setkáváme, a to především u prvých tří primární skupiny. Beryllium přítom vykazuje koordinační číslo 4, hořčik a vápenkat mocně, zjednět s použitím svých prázdných orbitálů d, dosahne koordinačního čísla 6. Za zmínku stojí, že hořčík je obsažen jako středový atom v chloridu, tedy látce, která má pravoúčet význam v životních procesech rostlin.

Velmi reaktivní látky jsou organokovové sloučeniny prvků skupiny 2A. Zajímavé jsou například dialkylosloučeniny a diarylsloučeniny berylia obsahující tříštěděvé dvouelektronové vazby. Mají dimerní nebo i polynerní strukturu. Elektronové strukturne vzorce diethylberyllia a difenyleryllia jsou znázorněny na obr. 24-3.

Velký praktický význam mají tzv. Grignardova činidla. Jsou to organokovové sloučeniny hořčíku obecného vzorce RMgY, v němž R je alkyl nebo aryl a Y halogen. Připravují se reakcí halogenovaných uhlovodíků s práškovým hořčíkem v etherickém roztoku:

\[RY + Mg \rightarrow RMgY \]

Alkylmagnesiéhydroxidy, resp. arylmagnesiéhydroxidy lze připravit dokonce i v uhelném skupení, výhradně však jako solváty s dvěma molekulami etheru RMgY.2(C₂H₅)₂O. Koordinace na atomu hořčíku v této látce je tetraedrická (obr. 24-4). Grignardova činidla mají velmi významné použití v syntézi organických látek.

Výroba a použití technický významných sloučenin kovů skupiny 2A

Beryllium nachází uplatnění jako kov v elementárním stavu (str. 469). Použití jeho sloučenin není rozšířená a má malý význam (BeO jako keramický materiál a složka některých speciálních skel).

Obdobně je tomu i u soli hořčnatých. MgO je materiálem pro bazické výzdívy pečí
a součástí, většinou spolu s MgCl₂, některých tmelů. Minerály obsahující hořčík (dolomit, CaCO₃, MgCO₃), popř. strusky s obsahem hořčíku, se používají jako hnojivo.

Zdrojem pro výrobu vápenatých sloučenin je vápenec CaCO₃, sídrovec CaSO₄, 2H₂O nebo i anhydrít CaSO₄. Technický význam mají především CaO, Ca(OH)₂, CaCl₂, Ca₂₋₃, CaCN₂.

Oxid vápenatý se vyrábí ve vápenkách žháním vápence na 900°C:

CaCO₃ → CaO + CO₂

Má rozešlé použití ve stavebnictví, slouží k výrobě Ca(OH)₂, uplatňuje se jako zásaditá vyzdívka pece a jako přísluša v hutnictví a sklářském průmyslu. Oxid vápenatý, popř. strusky odpadající z některých metalurgií, jsou ceněn hnojivou.

Velký význam má hydroxid vápenatý Ca(OH)₂ připravovaný reakcí CaO s vodou (hašením). Je nezbytný při výrobě Na₂CO₃ Solvayovým pochodem, při výrobě papíru, hnojiv, zpracování surových kůží, v cukrovarnictví a samozřejmě ve stavebnictví.

Chlorid vápenatý se vyrábí reakcí vápence s kyselinou chlorovodíkovou:

CaCO₃ + 2 HCl → CaCl₂ + CO₂ + H₂O

Také se využívá jeho vodné roztoky odpadající při výrobě Na₂CO₃. Uplatňuje se v metalurgii, při tavných elektrolýzách a jako kondenzační prostředek v organické chemii, jeho vodný roztok se používá v chladicích systémech.

O výrobě CaCl₂ a CaCN₂ již byla zmínka dříve (str. 369).

Uforgeten ti mají i soli barnaté, především BaCl₂, BaCO₃, Ba(NO₃)₂, BaSO₄ a BaS. Suvironami pro výrobu barnatých solí jsou baryt (těživce) BaSO₄ a poměrně vzácný minerál wilsherit Ba₄O₃.

Sulfid barnatý BaS se připravuje z barytu redukcí uhlihem

BaSO₄ + 4 C → BaS + 4 CO

při teplotě asi 950 až 1100°C a je výhodou látkou pro výrobu dalších barnatých solí. Reakci suspenze BaS ve vodě s uhličitanem sodným se získá BaCO₃, obdobnou reakci BaS s kyselinou chlorovodíkovou se vyrábí chlorid barnatý BaCl₂. Při výrobě dusičnanu barnatého Ba(NO₃)₂ se vychází nejčastěji z BaCO₃, který se rozloží kyselinou dusičnou. Chlorid barnatý se používá v ocelářství i jako složku některých tvarů směsi v elektrometalurgi apod. Dusičnan barnatý se vyrábě pro potřeby sklářského průmyslu. Velmi důležitým pigmentem je litopon, směs BaSO₄ a ZnS, připravovaná reakcí

BaS + ZnSO₄ → BaSO₄ + ZnS

Samotný BaSO₄ vyráběný z BaCl₂ v potřebné čistotě a textuře je cenným bílým pigmentem známým pod označením blanc-fixe.

24.3 HLINÍK, GALLIUM, INDIUM A THALLIUM

Tato čtyřice prvků tvoří (spolu s polekovem borem) třetí hlavní skupinu periodického systéma. Ve smyslu dělení periodické tabulky na skupiny A a B ovšem platí, že hliník (a bor) patří do skupiny 3A¹ ¹ a gallium, indium a thallium jsou prvky skupiny 3B (str. 158).

Valenční sféry atomů všech čtyř prvků vykazují v základním stavu elektronovou konfiguraci n²np¹. To je přičinou mnoha jejich společných chemických vlastností. U hliníku se přímo pod

¹ Spolu s přechodnými kovy skandiem, yttriem a lanthanoidy.
valenční sféru 3s² 3p¹ vyskytuje elektronová konfigurace vzácného plynu neonu. U gallia, india a thallia tomu tak není, neboť bezprostředně pod valenční sférou je u nich soubor pěti plně obsazených orbitálů \((n-1)d\). Tato skutečnost vysvětluje některé odlíšnosti v chemickém chování gallia, india a thallia na jedné straně a hliníku na straně druhé. Hlavní rozdíl je v tom, že u gallia, india a thallia se projevuje efekt inertního elektronového páru (str. 121) a jejich chemie je charakterizována výskytovým dvou oxidačních stavů I a III.

- Vazebné možnosti atomů Al, Ga, In, Tl

Valenční sféra atomu hliníku s elektronovou konfigurací 3s² 3p¹ se do tvorby jeho vazeb zapojuje jako celek, tedy všemi třemi elektrony. Znamená to, že jediným stabilním oxidačním stavem hliníku v jeho sloučeninách je stav III. Poněvadž elektropozitivitu atomu hliníku je podstatně nižší než např. u alkaličních kovů, je pro něj charakteristická tvorba polárních vazeb s převahou pořadím kovalentnosti. Pouze při vazbě s nejelktronnegativnějšími nekvy, fluorom a do jisté míry i kyslíkem, přibírá se iontovost vznikajících vazeb hranicí 50 % a snad již překračuje. Koordinace na atomu hliníku v jeho sloučeninách je tetraedrická (hybridizace SP³, koordinační číslo 4) nebo oktaedrická (hybridizace SP³ D⁴, koordinační číslo 6), popř. u některých přechodně se tvořících částí trigonálně pyramidální (hybridizace SP³ D, koordinační číslo 5). Při oktaedrické i trigonálně pyramidální koordinaci se tedy na vazbách podíjí průzadky orbitály 3d hliníku, umístěné energeticky jen o málo výše než orbitál 3s a trojice orbitalů 3p.

Výjimečný je případ, kdy atom hliníku nabývá oxidačního stavu I. Lze si představit, že elektrony 3s² přitom zůstávají lokalizovány na atomu kovu a na vazbě se podílí jediný elektron 3p¹. Takovéto sloučeniny jsou velmi nestálé v kondenzovaných stavech a jejich chemické chování lze jen krajně obtížně studovat. Přesto má existence jedné takového sloučeniny, intermedierárně vznikajícího chloridu hliníkem HCl, klíčovou úlohu v průmyslové výrobě kovového Al (str. 470) tzv. subhalogenidovým procesem.

Co jsme poznali jako výjimečný způsob vazby u hliníku, je poněkud běžnější u gallia a india a zcela běžné u thallia. Valenční sféra ns² np¹, pod níž leží desítka elektronů umístěných na \((n-1)d\) orbitálech, vykazuje v některých případech jistou odolnost proti odštěpení elektronů ns², resp. proti jejich účasti na vazbě. Do vazby se v takovém případě zapojuje jen elektron np¹ (efekt inertního elektronového páru) a atomy gallia, india a thallia pak vykazují oxidační stav I. Hovoríme o stabilizaci iontu kovu na konfiguraci elektronové „dvacítky“. Čím těžší je atom kovu, tím ochotnější se takto stabilizuje. Naproti tomu účast všech tří elektronů ns² np¹ na vazbě vede ke vzniku oxidačního stavu III a vzniká elektronová konfigurace na iontu kovu se nazývá elektronová „osmnáctka“.

| Tabulka 24.1: Elektronové konfigurace atomů Ga, In a Tl v oxidačních stavech I a III |
|-----------------|-----------------|-----------------|
| Prvek | Oxidační stav I | Oxidační stav III |
| In | [Kr] 4d¹⁰ 5s² = [Cd] málo stabilní | [Kr] 4d¹⁰ = [Pd] velmi stabilní |
| Tl | [Xe] 4f⁴⁴ 5d¹⁰ 6s² = [Hg] velmi stabilní | [Xe] 4f⁴⁴ 5d¹⁰ = [Pt] nestabilní |

490
Elektronová konfigurace atomů gallia, india a thallia v oxidačních stavech I a III a s těmito konfiguracemi izoelektronové atomy a slovní vyjádření stability oxidačních stavů uvádí tab. 24-3.

Celkově lze vazby vytvářené atomy kovů skupiny 3B, tj. gallia, india a thallia v oxidačním stavu I označit za poněkud iontovější než vazby ve složeninách hliníků. Pokud jsou kovy skupiny 3B ve složeninách koordinovány více než čtyři vazební partnerů, podílejí se na vazbách neobsazené orbitaly nad stejně jako u hliníku.

U gallia a india byla též prokázána existence sloučení s dvouatomovými kationy (např. Ga₂⁺), resp. dvojicemi atomů (Ga₃)₄⁻ s vazbou kov—kov, v nichž jeden z atomů je v oxidačním stavu I a druhý ve stavu III. Tyto látky, např. Ga₂Cl₄, jsou diamagnetické, tedy bez nepárového elektrona, což svědčí o tom, že kov v nich nenabývá oxidačního stavu II, který by zdánlivě nejnedodělaje vysvětloval stehioniemtrii sloučeniny.

Chemické vlastnosti hliníku, gallia, india a thallia

Kovový hliník je technicky velmi významný kov. Jeho mechanické vlastnosti lze výrazně zlepšovat legováním. Je sice poměrně elektropozitivní a měl by reagovat s vodou a vzdutší vlnkou, ale vznik vrstvické oxidu na povrchu hliníku i jeho slitin brání průběhu této reakce.

Hliník se rozpouští v neoxidujících kyselinách a hydroxidech alkalických kovů za vývoje vodíku:

\[
2 \text{Al} + 6 \text{HCl} + 12 \text{H}_2\text{O} \rightarrow 2 \text{AlCl}_3 + 6 \text{H}_2 + 3 \text{H}_2\text{O}
\]

\[
2 \text{Al} + 2 \text{NaOH} + 6 \text{H}_2\text{O} \rightarrow 2 \text{Na}[:\text{Al}[:\text{OH}]]_2 + 3 \text{H}_2\text{O}
\]

Při styku kovu s oxidující kyselinou dochází k jeho pasivaci. Proto jsou slitiny hliníku vhodným materiálem pro výrobu kontejnerů na dopravu koncentrované kyseliny dusičné.

Gallium, indium a thallium jsou snadno tavitelné kovy, gallium má dokonce bod tání jen 30 °C, a poněvadž se snadno podeklájá, bývá za laboratorní teploty často kapalné. Všechny tři kovy se rozpouštějí v kyselinách obdobně jako hliník. Gallium a indium přitom přecházejí do oxidačního stavu III. Thallium přechází, není-li prostředí silně oxidativní, na soli thallinum. Gallium se rozpouští v roztocích hydroxidů alkalických kovů za vzniku galšántu a vodíku:

\[
2 \text{Ga} + 2 \text{NaOH} + 10 \text{H}_2\text{O} \rightarrow 2 \text{Na}[\text{Ga(OH)}_2(NO_2)]_2 + 3 \text{H}_2\text{O}
\]

Indium a thallium této reakce nepodléhají.

Gallium a indium jsou na vzduchu stálé. Thallium však reaguje se vzdušnou vlnkou za přítomnosti kyslíku a přechází na velmi bazický TiOH.

Všechny tři kovy skupiny 3B reagují s nekovy za výšší teploty obdobně jako hliník. Gallium a indium přitom přecházejí do oxidačního stavu III, thallium jen na sloučeniny thallinum, avšak ochota podléhnut reakci je u thallia největší.

1) Pokud se pevně lepící vrstvika oxidu průběžně odstraňuje nebo alespoň narůstá (např. amalgamací povrchu hliníku), reakce hliníku s vodou spontánně probíhá:

\[
2 \text{Al} + 6 \text{H}_2\text{O} \rightarrow 2 \text{Al(OH)}_3 + 3 \text{H}_2\text{O}
\]

Naopak umělým vytvořením husté a kompaktní ochrané vrstvy oxidu anodickou oxidací (tzv. eloxováním) lze protikorozní odolnost kovového hliníku podstatně zlepšit.
Sloučeniny hliníku, gallia, india a thallia

Oxid a hydroxíd hliníkový jsou amfotérní látky a také oxidy a hydroxidy gallitové a indici se chovají obdobně. Kationty Al\(^{3+}\), Ga\(^{3+}\) a In\(^{3+}\) jsou ve vodním roztoku stabilní jen v hydratované formě, tedy např. jako iont \([\text{Al(H}_2\text{O)}_6]^{3+}\), a pouze tehdy, je-li prostředí silně kyslé. Při vzniku pH roz-
toku probíhá hydrolytická reakce kationů, odštěpují se z nich protony, vznikají příslušné hydroxoko-
plexy a eliminaci molekul vody se posléze vylučuje jen částečně hydratovaný hydroxid typu Me(OH)\(_3\), tedy např. Al(OH)\(_3\). Vytvoříme-li v roztoku vysloveně alkaliční prostředí, rozpuštějí se hydroxidy na hydroxoklitany, hydroxogallitany nebo hydroxoiditany. Přehledně znázorňuje tyto děje i jejich zpětný průběh toto reakční schéma:

\[
\begin{align*}
\text{[Al(H}_2\text{O)}_6]^{3+} + \text{H}^+ & \quad \rightarrow \quad [\text{Al(OH)(H}_2\text{O)}_5]^{2+} \\
[\text{Al(OH)(H}_2\text{O)}_5]^{2+} + \text{H}^+ & \quad \rightarrow \quad [\text{Al(OH)}_3(H}_2\text{O)}_3]^{+} \\
[\text{Al(OH)}_3(H}_2\text{O)}_3]^{+} + \text{H}^+ & \quad \rightarrow \quad [\text{Al(OH)}_3]^{-} \\
& \quad \Leftarrow \quad \text{Al(OH)}_3 \\
\text{Al(OH)}_3 & \quad \Leftarrow \quad \text{Al(OH)}_2\text{O} + \text{H}_2\text{O}
\end{align*}
\]

Ve skutečnosti jsou děje tímto schématech vyjádřené ještě dále komplikovány tím, že všechny vznikající aqua-hydroxokomplexy mohou mít polyjaderový charakter.

Uvedli jsme již, že hliník v oxidaci stavu I se běžně nevyskytuje. Také sloučeniny Ga\(^1\) a In\(^1\) jsou ve vodných roztocích zcela nestálé. V tuhé fázi mohou být získány jen při dostatečně oheňněm, tj. vznášením kyslíkem a vlhkostí, např. reakcí uskutečněnou v tavenině:

\[2 \text{Ga} + \text{GaCl}_3 \rightarrow 3 \text{GaCl}_2\]

V podstatě opačnou situaci zjišťujeme u sloučení thalílie, kde oxidativní stav I je zcela běžný a velmi stálý. Hydroxid thalílový Ti(OH)\(_2\) a oxid thalílový Ti\(_2\)O jsou silně bazické sloučeniny nemající amfotérní charakter. Tyto i další thalínové sloučeniny jsou značně iontové, rozpuštěnosti se dosti podobají sloučeninám stříbrným. Příprava sloučení thalílových vyžaduje naopak příběhení silných oxidacích činidel a sloučení thalílie ve vodním roztoku jsou silná oxidovadla.

Pro všechny ionty kovů třetí hlavní skupiny periodické soustavy je charakteristická schopnost vystupovat běžně jako středové atomy koordinačních sloučenin. Tendence ke zvyšování koordina-
čního čísla u atomů těchto kovů se projevuje již ve struktuře jejich prostých binárních sloučenin. Například chlorid hliník tvoří v plynném nebo kapalině fází dimerní molekuly Al\(_2\)Cl\(_4\), jejichž struktuře jsme již objasnili (str. 392). Koordinační číslo atomu Al v molekule této sloučeniny je 4. Obdobně se našladíme nacházíme nejen v dalších sloučeninách hliníku, ale i u gallia a v některých případech u india. Mnoho z těchto dimerních molekul při vytváření krystalových míšek ještě více prohlabují svou asociaci a vytvářejí vstřebnější polykrylové míšky. Průčíslnou asociaci molekul bin-
árních sloučení kovů třetí hlavní skupiny je především to, že těmto atomům (v případech thalílie a částečně india) nevyhovuje stabilizace tvorby iontových vazeb. Přítom trojice elektronů ve valenční sfeře těchto atomů dovoluje vytvořit jenom tři jednoduché vazby σ. Takto vzniklé jedno-
duché molekuly jsou elektronově deficitní a mají vyslovené charakter Lewisových kyselin. Za těchto okolností sdružení molekule, spojené se zvyšováním koordinačního čísla atomu kovu na 4, aneb o těž tvoření delokalizované vazby π v molekule, jsou jediné dvě cesty umožňující snížit energii vzeb ve sloučenině. Nekol bor, jak jsme poznali při výkladu vazby jeho sloučení (BF\(_3\), BC\(_3\)), dává před-
nost stabilizaci tvorby delokalizovaných vazeb π, iontové sloučení hliníku, gallia a india se stabilizují asociací svých molekul.

Z koordinačních sloučení kovů třetí hlavní skupiny jsou ve vodných roztocích nejběžnější a nejstálější aquakomplexy, hydroxokomplexy a halogenokomplexy a též smíšené komplexy s ně-
ktérymi organickými a anorganickými molekulami jako ligandy. Koordinační číslo středových atomů dosahuje hodnoty 4 nebo 6 a v některých intermediárních konfiguracích těž 5. Velký podíl elektrostatické interakce na vazbě středového atoma s ligandy se projevuje tím, že větši rozdíl

\[
\text{GaCl}_3 + \text{RNH}_2 \rightarrow [\text{GaCl}_3(\text{RNH}_2)]
\]

\[
2\text{GaBr}_3 + 2\text{C}_2\text{H}_5\text{N}_2 \rightarrow [\text{GaBr}_3(\text{C}_2\text{H}_5\text{N}_2)] [\text{GaBr}_4]
\]

Také v taveninách halogenidů hliníku, gallia, indium nebo thália za přitomnosti např. halogenidů alkaličeských kovů vznikají koordinací částice typu [InCl₆]³⁻, [InBr₆]³⁻ a [InI₆]³⁻.

Také gallium, indium i thálium tvoří organokovové sloučeniny obdobněho typu a vlastností jako hliník. U indiumu a thália jsou navíc známy látky obecného stechiometrického vzorce RN₃ a RTI₃.

Pokud jde o toxickost kovů a jejich sloučenin, je třeba upozornit na velkou jedovatost rozputných sloučenin thália. Hliník, gallium i indium jsou i v formě rozpuštěných sloučenin pro živé organismy málo nebezpečné.

Výroba a použití technicky významných sloučenin hliníku a kovů skupiny 3B

Hlavní surovinným zdrojem pro výrobu sloučenin hliníku i kovu je bauxit. Podstatu výroby čistého Al₂O₃ z bauxitu Bayerovým způsobem jsme již uvedli (str. 470). Při výrobe samotného hliníku a jeho slitin i jako významný nosič katalyzátorů, sorpční činidlo a plnilo.

Na₃[AlF₆] (kryolit) se vyrábí reakcí vodního roztoku kyselin fluorovodíkového s oxidem hliníkem a uhličitanem sodním:

\[
\text{Al}_2\text{O}_3 + 3\text{Na}_2\text{CO}_3 + 12\text{HF} \rightarrow 2\text{Na}_3[\text{AlF}_6] + 3\text{CO}_2 + 6\text{H}_2\text{O}
\]

Někdy se připravuje i reakcí NaF s AlF₃ nebo se síranem hliníkem:

\[
3\text{NaF} + \text{AlF}_3 \rightarrow \text{Na}_3[\text{AlF}_6]
\]

\[
12\text{NaF} + \text{Al}_2\text{(SO}_4)_3 \rightarrow 2\text{Na}_3[\text{AlF}_6] + 3\text{Na}_2\text{SO}_4
\]

Kryolit má kromě v metalurgii hliníku použití též ve sklářství a při výrobě smaltů. K průmyslové výrobě fluoridu hliníkého AlF₃ se nejčastěji využívá prostá neutralizační reakce

\[
\text{Al(OH)}_3 + 3\text{HF} \rightarrow \text{AlF}_3 + 3\text{H}_2\text{O}
\]
Vyloučený hydrát se začíná vznikat na 400 až 500 °C převádí na bezvodou sůl. Ta slouží k výrobě kryoluť nebo se přimo používá jako složka tavené látce při elektrolytické výrobě hliníku.

Chlorid hliníky bývá připravován přímým slučováním hliníku z hliníkového odsahu s chlorem:

\[2 \text{Al} + 3 \text{Cl}_2 \rightarrow 2 \text{AlCl}_3 \]

Lze též použít reakci hliníku s plynným chlorovodíkem

\[2 \text{Al} + 6 \text{HCl} \rightarrow 2 \text{AlCl}_3 + 3 \text{H}_2 \]

nebo redukční chlorací oxidu:

\[\text{Al}_2\text{O}_3 + 3 \text{C} + 3 \text{Cl}_2 \rightarrow 2 \text{AlCl}_3 + 3 \text{CO} \]

Chlorid hliníku má velké uplatnění v organické syntéze, především jako katalyzátor Friedelových-Craftsovych reakcí, chlorací a kondenzační činidla a katalyzátor při krakování a dehydrogenaci uhlovodíků.

Jako specifická redukční činidla nacházejí v organické i anorganické syntéze spotřebení tetrahydrádoclinitany a některé jejich deriváty. Náročnou přímou syntézou z prvků se vyrábí Na[AlH₄] při 140 °C za tlaku v roztoku tetrahydrofuranu:

\[\text{Na} + \text{Al} + 2 \text{H}_2 \rightarrow \text{Na}[\text{AlH}_4] \]

Na důležitou lithní důležitou síl se převádí konverzi s LiCl v etherickém roztoku:

\[\text{Na}[\text{AlH}_4] + \text{LiCl} \rightarrow \text{Li}[\text{AlH}_4] + \text{NaCl} \]

Objevem výroby nepatrná, ale velmi závažná je výroba velmi čistých sloučenin gallia a indu. Významné jsou především binární sloučeniny oboh kovů s fosforem, arsenem a antimonem, uplatněné se v oblasti polovodíkové techniky a elektroniky. Při jejich syntéze se vychází buď z velmi čistých prvků, nebo v některých případech i z jejich sloučenin, např.

\[6 \text{GaCl} + \text{As}_4 \rightarrow 4 \text{GaAs} + 2 \text{GaCl}_3 \]

24.4 GERMANIUM, CÍN A OLOVO

Prvky germanium, cín a olovo tvoří v periodickém systému skupina 4B. Elektronová konfigurace valenční sféry jejich atomů je ns²np². Bezprostředně pod ni je v většině tří prvků soubor orbitálů (n − 1)d zaplněný deseti elektrony.

- **Vazečné možnosti atomů Ge, Sn a Pb**

V důsledku analogické populace elektronů na hladinách valenční sféry v základním stavu a v důsledku toho, že u všech tří prvků se pod valenční sférou ns² np² vyskytuje elektronery plně obsazený soubor orbitálů (n − 1)d, jsou vazečné možnosti jejich atomů velmi obdobné. Poněvadž i elektro negativita jen mírně klesá od germania k olovu, nelší se vazby v homologických sloučeni nech těchto prvků výrazně od sebe ani podle iontovosti.

Germanium, cín i olovo mohou do tvorby vazeb zapojit všechny čtyři valenční elektrony.
V tom případě vykazují jejich atomy oxidační stav IV a jsou stabilizovány na konfiguraci elektrové „osmnáctky“: Takováto vazebná situace je nejběžnější i také nejstabilnější u germania.

Jinak je tomu v případě, že kovy skupiny 4B využijí při vytváření vazeb jen elektrony np². Na jejich atomech zůstane bez výraznější účasti na vazbě elektronový pár np². Atomy jsou v oxidačním stavu II. Hovoříme o stabilizaci na elektronovou „dvacetku“: Tento způsob stabilizace vyhovuje nejlepše nejčišťšímu z kovů skupiny 4B – olovu.

V tab. 24-4 je přehledně uvedena elektronová konfigurace atomů germania, cínu a olova v oxidačních stavech II a IV, stabilita těchto konfigurací a ioelektronově neutrální atomy.

<table>
<thead>
<tr>
<th>Prvek</th>
<th>Oxidační stav II</th>
<th>Oxidační stav IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ge</td>
<td>[Ar] 3d¹⁰ 4s² = [Zn]</td>
<td>[Ar] 3d¹⁰ = [N]</td>
</tr>
<tr>
<td></td>
<td>nestabilní</td>
<td>velmi stabilní</td>
</tr>
<tr>
<td>Sn</td>
<td>[Kr] 4d¹⁰ 5s² = [Cd]</td>
<td>[Kr] 4d¹⁰ = [Pd]</td>
</tr>
<tr>
<td></td>
<td>stabilní</td>
<td>stabilní</td>
</tr>
<tr>
<td>Pb</td>
<td>[Xe] 4f¹⁴ 5d¹⁰ 6s² = [Hg]</td>
<td>[Xe] 4f¹⁴ 5d¹⁰ = [Pr]</td>
</tr>
<tr>
<td></td>
<td>velmi stabilní</td>
<td>nestabilní</td>
</tr>
</tbody>
</table>

Vazby, jimiž se poutají atomy germania, cínu a olova k vazebným partnerům, jsou značně kovalentní, pokud jsou tyto prvky v oxidačním stavu IV. Nezanedbatelný podíl iónovosti se projevuje ve vytvářených vazbách, jsou-li atomy kovů v oxidačním stavu II, a to tím více, čím těžší je tento kov. Proto nejvyšší iónovost vazeb ve sloučeních prvků skupiny 4B pozorujeme u soli olovnatých.

Čtvereční vazeb o v jednoduchých sloučeních se středovými atomy GeIV, SnIV a PbIV je uspořádána vždy tetraédricky (GeCl₄, SnF₄, PbH₄); dvojice vazeb o v obdobných kovalentních sloučeních s atomy GeIV, SnIV a PbIV jsou v prostoru orientovány tak, že vytvářejí lomené molekuly (SnCl₂).

Mnohé sloučeniny kovů skupiny 4B v oxidačním stavu II nevytvářejí stabilní jednoduché molekuly a v tuhší fázi jsou jejich stavební jednotky uspořádány do komplikovaných iónové kovalentních mřížek (PbCl₂, PbBr₂ aj.). Atomy kovů přitom mají poměrně velká koordinační čísla. Vznik těchto mřížek je do jisté míry projevem ochoty atomů germania, cínu a olova zastávat úlohu středových atomů.

Pokud je atom kovu v oxidačním stavu II, je jeho tendence dosahovat velkých koordinačních čísel poměrně menší. Maximální hodnota koordinačního čísla byvá nejvýše 4.

- Chemické vlastnosti germania, cínu a olova

 Nejvýznamnějším bodem těto trojice prvků má největší germanium. Všechny tři prvky jsou poměrně mělo reaktivní, na vzduchu se výrazněji nemění, jenom olovo se pokrývá tenkou vrstvou oxidu a uhličitanu. Kovy odolávají působení vodních roztoků slibých kyselin a zásad.

495
Germanium je dosti odolné i k účinkům koncentrovaných roztoků oxidujících kyselin a cín se v nich rozpuštějí za vzniku hydratovaného oxidu SnO₂·H₂O:

\[3\text{Sn} + 4\text{HNO}_3 + 3\text{e} \xrightarrow{\text{H}_2\text{O}} 3\text{SnO}_2 \cdot \text{H}_2\text{O} + 4\text{NO} + 2\text{H}_2\text{O} \]

Olovce poskytuje příslušnou sál olovnatou:

\[3\text{Pb} + 8\text{HNO}_3 \rightarrow 3\text{Pb(NO}_3\text{)}_2 + 2\text{NO} + 4\text{H}_2\text{O} \]

Reakcí kovů se vzdusným kyslíkem za vysokých teplot (spalováním) vznikají GeO₂, SnO₂ a Pbo, resp. PbO₃. Také sloučené s dalšími nekovy nastává jen v případech, kde jsou kovy za teplé koncentrace dostatečně velké.

Složeniny germania, cín a olova

Složeniny kovů skupiny 4B jsou tím inkonvenčnější a jejich elektropozitivní charakter tím hůře, čím těžší atomy kovů obsahují a čím nižší je oxidace stav, v němž se atomy vyskytují.

Oxidy GeO₂, SnO₂ a Pbo₂ jsou stejně jako příslušné hydroxidy, jsou amfoterní; relativně nejbazické je PbO₂. Oxid germanatý a oxid cínatý jsou redukce, oxidu jako redukující a ochotně se oxidují. Při rozpuštění Ge(OH)₄ ve vodném roztoku hydroxidu alkalickeho kovu je dokonce hlavním dějem oxidace-redukce reakce

\[\text{Ge(OH)}_2 + 2\text{NaOH} \rightarrow \text{Na}_2\text{GeO}_3 + 3\text{H}_2\text{O} \]

Oxidy GeO₂, SnO₂ a Pbo₂ jsou v podstatě také amfoterní, ale přeč jen kyslejší než oxidu typu MeO. Pbo₂ je redukce, nejméně stálý. Je velmi silným oxidacím prostředkem:

\[5\text{PbO}_2 + 2\text{Mn}^{2+} + 4\text{H}_2\text{O} \rightarrow 2\text{MnO}_4^- + 5\text{Pb}^{2+} + 6\text{H}_2\text{O} \]

Sira se sloučí s germaniem, cínem a olovem na sulfidy GeS, GeS₂, SnS, SnS₂ a PbS. Sulfid olovičitý neexistuje. Oba sulfidy cínu jsou schopny vytvářet při rozpuštění ve vodných roztocích sulfidů a polysulfidů alkalickeho kovů thiosolů:

\[\text{SnS}_2 + \text{S}^2^- \rightarrow \text{SnS}_2^- \]

Sulfid cínatý se při rozpuštění v roztocích polysulfidů oxiduje a vzniká thiochinitán:

\[\text{SnS} + \text{S}^2^- \rightarrow \text{SnS}_2^- + (x - 2)\text{S} \]

Germanium, cín a olovo tvoří halogenidy typu MeY₃ a MeY₂. Halogenidy typu MeY₂ jsou většinou látky se značně iontovým charakterem vazby. Halogenidy germanaté se v důsledku jiné uve-
deně nestability oxidaceho stavu II snadno oxidují a při vyšších teplotách dokonce mohou samy disproporcionovat:

$$2 \text{GeI}_2 \rightarrow \text{Ge} + \text{GeI}_4$$

Naopak halogeny obecně jsou velmi stálé látky, postraďací sklon k oxidace-redukčním změnám. Jejich měříky jsou velmi kompaktní a mají většinou vrstevnatý charakter.

Halogeny typu Me_3Y jsou nízkomolekulární sloučeniny s kovalentní vazbou. Jsou známe těkavé a rychle se hydrolyzuji vodou:

$$\text{SnCl}_4 + (x + 2) \text{H}_2\text{O} \rightarrow \text{SnO}_2 \cdot x \text{H}_2\text{O} + 4 \text{HCl}$$

Nejsou známy bromid a jodid olivovitý, neboť oxidace schopnost atomů PbV je tak velká, že oxidují Br$^{\text{+}}$ na Br$^{\text{2+}}$ a I$^{\text{+}}$ na I$^{\text{3-}}$, a nemohou s nimi proto vytvářet vazby a uspořádávat se do krystalové mřížky.

Tvorbou komplexních sloučenin je velmi běžná u Ge$^{\text{IV}}$ a Sn$^{\text{IV}}$. Ve funkci ligandů se uplatňují kromě O$^{-}$ též ionty hydroxidové, halogenidové a řada dalších. Pro Pb$^{\text{IV}}$ je tvorbou komplexů menší charakteristický, zejména proto, že jeho mohutné oxidace účinky jsou příčinou oxidace-redukčních změn při kontaktu s četnými oxidovatelnými ligandy. U Ge$^{\text{IV}}$, Sn$^{\text{IV}}$ a Pb$^{\text{IV}}$ je tomu opačné. Ge$^{\text{IV}}$ a do značné míry i Sn$^{\text{IV}}$ snadno podléhají oxidaci. Soli olivnaté jsou redoxně zcela stálé a ve vodných roztocích koordinací snadno tvoří ionty $[\text{Pb(CN)}_4]^{\text{2-}}$, $[\text{PbBr}_4]^{\text{2-}}$, $[\text{Ph(SO}_3\text{)}_2]^{\text{3-}}$ aj.

![Obr. 24-5. Příklady uspořádání vazeb v organokových sloučeninách cínu. a) Sn$_3$(CH$_3$)$_2$; b) Sn$_3$(CH$_3$)$_3$; c) Sn$_3$(C$_6$H$_5$)$_3$](image)

Germanium, cín i olovo vytvářejí poměrně velké množství organokových sloučenin. Jsou to především tetraalkylsloučeniny a tetraarylsloučeniny typu R_4Me a odvozených typů R_2MeY, $\text{R}_3\text{Me}_2\text{Y}$ a RMe_3Y ($\text{Me} = \text{Ge, Sn, Pb}$; $\text{Y} = \text{H, F, Cl, Br, I, OH, SH, OR, CN, NCO, NCS, CNS, IS, SR, OSR, N, NR, NH}$ aj.). Většina těchto sloučení jsou těkavé nízkomolekulární látky. Existují i další organokové sloučeniny se složitějších stěchiometrií. V některých z nich se dokonce uplatňují vazby kov–kov (obr. 24-5).

- **Vývoj a použití technicky významných sloučenin germania, cínu a olova**

Ze sloučenin germania jsou významné a průmyslové se vyrábějí především ty, které slouží
v jeho metalurgii. Surowinovým zdrojem je převážně popílka ulétající při spalování uhli s obsahem

497
Ge (obykle 20 až 70 g Ge v 1 t uhlí), popř. odpadní produkty z výroby zinku. Chlorid germániový \(\text{GeCl}_4 \) se získává z GeO obsaženého v přetaveném elektrárenském popílku redukční chloraci:

\[
\text{GeO} + \text{C} + 2 \text{Cl}_2 \rightarrow \text{GeCl}_4 + \text{CO}
\]

Čistí se destilací a slouží k výrobě oxidu germániového \(\text{GeO}_2 \) hydrolytickým postupem:

\[
\text{GeCl}_4 + 2 \text{H}_2\text{O} \rightarrow \text{GeO}_2 + 4 \text{HCl}
\]

\(\text{GeO}_2 \) vzniká v hydratované formě. Proto se tepelně dehydratuje a používá se k výrobě kovového germania redukční vodíkem. Je také východzi sloučeninou pro nerozkládou výrobu některých dalších sloučenin germania (např. aktivované fluorgermanátové alespoň svého času uplatněné v osvětlovací technice jako luminofory).

Ani sloučeniny čínu nemají rozsáhlé použití, cín se uplatňuje především v elementární formě. \(\text{Chlorid cínový} \text{SnCl}_4 \) se užívá ve sklařském průmyslu a ve výrobě březitků při metalizování skel. Uplatnil se i v organické syntéze a ve výrobě organkovových sloučenin cínu. Připravuje se přímou reakcí kovového čínu s chloridem.

\(\text{Oxid cínový} \text{SnO}_2 \) se vyrábí spalováním kovového čínu v proudu vzdachu. Používá se do glazur a smaltů a je součástí lečicích past pro průmyslové účely.

Sloučeniny cínaté jsou používány především pro hliníkové a stříbrové slitiny.

Velmi významně je oxid germanátový olova. \(\text{Oxid germanátový PbO}_2 \) se vyrábí oxidací kovového olova vysuňováním kyslíkem a vzniká též jako vedlejší produkt v metalurgii některých účelů, kovů. Je meziproductem při výrobě \(\text{Pb}_3\text{O}_4 \) a užívá se i k výrobě některých dalších antikorozně působících pigmentů, olovnatých skel a glazur.

\(\text{Oxid olovnatý PbO}_2 \) obsahuje olovo v olovnatých stavech II a IV. Nejčastěji se vyrábí oxidaci PbO vysuňováním kyslíkem při teplotách kolem 500 °C. Je významným pigmentem při vzniku antikorozivních olovnatých nátěrů železa a ocelí.

\(\text{Oxid olovnatý PbO}_2 \) lze vyrábět rozpouštěním \(\text{Pb}_3\text{O}_4 \) v kyselině dusičné podle reakce

\[
\text{Pb}_3\text{O}_4 + 4 \text{HNO}_3 \rightarrow \text{PbO}_2 + 2 \text{Pb(NO}_3)_2 + 2 \text{H}_2\text{O}
\]

nebo oxidací hydroxidu olovnatého chloru nebo chlornanu:

\[
\text{Pb(OH)}_2 + \text{ClO}^- \rightarrow \text{PbO}_2 + \text{Cl}^- + \text{H}_2\text{O}
\]

Sloučen olova a oxid olovnatý jsou komponentami elektřiny v olovnatých akumulátorůch.

Děje probíhající na anodě,

\[
\text{PbO}_2 + \text{H}_2\text{SO}_4 + 2 \text{H}_2\text{O}^- + 2 \text{e}^- \rightarrow \text{PbSO}_4 + 4 \text{H}_2\text{O}
\]

a na kathodě,

\[
\text{Pb} + \text{SO}_4^{2-} \rightarrow \text{PbSO}_4 + 2 \text{e}^-
\]

jsou přičinou vzniku rozdílu potenciálu na elektrodech a zdrojem proudu elektronů tekoucích vnitřním okruhem při vybíjení akumulátorů. Při nabíjení akumulátoru probíhají obě reakce opačným směrem.

Z dalších sloučenin olova jsou dále určitě především ty, které se používají jako pigmenty — olovnatá běloba \(\text{Pb(OH)}_2 \), PbCO\(_3 \), chromová žlut \(\text{PbCrO}_6 \), Turnbullova žlut \(\text{PbCl}_2 \), PbO a j. aj.

Rozšířená je výroba tetraethylalu Pb[C\(_2\)H\(_4 \)]_4, jehož potřeba je důležitá v etylalumínia a jeho využití v olověných akumulátorových úpravách.
nebezpečným používáním jako antidetonanční příspěvky do paliva pro velmi výkonné benzínové motory. Vyrábí se působením ethylchloridu na slitinu olova se sodíkem

\[\text{Pb} + 4 \text{Na} + 4 \text{C}_2\text{H}_4\text{Cl} \rightarrow \text{Pb}[(\text{C}_2\text{H}_4)_4] + 4 \text{NaCl} \]

nebo elektrolýzou etherického roztoku ethylmagnesiumchloridu za použití olověné anody.

24.5 ARSEN, ANTIMON A BISMUT

Arsen, antimon a bismut jsou spolu s nekovy dusíkem a fosforem členy skupiny 3B periodického systému. Mají ve valenční sferé pět elektronů. *Elektronová konfigurace* valenční sféry je proto \(n^2 n^p \). Stejně jako je tomu u galílie, índia, thallia, germania, cín u olově, jsou i pod jejich valenčními sférami zaplněné orbitály \((n-1)d \). Proto se i u arsenu, antimonu a bismutu uplatňuje efekt inertního elektronového páru.

Kovový charakter prvků vzrůstá od arsenu k bismutu. Na chování a vlastnostech těchto prvků, zejména v elementárním stavu, je vidět, že se v periodickém systému vyskytují na hranici mezi kovy a nekovy. Arsen vytváří nestálou modifikaci žluté barvy, jejíž krystalová struktura je tvořena molekulami \(\text{As}_4 \), a obdobjem je tomu i u antimonu. Převyšují se tak nekovové vlastnosti obou prvků. Stálé modifikace všech tří prvků mají sice kovový charakter, ale i jejich elektrická vodivost je postupně menší, než je u kovů obvyklé. Svědčí to i o omezené delokalizaci vazeb v jejich krystalových strukturách. Ve sloučeninách se neuvyhrazenost kovového charakteru těchto prvků projevuje malou iontovostí vytvářených vazeb a u obou lehčích prvků sníženou bazicitou jejich oxidů.

Vazebné možnosti atomů As, Sb a Bi

Shodně s prvkými skupinami 3B a 4B a ze stejných důvodů se i u atomů arsenu, antimonu a bismutu uplatňuje efekt inertního elektronového páru a existuje možnost jejich stabilizace na elektronovou „osmnáctku“ nebo „dvacetku“. Jsou u nich proto reálné oxidaci stavy III a V. Opět i zde platí, že čím je atom prvku těžší, tím ochotněji zachovává inertní par \(n^2 \) a tím běžnější a stablnejší je jeho oxidaci stavy III. Tuto skutečnost, spolu s elektronovými konfiguracemi atomů As, Sb a Bi v oxidaci stavech III a V, uvádí tab. 24.5.

<table>
<thead>
<tr>
<th>Prvek</th>
<th>Oxidační stav III</th>
<th>Oxidační stav V</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>([\text{Ar}], 3d^{10}, 4s^{2} = [\text{Zn}]) stabilní</td>
<td>([\text{Ar}], 3d^{10} = [\text{Ni}]) stabilní</td>
</tr>
<tr>
<td>Sb</td>
<td>([\text{Kr}], 4d^{10}, 5s^{2} = [\text{Cd}]) stabilní</td>
<td>([\text{Kr}], 4d^{10} = [\text{Pd}]) stabilní</td>
</tr>
<tr>
<td>Bi</td>
<td>([\text{Xe}], 4f^{14}, 5d^{10}, 6s^{2} = [\text{Hg}]) velmi stabilní</td>
<td>([\text{Xe}], 4f^{14}, 5d^{10} = [\text{Pt}]) velmi neslabilní</td>
</tr>
</tbody>
</table>

Tabulka 24.5: Elektronové konfigurace atomů As, Sb a Bi v oxidaci stavech III a V

Atomy As\(^{III}\), Sb\(^{III}\) a Bi\(^{III}\), pokud vytvářejí molekuly jednoduchých sloučenin, zapojují do tvorby vazeb své orbitály \(n \) a \(n \) (hybridizace SP\(^2\)). Vazby jsou v prostoru rozmišeny tetraedricky\(^1\).

\(^1\) U hydrádu tvar molekule MeH\(_3\) spíše odpovídá prostoru pětikrytu orbitálů a srovnávat s pětikrytem. Orbitály a s pětikrytem atomu v kombinaci s vazbami H-As-H v molekule AsH\(_3\), je blízko pravému.
Pokud je středový atom Me^{III} koordinován jenom třemi vazebnými partnery, vzniká pyramidální struktura molekuly, neboť jedna z tetraédrických poloh je obsazena nevazebným elektronovým párem. Příkladem tohoto uspořádání jsou molekuly kovalentních halogenidů typu MeY₃ (obr. 24-6a) nebo oxoanionty, popř. thioanionty typu MeO₃⁻ (obr. 24-6b). V některých případech, v získavosti na druhu vazebného partnere, je trojice vazeb provázena slabou interakcí π, vyvolanou uplatněním překrytu orbitalů na středovém atomech s obsazenými nevazebnými orbitály na koordinujících atomech. Příkladem je struktura aniontu AsO₄^{3−} (obr. 24-6c).

Stejné uspořádání vazeb lze předpokládat u četných oligomerních nebo polymerových sloučenin kovů skupiny 5B, vystavěných z tetraédrických strukturálních jednotek, z nichž jedna poloha je obsazena nevazebným elektronovým párem. Příkladem je struktura dimeru molekuly As₂O₅, obdobná struktuře P₂O₅ (obr. 24-6d).

Jiná situace vzniká, když atomy Me^{II} mají nižší koordináční číslo, nejčastěji 3. Vazba pak objasňujeme prostou přestavbou účasti orbitalů na a np středového atoma. Čtverice tetraédricky uspořádaných vazeb π je potom většinou provázena delokalizovanou interakcí π orbitalů na středovém atomu s nevazebnými elektronovými páry ligandů. Příkladem je anion arseničanovaný AsO₄^{3−} (obr. 24-6f).

Poměrně charakteristická je pro atomy As, Sb i Bi schopnost vytvářet vazby kov–kov
a poměrně pevné vazby kov—ublik. To se projevuje existenci velmi rozsáhlé skupiny organokovových sloučenin. Jsou známy sloučeniny s lineárními, větvenými i cyklickými řetězci, v nichž se střídají atomy kovů (nejčastěji As) s jinými prvky (kyslíkem, sírtem) a mimo to jsou přítomny vazby kov—kov. Tak vznikají dokonce molekuly se stoichiometrií, která následuje nebesným oxidaciím stavům atomů kovů. Je tomu tak v sloučenině As₂S₄, kde arsenu formálně přísluší oxidacioní stav II., nebo ve sloučenině As₂S₃ (obr. 24-7), ve které přítomnost tři vazeb As—As vede ke zlomkové hodnotě oxidacioního čísla arsenu. Ve skutečnosti je v těchto sloučeninách na jednotlivých atomech arsenu uspořádání vazeb stejné jako např. v molekule AsCl₃.

![Obr. 24-7. Uspořádání vazeb v molekulách: a) As₂S₄, b) As₂S₃.](image)

Kovy skupiny 5B tvoří i některé sloučeniny s kovy vysloveně elektropozitivně. Arsen, antimon a bismut v nich přizpůsobí oxidacioní stav — III. Vlastnosti těchto látek však svědčí o tom, že v jejich struktuře se nejvíce uplatňuje kovová vazba.

- **Chemické vlastnosti arsenu, antinonu a bismutu**

Nejvýznamnější bod tání v této skupině prvku má její nejlepší člen — arsen. Skutečné je však nejvážnější problém v zvuku, jehož se jedná o oxidaci, které se zvolna odsazuje. Spalováním kovů v zvuku se v případě sloučenin získávají oxid arsenití As₄O₄, antimon podle podmínek reakce dává buď Sb₂O₅ nebo (Sb₂O₅)ᵢ, obsahující jak Sb⁰, tak i Sb⁵⁻, a bismut opět poskytuje pouze nižší oxid Bi₃O₅.

Všechny tři prvky se oxidují a nechávají s nekory na běžné sloučenině. Vážná část těchto reakcí vede ke vzniku oxidace arsenu, antinonu a bismutu v oxidacioní stavu III. U arsenu se antinonu a bismutu se mohou při přijetí nekory a vhodných oxidaciích podmínek tvoří sloučeniny As⁵⁺ a Sb⁵⁻.

Kovy skupiny 5B jsou pro svou použitelnost u se využívání dojčí a v polové rozložení kyselin, zásad i k samotné vodě. V oxidujících kyselinách, např. v kyselině dusičné nebo v koncentrované kyselině sírové, se za horka rozpouštějí:

\[
\begin{align*}
3 \text{As} + 5 \text{HNO}_3 + 2 \text{H}_2\text{O} & \rightarrow 3 \text{H}_3\text{AsO}_4 + 5 \text{NO} \\
2 \text{As} + 3 \text{H}_2\text{SO}_4 & \rightarrow 2 \text{H}_3\text{AsO}_3 + 3 \text{SO}_2 \\
3 \text{Sb} + 4 \text{HNO}_3 & \rightarrow 3(\text{SbO}_2)_\text{H} + 4 \text{NO} + 2 \text{H}_2\text{O} \\
\text{Bi} + 4 \text{HNO}_3 & \rightarrow \text{Bi}(\text{NO}_3)_2 + \text{NO} + 2 \text{H}_2\text{O} \\
2 \text{Bi} + 6 \text{H}_2\text{SO}_4 & \rightarrow \text{Bi}_2(\text{SO}_4)_3 + 3 \text{SO}_2 + 6 \text{H}_2\text{O}
\end{align*}
\]

Kovy skupiny 5B se nerazou rozpouštějí v roztocích alkaličních hydroxidů, pokud nejsou přítomna vhodná oxidovadla. Avšak při styku kovového arsenu se silně koncentrovaným vrocin
roztokem KOH postačuje přítomnost vzdušného kyslíku, aby rozpouštění zvolna probíhalo. Za přítomnosti chlornanu má reakce spontánní charakter a elementární As je oxidován až na arseničnan:

$$2 \text{As} + 5 \text{NaClO} + 6 \text{NaOH} \rightarrow 5 \text{NaCl} + 2 \text{Na}_2\text{AsO}_4 + 3 \text{H}_2\text{O}$$

- **Sloučeniny arsenu, antimonu a bismutu**

Jako již bylo naznačeno, jsou oxid arsenité a oxid arsenitní amfoterlní látky výraznější kyselé povahy. Rozpouštějí se dobře v roztocích hydroxidů alkalických kovů za vzniku arsemitanů a arseničnanů:

$$\text{As}_2\text{O}_6 + 12 \text{OH}^- \rightarrow 4 \text{AsO}_4^{3-} + 6 \text{H}_2\text{O}$$

$$\text{As}_2\text{O}_3 + 6 \text{OH}^- \rightarrow 2 \text{AsO}_4^{3-} + 3 \text{H}_2\text{O}$$

Oxid arsenity se částečně rozpouští i v vodě, kyslejší oxid arseničný je ve vodě dokonale dobře rozpustný.

V silné kyselých roztocích sloučenin As(V) předpokládáme vznik hydraturanu kationtu As$^{3+}$:

$$\text{As}_2\text{O}_6 + 12 \text{H}_2\text{O}^+ \rightarrow 4 \left[\text{As(H}_2\text{O})_6\right]^{3+} + (18 - 4x) \text{H}_2\text{O}$$

V kyselých roztocích soli As(V) je přítomna volná kyselina arseničná H$_2$AsO$_4$. Soli arsenité i soli arsemitní podléhají ve vodních roztocích hydrolyze. Produktem hydrolyzy jsou oxocomplexy a hydroxokomplexy. Příkladem je hydrolyza kationtu As$^{3+}$, která přes mezipodobé vede v alkalickém prostředí až k arsemitanovému iontu:

$$\text{As}^{3+} + 9 \text{H}_2\text{O} \rightarrow \left[\text{AsO}_4(\text{OH})_6(\text{H}_2\text{O})_a\right]^{1-} + 3\text{H}^+ \rightarrow \text{AsO}_4^{3-} + 6 \text{H}_2\text{O}$$

Oxidy antimonu – ačkoliv jsou oba amfoterlní – jsou jen méně kyselé, přičemž oxid antimonité je samozřejmě kyslejší než oxid antimonitý. Oba oxidy jsou ve vodě nerozpuštěné.

Oxid antimonité poskytuje vytažením s hydroxidy alkalických kovů hexahydroxoaantimonit：“typy:

$$\text{Sb}_2\text{O}_4 + 2 \text{NaOH} + 5 \text{H}_2\text{O} \rightarrow 2 \text{Na}[\text{Sb(OH)}_6]$$

Soli antimonité se vodou silně hydrolyzují za vzniku málo rozpustných oxid-solí:

$$\text{Sb}_3\text{Cl}_4 + \text{H}_2\text{O} \rightarrow \text{SbOCl} + 2 \text{HCl}$$

$$4 \text{SbOCl} + \text{H}_2\text{O} \rightarrow \text{Sb}_4\text{O}_5\text{Cl}_2 + 2 \text{HCl}$$

Konečným produktem hydrolyzy v alkalickém roztoku je oxid antimonitý, je rozpustný v koncentrovaných roztocích hydroxidů alkalických kovů za tvorby antimonitanů SbO$^{4-}$.

Také soli antimonité se hydrolyzují a mimo to jsou tepelně nestále a působí silně oxidantně. *Oxid bismutitý* již nemá kyselé vlastnosti a není amfoterlní. Dobře se rozpouští v kyselinách za vzniku soli bismutitých. Sklon k hydrolyze je u těchto soli značný. Troji soli oxid-bismutitý v alkalickém roztoku je konečným produktem hydrolyzy Bi(OH)$_3$. Hydroxid bismutitý nemá amfoterlní charakter, nerozpuští se v roztocích hydroxidů alkalických kovů, ale zato je dobře rozpustný v kyselinách.

Oxidační suspenze Bi(OH)$_3$ v alkalickém vodním roztoku silnými oxidantními činidly (nejlépe chlorem nebo chlornanem) nebo oxidaci Bi$_2$O$_3$ peroxidem sodným v tavenině lze připravit bismutitánky:

$$\text{Bi(OH)}_3 + 3 \text{NaOH} + \text{Cl}_2 \rightarrow \text{NaBiO}_3 + 2 \text{NaCl} + 3 \text{H}_2\text{O}$$

$$\text{Bi}_2\text{O}_3 + 2 \text{Na}_2\text{O}_2 \rightarrow 2 \text{NaBiO}_3 + \text{Na}_2\text{O}$$

502
Bismutičany jsou jediné poměrně stálé sloučeniny bismutu v oxidacičním stavu V. Mají velkou snahu redukovat se na soli bismutičitě, a jsou tedy velmi silným oxidacičním prostředkem.

Halogenidy kovů skupiny 5B jsou látky s polárně kovalentními vazbami. Mnohé z nich mají molekulární strukturu, a jsou proto značně těkavé. Oxidačním stavům III a V středových atomů těchto sloučenin odpovídají stehiometrické vzorce typu MeY₃ a MeY₅. Existují však i jiné halogenidy, např. typu Me₂Y₄ s vazbou Me—Me.

\[
\begin{align*}
\text{BiI}_3 + \text{I}^- & \rightarrow [\text{BiI}_4]^-
\\
\text{AsF}_3 + 3 \text{F}^- & \rightarrow [\text{AsF}_6]^- \\
\text{AsF}_5 + \text{F}^- & \rightarrow [\text{AsF}_6]^-
\end{align*}
\]

Tyto halogenokomplexní ionty ovšem mohou vznikat i z jakýchkoli jiných solí a halogenidových iontů, např.

\[
\text{Bi}^{3+} + 4 \text{Br}^- \rightarrow [\text{BiBr}_4]^-
\]

Halogenokomplexy se tvoří také v taveninách příslušných sloučenin, zde se však tvoří i komplexní ionty se složitější polyjaderou strukturou:

\[
\text{CsF} + 2 \text{SbF}_3 \rightarrow \text{Cs}[\text{Sb}_2\text{F}_7]
\]

Z *chalkogenidů* kovu skupiny 5B jsou nejběžnější *sulfidy*. Arsen a antimon tvoří sulfidy v obou svých hřídelích oxidacičních stavech, tedy typ Me₂S₃ a Me₂S₅. Bismut jen Bi₂S₃. Všechny tyto sulfidy jsou ve vodě nerozpustné.

Zlatý *sulfid arsenit* se využívá z kyselých vodních roztoků arsenitních solí srážením sulfanem. Lze jej připravit též přímou syntézou z prvků. Jeho struktura je tvořena molekulami As₄S₆ vystavěnými obdobně jako molekuly P₂O₅.

Sulfid antimonit lze také připravit z vodních roztoků antimonitních solí srážením sulfanem jako oranžovou, ve vodě nerozpustnou látkou. Připraví-li se Sb₂S₃ syntézou z prvků, je čedočný. Krystalová struktura sulfidu antimonitního obsahuje lineární řetězce složené se atomů Sb a S.

Pro sulfid arsenitní i sulfid antimonitní je charakteristická jejich rozpustnost ve vodních roztocích sulfidů a polysulfidů alkaličních kovů

\[
\begin{align*}
\text{As}_3\text{S}_3 + 3 \text{S}^{2-} & \rightarrow 2 \text{AsS}_2^- \\
\text{Sb}_2\text{S}_3 + 3 \text{S}^{2-} & \rightarrow 2 \text{SbS}_2^- + (3x - 5)\text{S}
\end{align*}
\]

a v roztocích hydroxidů:

\[
\text{As}_3\text{S}_3 + 6 \text{OH}^- \rightarrow \text{AsO}_3^{3-} + \text{AsS}_2^{2-} + 3\text{H}_2\text{O}
\]

Sulfid arsenitní a *sulfid antimonitní* se připravují vyloučením z vodních roztoků soli As⁶⁺ a Sb⁷⁺ sulfanem nebo lepe oksidováním roztoku thioarsénianů a thioantimonianů:

\[
2\text{SbS}_4^{2-} + 6\text{H}_3\text{O}^+ \rightarrow \text{Sb}_2\text{S}_3 + 3\text{H}_2\text{S} + 6\text{H}_2\text{O}
\]

Poměrně snadno podléhají rozkladu na nižší sulfidy a síru.
Zmínění jsou se již o struktuře a uspořádání sulfidů s vazbami kov—kov, např. As₂S₃—
As₅S₅, jež jsou obdobou struktury sloučeniny S₃N₄.

Jednou sulfid bismutitý se v roztocích sulfidů a polysulfidů alkalických kovů nerozpuští.

Kovové skupiny 5B vytvářejí velmi rozšířenou řadu sloučenin s názvem organosulfidové sloučeniny. Jsou to většinou látky molekulární, typu RₗRₘMeₙYₙ, dále pak iontové soli (tzv. anionové soli) typu [RₚRₗMeₙ]⁺ Y⁻ nebo [RₚRₘHMeₙ]⁺ Y⁻, které jsou analogie solí amoníkových a fosfónových. Bezpečně jsou i organosulfidové sloučeniny s vazbami kov—kov a řada dalších. Arsen a antimon tvoří též organosulfidové sloučeniny RₗRₘMeₙ a RₚRₘMeₙ (m + n = 5) a jejich další deriváty.

Sloučeniny arsenu a antimonu lze obecně označit jako jedovaté. Některé nalezly uplatnění v lékařství. Rozsáhlé upotřebení mají sloučeniny arsenu jako herbicidní a fungicidní prostředky.

- **Výroba a použití technicky významných sloučenin arsenu, antimonu a bismutu**

Všechny tři kovy mají poměrně velké použití v elementární formě jako slitiny (s olovem, cínem). Mimořádný význam mají již uvedené sloučeniny arsenu a antimonu s kovy skupiny 3B v oblasti polovodičové techniky.

Oxid arsenitu se získává pražením arsenových rud při 700 °C:

$$4 \text{FeAsS} + 10 \text{O}_2 \rightarrow 4 \text{As}_2\text{O}_5 + 2 \text{Fe}_2\text{O}_3 + 4 \text{SO}_2$$

Těžký jedovatý oxid se přitom zachaute v usazovacích komorách nebo v elektrostatickém odlučovači. Čistí se sublimací. Používá se k výrobě dalších sloučenin arsenu ve sklářství a při výrobě kovového As.

Významnými insekticidy a fungicidy je arsenit vápenatý a arsenit trišodný. Prvý z nich se vyrábí reakcí As₂O₅ s Ca(OH)₂ v akvém formě tzv. „vápenitého mléka“

$$\text{As}_2\text{O}_5 + 2 \text{Ca(OH)}_2 \rightarrow 2 \text{Ca(AsO}_2\text{)}_2 + 2 \text{H}_2\text{O}$$

a druhý reakcí

$$\text{As}_2\text{O}_5 + 6 \text{Na}_2\text{CO}_3 \rightarrow 4 \text{Na}_3\text{AsO}_4 + 6 \text{CO}_2$$

Stejně používají má i tzv. svíniovodská zeleň, smíšená stěl o složení 3Cuₐ(AsO₃)₂ₐCu(CH₃COO)₃, dříve užívaná jako pigment. Vyrábí se reakcí roztoku arsenitanu sodného s roztokem oktanu sodného a síranu měďnatého:

$$6 \text{NaAsO}_3 + 2 \text{CH}_₃\text{COONa} + 4 \text{CuSO}_4 \rightarrow 3 \text{Cu(AsO}_2\text{)}₂ₐ\text{Cu(CH₃COO)}₃ + 4 \text{Na}_2\text{SO}_4$$

Jako insekticidy se uplatňují i další sloučeniny — diarseničan-dihydroxid vápenatý Ca₃(AsO₄)₂ₐCa(OH)₂, arsenučan sodný Na₃AsO₄ a arsenučan olovnatý Pb₆(AsO₄)₂ₐ.

Ze sloučení antimonu je průmyslově využíván SbF₅ k fluorování organických látek (používají se i smíšené halogenidy Sb₅FₓClₐ aj.). Sb₂S₃ k vulkanizaci kauciuku a Sb₂S₃ ve sklářství (rubínové sklo) a při výrobě zápalu.

K významnějším sloučeninám bismutu patří jen Bi₂O₃, využívaný ve sklářství při výrobě optických skel s velkým indexem lomu a v keramice jako komponentu glazur. Některé další sloučeniny bismutu se uplatňují v lékařství.

¹) Symbole R a Y mají stejný význam, v jakém byly použity při výkladu o organosulfidových sloučeninách germania, cínu a olovu.
25 Koordinační sloučeniny

Pojem koordinační sloučeniny byl v chemii zaveden až v 19. století, ačkoliv některé z těchto látek se již dávno předtím používaly v průmyslové výrobě i v experimentální chemii. Tepře zjištění jejich přesného stehomiетrického složení a studium jejich vlastností přispělo k všeobecněmu uznání existence tohoto druhu látek. Koordinační sloučeniny se v té době nazývaly *naímolekulární* nebo *komplexní* (druhý název se užívá dodnes, neboť jejich stehometrie se zdala nesvědčit tomu, že jde o adukty dvou nebo více jednoduchých látek¹). Lze se o tom přesvědčit u libovolné koordinační sloučeniny formálním rozepsáním jejího vzorce na vzorce jednoduchých sloučenin, např.

\[
\begin{align*}
\text{Cu(NH}_3\text{)}_4\text{SO}_4 &= \text{CuSO}_4 + 4 \text{NH}_3 \\
\text{Co(NH}_3\text{)}_6\text{(H}_2\text{O})_2\text{F}_3 &= \text{CoF}_3 + 4 \text{NH}_3 + 2 \text{H}_2\text{O} \\
\text{Na}_3\text{[AlF}_6\text{]} &= 3 \text{NaF} + \text{AlF}_3 \\
\text{K}_4\text{[Fe(CN)}_6\text{]} &= 4 \text{KCN} + \text{Fe(CN)}_2
\end{align*}
\]

Počáteční rozvoj chemie koordinačních sloučenin je spojen se jménem A. Werner (1861–1919) a jeho spolupracovníků. Werner, aby objasnil příčiny existence koordinačních sloučenin, jejich složení a stabilitu, opustil představu o úplném vysycení valenčních sil atomu vazbou s takovým počtem částic, který odpovídá jeho „mocenství“, a zavedl pojem tzv. *valuejších valencí*. I když se později ukázalo, že i tato koncepce je nesprávná, umožnila ve své době vypracovat velmi plodnou teorii koordinačních sloučenin, shromáždít a kriticky zhodnotit ohromné množství experimentálního materiálu o chemických a fyzikálních vlastnostech těchto látek a v hlavních rysech objasnit jejich vnitřní strukturu. Velmi rychle se koordinační chemie rozvinula v důsledku intenzivní práce řady dalších experimentátorů a teoretiků v prvé polovině dvacátého století.

S moderním pohledem na tuto poměrně mladou, zajímavou a teoreticky i prakticky velmi významnou oblast chemie se seznáme v této kapitole.

25.1 ZÁKLADNÍ PŘEDSTAVY A POJMY V KOORDINAČNÍ CHEMII

Jedním ze spoolečných znaků struktury všech koordinačních sloučenin je přítomnost atomových skupin, v nichž jsou atomy všechny měně pevně vzájemně poutány a některá z pojetí mají

¹) Nazývaly se též sloučeniny II. řádu. Jednoduché látky byly považovány za sloučeniny I. řádu.
charakter donor-akceptorových vazeb. Tyto atomové skupiny obsažené v koordinačních sloučeních se nazývají komplexní (koordinační) částice.

Pro tyto komplexní částice je přizpůsobeno, že si vždy lze představit jejich vznik koordinačním procesem, tvořenou donor-akceptorovými vazebi. Případně představa u naprosté většiny reálných komplexních částic odpovídá skutečné cestě jejich vzniku. Například ve vodných roztocích čtyři jednoděložné ionty vytvoří čtverce donor-akceptorových vazeb s kationtem bismutitým dávají vzniknut komplexnímu iontu tetrajodobismutitanovému:

\[
\text{Bi}^{3+} + 4 \text{l}^- \rightarrow \left[\text{BiI}_4 \right]^{-}
\]

Nebo v obdobně situaci dvě molekuly 1,2-ethandiaminu koordinovala ion měďnatý poskytují komplexní kation bis(1,2-ethandiamin)měďnatý:

\[
\text{Cu}^{2+} + 2 \text{NH}_2\text{CH}_2\text{CH}_2\text{NH}_2^- = \left[\text{CH}_2\text{NH}_2\text{CH}_2\text{Cu}\text{CH}_2\text{NH}_2\text{NH}_2\text{CH}_2\text{NH}_2 \right]^{2+}
\]

Jestliže určitě uskupení atomů vzniká koordinačním procesem, jsme obvykle očekáváno za komplexní částicí a sloučeninu, která tyto komplexní částice obsahuje, označit v řístem slova smyslu za sloučeninu koordinační. Koordinační však mohou vznikat i některé jednoduché sloučeniny. Hranice mezi jednoduchými a koordinačními sloučeninami se proto takovou definici posouvat daleko do oblasti jednoduchých sloučenin a definuje koordinační sloučeniny příliš široce. Historicky se pojmy komplexní částice a koordinační sloučeniny vymežily a jsou v dnešní chemii chápany poněkud širšě. Případně přesně specifikované tyto pojmy nejsou.

V doběm, nikoli však úplněm souladu s tradicí můžeme podobně pojmenovat a definovat, která jako komplexní částice označuje útvar, který splňuje tyto dva předpoklady:

1. vytvořil se koordináci,
2. mezi jeho středovým atomem a obklopujícími jej uskupeními atomů je větší počet donor-akceptorových vazeb, než činní hodnota oxidace čísla tohoto atomu.

Podle této definice ve čtvercích analogických částic se středovými atomy z tří tří periody

\[
\text{[AlF}_6^{3-}, \text{[SiF}_4^{2-}, \text{[PF}_6^{-}\text{SF}_6
\]

je hranice mezi komplexní a prostou částicí za třemi členem této řady. [AlF}_6^{3-}, \text{[SiF}_4^{2-} a \text{[PF}_6^{-}\text{vyhovují definici komplexní částice, neboť většiny mohou vznikat koordináci (např. Al}^{3+} + 6\text{F}^- = \text{[AlF}_6^{3-}) a počet donor-akceptorových vazeb, všech těchto částic rovný čtyři, je větší než oxidace čísla středových atomů Al}^{3+}, \text{Si}^{4+} a \text{P}^{3+}. U \text{SF}_6 tyto podmínky splněny nejsou.

Uvedená definice však může v některých případech do jistí míry sjednat. Dimerní molekula chloru hlinítkového AlCl₂ ma kolen obou atomů Al}^{3+} čtvrtce donor-akceptorových vazeb (str. 137) a také představa vzniku této molekuly např. v případe vzájemnou koordinací dvou monomerních molekul AlCl₂ je reálná:

\[
\text{Al} + \text{Al} \rightarrow \text{Al} \rightarrow \text{Al} \rightarrow \text{Al}
\]
Přesto jsou náknělení molekulu Al₂Cl₆ obvykle neoznačovat jako klasickou komplexní částicí ve smyslu historicky vzniklé kategorie.

- **Komplexní částice**

Ve struktuře koordinačních sloučenin zastávají komplexní částice buď úlohu elektropozitivní stavební jednotky — *komplexního kationtu*, nebo úlohu elektronegativní stavební jednotky — *komplexního aniontu*. Je ovšem též zcela běžné, že v koordinační sloučenině má komplexní charakter kation i anion nebo je koordinační sloučenina vystavěna z *nenabitéch komplexních částic* — molekul.

Příkladem koordinační sloučeniny s komplexním kationtem¹ je sran tetraamminměďnatý \([\text{Cu(NH}_3)_4]\text{SO}_4\), vystavěný z komplexních kationtů \([\text{Cu(NH}_3)_4]^{2+}\), majících planární strukturu, a z aniontů \(\text{SO}_4^{2-}\), které označujieme jako *ionty kompenzující* („kompenzuje“) kladný náboj kationtů; jejich přítomnost je nezbytným předpokladem pro vznik elektroneutrální látky (obr. 25-1a).

Typickou koordinační sloučeninou s komplexním aniontem je např. hexakynoželeznatý draselý \(\text{K}_3[\text{Fe(CN)}_6]\). Kompenzujícími ionty jsou kationty draselné \(\text{K}^+\) a charakter komplexní částice má oktaedricky uspořádaný anion hexakynoželeznatovanový \([\text{Fe(CN)}_6]^{4-}\) (obr. 25-1b).

Koordinační sloučenina tetrachloroměďnatý tetraamminplatnatý \([\text{Pt(NH}_3)_4][\text{CuCl}_4]\) je tvořena planárními komplexními kationty \([\text{Pt(NH}_3)_4]^{2+}\) a tetraedrickými anionty \([\text{CuCl}_4]^{2-}\) (obr. 25-1c). Kompenzující ionty nejsou přítomny stejně jako u další koordinační sloučeniny, diamin-dibromopalladátového komplexu \([\text{Pd(NH}_3)_2\text{Br}_2]\), která je vystavěná z nenabitéch komplexních částic (obr. 25-1d).

Elektronevá strukturální vzorce na obr. 25-1 jsou upraveny tak, aby poskytovaly obrázek i o geometrii uvedených komplexních částic.

- **Skladba komplexních částic**

V určitém zjednodušení, jehož podstata vyplýne z pozdějšího výkladu, lze říci, že středové atomy v komplexních částicích mají charakter akceptorů, jsou obklopeny atomy donorového

¹) Částice komplexního charakteru se ve vzorcí koordinační sloučeniny uvádějí obvykle v hranatých závorkách.

507
Charakteru a použijí se s nimi donor-akceptorovou vazbu. Ve fungci středových atomů vystupují nejčastěji atomy kovů, ale i atomy polokovů a nekove. Oxidační stav středového atomu bývá běžně kladný, méně obvyklý je oxidační stav nulový nebo záporný.

Atomy donorového charakteru se krátce nazývají donorové atomy. Bud samy o sobě, nebo ve spojení s dalšími atomy přítomnými v komplexní částici tvoří uskupení známé lidgandy. To jsou molekuly nebo ionty (vzemý schopné samostatné existence), které koordinovaly na středový atom vytvořily komplexní částici.

Podle toho, kolik donorových atomů je přítomno v jediném ligandu, rozlišujeme ligandy jednodonorové, dvoudonorové a vícedonorové.

Jestliže dvoudonorový a vícedonorový ligand vytvoří komplezní částici a jeho donorové atomy jsou použity k jedinému středovému atomu, nazývá se vzniklá komplexní částice chelát. Středový atom, donorové atomy a zbytek atomy ligandu přitom vytvářejí cyklus.

Je-li donorový atom určitého liganda použit dvěma donor-akceptorovými vazbami ke dvěma středovým atomům anebo je-li dvoudonorový ligand každým donorovým atomem potržen k jinému středovému atomu, vzniká tzv. místkové uspořádání. Ligand takto použitý se nazývá místkový.

Vzniklý komplexní částice musí být v takovém případě vždy nejméně dvoujednárné.

Jestliže se vzniklý komplexní částice s přímým vazebním spojením mezi středovými atomy. Pokud ve funkci středových atomů vystupují atomy kovů, hovoříme o komplexních částicích s vazbou kat—kon. V některých případech může být v centrální oblasti komplexní částice přítomno seskupení tří i více vzájemně vázaných atomů kovů. Útvary tohoto typu se nazývají klastry.

Neobyklé jsou uspořádání některých komplexních částic, v nichž nejsou přesně specifikovány donorové atomy. Osa donor-akceptorové vazby ligandu a středového atomu sice prochází středovým atomem, ale v ligandu nesměřuje přímo k určitému atomu.

Pokud jsou donorové atomy v komplexní částici specifikovány, lze si vždy představit, že vymrzují v prostoru geometrický tvar, kterému se říká koordinační polyedr, který středový atom. Počet vrcholů tohoto polyedru je dán počtem donorových atomů a s ohledem na počet donor-akceptorových vazeb tvořených mezi středovým atomem a ligandy; tento počet se nazývá koordinační číslo středového atoma. Pokud je ve všeobecné částici přímé pojištěno mezi středovými atomy (vazba kov—kov), započítává se i tato vazba do hodnoty koordinačního čísla a dokonce se formálně používá termín donorový atom i pro tyto atomy prvků.

Koordinační číslo většiny komplexních iontů jsou 4 nebo 6. Méně běžná jsou čísla 1, 2, 3, 5, 7 a 8. Jiné, větší hodnoty koordinačních čísel jsou zcela neobyklé.

Ideální tvary nejběžnějších koordinačních polyédru, odpovídajících jednotlivým hodnotám koordinačních čísel, jsou uvedeny v tab. 25-I. Z tabulky je vidět, že jednotlivým koordinačním číslem odpovídá několik koordinačních polyédru.

Realiz koordinační polyédry v koordinačních sloučeninách bývají deformovány. Často proto, že vrcholy polyédru nejsou obsazeny ekvivalentními donorovými atomy (tj. atomy téhož prvku ve stejném oxidačním stavu a v též vazebně situaci). Jinak by mohlo být způsobeno tím, že komplexní částice byla deformována při zahedování do krystalové mřížky, nebo si deformaci vynutila potřebně vazbena situace ve sloučenině.

Soubor liganů koordinovalých na určitý středový atom tvoří koordinační síťu středového atomu. Síť může být buď homogenní, jsou-li všechny donorové atomy ekvivalentní, nebo nehomogení, jestliže k středovému atomu jsou koordinovaly neekvivalentní donorové atomy.

1) Z řeckého chelos = klepečto.
2) Z anglického cluster = chomáč, roj, hnízdo.
<table>
<thead>
<tr>
<th>Koordinační číslo</th>
<th>Tvar polyedru</th>
<th>Lineární</th>
<th>Lomený</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>lineární</td>
<td>lomený</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>trignon (trojúhelník)</th>
<th>trigona lápna pyramida</th>
</tr>
</thead>
<tbody>
<tr>
<td>tetraedr</td>
<td>tetraedr (čtverec)</td>
</tr>
<tr>
<td>trignon lápna bipyramida</td>
<td>tetragina lápna pyramida</td>
</tr>
<tr>
<td>tetragona lápna bipyramida</td>
<td>oktaedr</td>
</tr>
<tr>
<td>trigona lápna antiprizma</td>
<td>trigona lápna antiprizma</td>
</tr>
<tr>
<td>pentagonální lápna bipyramida</td>
<td>deformovacné trigona lápna prizma</td>
</tr>
</tbody>
</table>

| krychle | tetragona lápna antiprizma |

509
<table>
<thead>
<tr>
<th>Geometrický vzorec</th>
<th>Charakteristika*</th>
</tr>
</thead>
</table>
| ![Diagram 1] | T: jednojaderný nenabitý komplex
N: trans-dichloro-tetrakis(thiourea)-manganát komplex
V: \(\text{trans-MnCl}_2[\text{SC(NH}_2)_2]_2\)
SA: Mn\(^{II}\)
KČ: 6
KP: tetragonální bipyramid
L: (NH\(_2\)_2CS\(_2\))\(_2\)Cl\(_2\)
DA: S, Cl
KS: heterogenní |
| ![Diagram 2] | T: jednojaderný komplexní anion (chelát)
N: anion tetrachloro-oxalát-iriditanový
V: \([\text{IrCl}_4(\text{C}_2\text{O}_4)]^{3-}\)
SA: Ir\(^{III}\)
KČ: 6
KP: deformovaný oktaedr
L: Cl\(^-\)(4), C\(_2\)O\(_4\)\(^2-\)(2)
DA: Cl, O
KS: heterogenní |
| ![Diagram 3] | T: dvojjaderný komplexní kation
N: kation di-μ-hydreroxido-bis(tetra-
 aquaželezo)
V: \([\text{Fe}_2(\text{OH})_2(\text{H}_2\text{O})_6]^{4+}\)
SA: 2 atomy Fe\(^{III}\)
KČ: 6
KP: deformovaný oktaedr
L: OH\(^-\)(1), vodík, H\(_2\)O(1)
DA: O
KS: heterogenní |

* T — typ komplexní částice, N — název, V — funkční vzorec, SA — středový atom, KČ — koordinační číslo,
KP — koordinační polyédér, L — ligandy (donorovost), DA — donorové atomy, KS — typ koordinační sféry.
<table>
<thead>
<tr>
<th>Geometrický vzorec</th>
<th>Charakteristika*</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Image 1]</td>
<td>T: jednojaderný komplexní anion</td>
</tr>
<tr>
<td>N: anion heptafluorosouběžný</td>
<td></td>
</tr>
<tr>
<td>V: ([\text{NbF}_5]^2^-)</td>
<td></td>
</tr>
<tr>
<td>SA: Nb²⁻</td>
<td></td>
</tr>
<tr>
<td>KČ: 7</td>
<td></td>
</tr>
<tr>
<td>KP: deformed trigonal prisma</td>
<td></td>
</tr>
<tr>
<td>L: F⁻ (1)</td>
<td></td>
</tr>
<tr>
<td>DA: F</td>
<td></td>
</tr>
<tr>
<td>KS: homogenní</td>
<td></td>
</tr>
<tr>
<td>![Image 2]</td>
<td>T: dvoujádrový nenabitý komplex s vazbou kov—kov</td>
</tr>
<tr>
<td>N: tetra-propionato-bis(aquaanolybdenatý) (Mo₄=Mo) komplex</td>
<td></td>
</tr>
<tr>
<td>V: ([\text{Mo}_4(\text{H}_2\text{O})_6(\text{CH}_3\text{COO})_4])</td>
<td></td>
</tr>
<tr>
<td>SA: 2 atomy Mo⁶⁺</td>
<td></td>
</tr>
<tr>
<td>KČ: 6</td>
<td></td>
</tr>
<tr>
<td>KP: deformed oktaedr</td>
<td></td>
</tr>
<tr>
<td>L: (\text{H}_2\text{O}(l), \text{CH}_3\text{COO}⁻ (2))</td>
<td></td>
</tr>
<tr>
<td>DA: O</td>
<td></td>
</tr>
<tr>
<td>KS: heterogenní</td>
<td></td>
</tr>
<tr>
<td>![Image 3]</td>
<td>T: jednojaderný komplexní kation</td>
</tr>
<tr>
<td>N: kation tetris(thioacetamid)-měděný</td>
<td></td>
</tr>
<tr>
<td>V: ([\text{Cu}(\text{CH}_3\text{NH})\text{CS}]^+)</td>
<td></td>
</tr>
<tr>
<td>SA: Cu¹⁺</td>
<td></td>
</tr>
<tr>
<td>KČ: 4</td>
<td></td>
</tr>
<tr>
<td>KP: tetraedr</td>
<td></td>
</tr>
<tr>
<td>L: (\text{CH}_3(\text{NH})\text{CS} (l))</td>
<td></td>
</tr>
<tr>
<td>DA: S</td>
<td></td>
</tr>
<tr>
<td>KS: homogenní</td>
<td></td>
</tr>
<tr>
<td>![Image 4]</td>
<td>T: trojúčkový nenabitý komplex (Gluvin)</td>
</tr>
<tr>
<td>N: dodnekarboxyl-triangulo-triophium</td>
<td></td>
</tr>
<tr>
<td>V: ([\text{Os}_2(\text{CO})_6])</td>
<td></td>
</tr>
<tr>
<td>SA: 3 atomy Os⁶⁺</td>
<td></td>
</tr>
<tr>
<td>KČ: 6</td>
<td></td>
</tr>
<tr>
<td>KP: deformed oktaedr</td>
<td></td>
</tr>
<tr>
<td>L: (\text{CO} (l))</td>
<td></td>
</tr>
<tr>
<td>DA: C</td>
<td></td>
</tr>
<tr>
<td>KS: heterogenní</td>
<td></td>
</tr>
</tbody>
</table>
Pojmy zavedené a objasněné v tomto odstavci lze dobře provést na konkrétních příkladech komplexních částic, uvedených v tab. 25-2. V levé části tabulky jsou geometrické vzorce těchto částic a zpravo charakteristiky jednotlivých komplexů ve smyslu právě vysvětleného pojmového aparátu.

- Izomerie koordinačních sloučenin

Složitá vzniklá struktura komplexních částic a její velká variabilita jsou faktory, které výrazně přispívají k uplatnění její izomerie (str. 154) u této třídy látek.

Velmi často je izomerie především u stabilních komplexních částic, v nichž velká pevnost vazeb způsobuje, že nedochází k spontánnímu migračním ligandů v koordinačních sférách a jednoduchá strukturní uspořádání za běžných podmínek nepodléhají změnám. Jak poznáme později, takovéto komplexy obsahují jako středový atom nejčastěji přechodný kov. U nich však i malé změny ve způsobu koordinace vylučují značné změny fyzikálních a fyzikálně chemických vlastností, např. zabarvení. Izomerie takovýchto látek je proto velmi nápadná. Byla odhadať již v průkopnických pracích Wernerových (1894), tedy mnohem dříve, než byly vypracovány metody pro přímé určování struktury, jako je rentgenostrukturální analýza a další difraktofonické metody, Když Werner u řady koordinačních sloučenin prokázal existenci dvou i více forem, které při
stejném složení mají rozdílné fyzikální a chemické vlastnosti, správně usoudil, že příčinou tohoto jevu může být jen proměnlivost vnitřního uspořádání těchto látek, a že tedy jde o izomerii. U koordinačních sloučení lze rozlišit několik typů izomerie. Některé z nich jsou specifické pro koordinační sloučeniny, jiné se vyskytují i u látek dalších tříd. S typy izomerie koordinačních sloučenin se nyní seznámit.

![cis-izomer](cis-izomer.png)

a u izomerů kationtu diammin-hydroxylamin-nitroplatnatého vzorci

![trans-izomer](trans-izomer.png)

Pokud je v tetragonalním komplexu každý ze čtyř ligandů jiný, mohou se vytvořit dokonce tři izomerní částice. K jejich rozlišení se užívají sufiksy cis- a trans-, nýbrž pismenně značení polohy ligandů. Příkladem jsou izomeri formy kationtu ammin-hydroxylamin-nitro-pyridinplatinatného:

![ion cis-](ion_cis.png)

![ion trans-](ion_trans.png)

U komplexních částic s koordinačním číslem středového atomu rovným čtyřem, pokud jsou realizovány tetrackrickým způsobem koordinace, nemohou existovat geometrické izomerity.

Rozdílné jsou možnosti vzniku izomerů uspořádání u komplexních částic, jejichž středový atom má koordinační číslo 6. Výchozím tvarem koordinačního polyedru je v těchto případech...
nejčastěji oktaedr. U komplexních částic typu MA_3B_4 je možnost vzniku dvojice izomerů cis a trans, např. u kationtu tetraammin-dichlorochromitého:

\[
\begin{array}{c}
\text{cis-izomer} \\
\begin{array}{c}
\begin{array}{c}
\text{Cl} \\
\text{H}_3\text{N} \\
\text{H}_3\text{N} \\
\text{NH}_3 \\
\text{Cl}
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\text{trans-izomer} \\
\begin{array}{c}
\begin{array}{c}
\text{Cl} \\
\text{H}_3\text{N} \\
\text{H}_3\text{N} \\
\text{NH}_3 \\
\text{Cl}
\end{array}
\end{array}
\end{array}
\]

Dvojice izomerů částic vznikajících u komplexních útvorů typu MA_3B_3 se nomenklaturně rozlišuje pomocí sufiků fac- a mer- (faciální a meridinální). Například trichloro-tripyridin ruthenity komplex existuje ve formě dvojice izomerů vyjadřených vzorcemi

\[
\begin{array}{c}
\text{fac-izomer} \\
\begin{array}{c}
\begin{array}{c}
\text{Cl} \\
\text{H}_3\text{N} \\
\text{H}_3\text{N} \\
\text{py} \\
\text{py}
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\text{mer-izomer} \\
\begin{array}{c}
\begin{array}{c}
\text{Cl} \\
\text{H}_3\text{N} \\
\text{H}_3\text{N} \\
\text{py} \\
\text{py}
\end{array}
\end{array}
\end{array}
\]

Obdobným způsobem se izomery tvoří i v případě, když polyedr oktaedrického tvaru je obsazen třemi a více druhy ligandů.

Geometrická izomerie se v podstatě může uplatnit i v některých dalších koordinačních polyedrech, tento jev však není běžný, a nebudem se jím zde proto zabývat.

Niejčastěji se vyskytuje optická izomerie u oktaedrických komplexů, zejména jsou-li v nich přítomny dvoudonorové nebo třídonorové ligandy. Příkladem je tris(1,2-ethandiamin)kobaltitrifluorid, tvořící dvě enantiomerní formy:

\[
\begin{array}{c}
\text{rovnová zrcadlení} \\
\begin{array}{c}
\begin{array}{c}
\text{H}_2\text{N} \\
\text{H}_2\text{N} \\
\text{NH}_2 \\
\text{NH}_2 \\
\text{Co}
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\text{H}_2\text{N} \\
\text{H}_2\text{N} \\
\text{NH}_2 \\
\text{NH}_2 \\
\text{Co}
\end{array}
\]

V obou vzorcích představují oblouky skupina $-\text{CH}_3\text{CH}_2-$.

514
Také při tetraedrické koordinaci na středovém atomu, je-li každý ze čtyř donorových atomů jiný, vznikají opticky aktivní částice.

Dokonce i v případě, když je v komplexní částici přítomen v asymetrické poloze jiný než středový atom, je vík opticky aktivních chování. Názorným příkladem jsou enantiomerní formy dichloro-1,2,3-propantriaminoplátanu, v němž příčinu existence dvojice enantiomerů je zcela asymetrická tetraedrická poloha atomu uhlíku v ligandu (je označen hvězdičkou):

Optická aktivita látě se nejlepší zjišťuje v jejich roztocích. Aby bylo možné pozorovat stáčení rovnice polarizovaného světla, musí samozřejmě v roztoku převažovat koncentrace jednoho enantiomeru. Jsnou-li oba antipody přítomny ve stejné koncentraci (racemická směs), jejich optická aktivita se vzájemně kompenzuje.

3. Koordinátní izomerie a polymérie. Na rozdíl od obou předchozích typů izomerie jde o jev, jehož výskyt souvisí s celkovým uspořádáním koordinační sloučeniny. Nutnou podmínkou pro vznik tohoto druhu izomerie je, aby sloučenina obsahovala jak kompleksní kation, tak i komplexy anion. Podstatu izomerie tohoto druhu lze objasnit prostým uvedením příkladů. Koordinační izomerie jsou např. tetrachloroplátan tetraamminženitý [Co(NH₃)₄][PtCl₄] a tetrachromátan tetraamminplátan [Pt(NH₃)₄][CrCl₄], které se od sebe liší pouze funkcí obou středových atomů. Jiným příkladem je dvojice sloučenin s oktaedrickou konfigurací koordinačních sfer - tris(oxalato)kobaltitríxetonaminátní [Cr(NH₃)₆][Cr(C₂O₄)₃] a tris(oxalato)chromátan hexaamminkobaltitríxetonaminátní [Co(NH₃)₆][Cr(C₂O₄)₃].

S jeho koordinátní izomerie těsně souvisí tzv. polymérie koordinačních sloučenin: kromě monomerní formy komplexní sloučeniny s komplexním kationem i anionem existují její nizkopolymerní - tzv oligomerami - formy. Např. vede monomerní formy nenabitého komplexu triamin-trinitrokořálitého [Co(NH₃)₆(NO₂)₃] existuje i dimerní sloučenina s dvojnásobně redukční molekulojovou hmotností, hexaamminerokobaltitríxetonaminátní [Co(NH₃)₆][Co(NO₂)₃], trimerní bis(di-ammin-tetraamminerokobaltitríxetonaminátní) pentaaammin-nitrokořálitého [Co(NH₃)₆(NO₂)₃][Co(NH₃)₆(NO₂)₃], tetramerňí tris(diarnminerokobaltitríxetonaminátní) hexaamminerokobaltitríxetonaminátní [Co(NH₃)₆][Co(NH₃)₆(NO₂)₃] a existuje také pentamerňí sloučenina bis(hexaamminerokobaltitríxetonaminátní) tris(pentaammin-nitrokořálitého) [Co(NH₃)₆][Co(NH₃)₆(NO₂)₃].

V případě ionizační izomerie se izomeri látky rozlišují podle toho, které aniony jsou v koordinační sfeře středového atoma a které vystupují jako kompenzující iony. Ionizační izomerie jsou např. bromid tetraamminerokobaltitríxetonaminátní [Pt(NH₃)₄Cl₂]Br₂ a chlorid tetraamminer-dibromokobaltitríxetonaminátní [Pt(NH₃)₄Br₂]Cl₂. Elektrolytickou disociací prvých izomeru ve vodném roztoku vznikají volné anionty bromidové, v případě druhého izomeru ionty chloridové.
U hydratové izomerie se jedná o izomery v obou liganďů, nebožte přítomny jako hydratovaná a vlnice. Klasickým příkladem takového izomeru je trolej sloučenin: chlorid hexaäthylcholinů [Cr(H₂O)₆]Cl₃, monohydrát chloridu pentaaqua-Chlorochromitě [Cr(H₂O)₂Cl]Cl₄, H₂O a dihydrát chloridu tetrachaqua-dichlorochromitě [Cr(H₂O)₄Cl₂]Cl₂H₂O.

Měně běžné a celkově málo prostudované jsou ještě některé další typy izomerie. Především je to izomerie vznikající tím, že pravidelně koordinační polyedr je deformován a jeho vrcholy jsou geometricky nekvantální. Závazky donorových atomů na těchto vrcholech mohou větší ke vzniku izomerních látí. Pozoruhodný je to, že izomery vzniklé deformací koordinačního polyedru mohou být převáděny jako sloučenina v druhý působením některých faktorů, např. magnetického pole, teploty, elektromagnetického pole.

25.2 VAZBA V KOORDINAČNÍCH SLOUČENINÁCH

Objasňení atomové a elektronové konfigurace komplexních častic a výklad jejich vlastnosti i reaktivitě je jednou z nejnáročnějších kapitol teoretické chemie.

Jedna z podstatných donor–akceptorových vazeb v komplexních časticích může být v některých případech dosti složitá, poněvadž se tato vazba netvoří vždy prostou donaci elektronového páru z oblasti donorového atomu, tedy od ligandu, na středový atom.

Vazebnou situaci v komplexní částici dále komplikuje to, že jednotlivé donor–akceptorové vazby se vzájemně huštovávají. Nejpravdivější popis vznikající vazby lze získat jednou tehy, řešením se elektronové konfigurace částice jako celku. Takové řešení je však teoreticky i početně mimořádně náročné. Přesto se dnes právě tento přístup v chemické teorii stále častěji používá, hlubší a přesněji rozpracovává a zdokonaluje.

Donor–akceptorové vlastnosti ligandů

Jen u některých ligandů si můžeme představit, že vytvářejí donor–akceptorovou vazbu prostou donaci jediného elektronového páru na středový atom. Jejich vazba má čistý charakter σ a maximální hustotu elektronového oblasti tvořeného vazebním elektronovým párem leží na spojnici donorového a středového atomu (obr. 25-2a). Ligandy, které tímto způsobem vytvářejí vazbu se středovým atomem, se nazývají donory σ. Z běžných částic se ve funkci prostého donoru σ často uplatňují např. ion F⁻, molekuly H₂O, NH₃, NH₂OH, RNH₂, R₂NH a RN⁺ a jen výjimečně i některé jiné.

Další skupinu ligandů tvorí ty, které obsahují dvojici elektronových páru v molekulových orbitalech orientovaných tak, že ve styku s prázdnými orbitály středového atomu mohou vytvářet dvě donor–akceptorové vazby. Z nich jedna má charakter vazby σ a druhá vazba π (obr. 25-2b). Ligandy tohoto typu se nazývají donory π a σ. Řadí se k nim převážně anionty, např. Cl⁻, Br⁻, I⁻, OH⁻, O²⁻, NH₂⁻. Prakticky nikdy v této funkci nevystupují neutrální molekuly. Je to proto, že vzniku takového vazby je směr donace elektronového páru σ i elektronového páru π stejný nebo vzorové, vznikem několika takových vazeb značně náhoj středového atomu. Vazby se proto většinou pínou nevyvíjejí, přesna elektronové hustoty nebyvá dokončen a energie takové vazby se není od průměrné energie vazby jednoduché.
Poslední skupina ligandů tvoří ionty a molekuly, které mají elektronovým párem obsazen orbital schopný vytvářet s příznakovým orbitálem středového atomu vazbu π a jejichž energeticky nejníži nesbibasený orbital zároveň může přijmout elektronový pár ze středového atomu za vzniku vazby π. Vazba σ tedy vzniká donaci elektronového páru sněrující od donorového atomu k atomu

Obr. 25-2. Donor-akceptorová vazba mezi středovým atomem a ligandem, který má charakter:
 a) donoru σ, b) donoru σ i π, c) donoru σ a akceptoru π. SA je středový atom, DA = donorový atom. Orbital
obsazený elektronovým párem je šraflován. Nedrafované
jou ty orbitály, které byly před vznikem vazby prázdné.
Šipka vyjadřuje směr i místo donace, tj. směr a oblast, kde
dojde k přesunu elektronové hustoty při vzniku vazby

středovému. Vazba π naopak vzniká donací v opačném směru (obr. 25-2c). Ligandy tohoto typu se
narývají donory σ a akceptory π. Jsou to například ionty CN$^-$, NO$_2^-$, molekuly CO, PH$_3$, PY$_3$,
PR$_3$, AsH$_3$, AsY$_3$, AsR$_3$;1) ethen, pyridin a dále dalších. Poněvadž směr přesunu elektronových
hustot při vzniku vazeb σ a π jsou opačné, nemůže se v podstatě při vzniku takového dvouje
vazeb distribuovat záporného náboje mezi oběma atomy a vzniklé pojítko se vytváří velmi spontánně
a patří k nejpevnějším.

Uvedené tři typy vazby mezi středovým atomem a ligandy se uplatňují u komplexních solu-
čenin se specifikovanými donorovými atomy. Ale v podstatě obdobné se vytvářejí i vazby u kom-
plexních částic s donorovým atomem nespecifikovaným.

V klstrtech a polyadicních komplexních částicích s přímými vazbami mezi středovými
atomy mohou, ale nemusí mít tato pojítka donor-akceptorový charakter. Řad takovýchto vazeb

1) $Y =$ halogen, $R =$ alkyl, aryl.
je někdy vysoké, 3 nebo i 4, a vazby jsou velmi pevné a krátké. Při dosažení řádu vazby 4 předpokládáme, že jde o uplatnění vazby 0 spolu s vazbami π a vazbou σ.

Vznik několika donor-akceptorových vazeb v komplexní částicí je se zřetelem na značné vzájemné osvětlování těchto vazeb komplikovaný a složitý. Vnější stranka celého děje je přitom velmi jednoduchá. Částice podléhající se na stavbě komplexního útvaru se prostě jen sdrůží za vzniku takové atomové a elektronové konfigurace, které odpovídá minimální hodnotě Gibbssovy energie. Složitost počátku jevů vynikne teprve tehdy, když se pokusíme zdůvodnit, proč daný komplex má právě takovou konfiguraci, jaká byla experimentálně prokázána, nebo když hledáme posloupnost energií jednotlivých MO a jejich prostoru a lokalizaci v celé komplexní částici, popř. když se snažíme najít příčiny a výklad určitých fyzikálních, fyziologických a chemických vlastností komplexních částic.

V uplynulých letech bylo postupně navrženo několik přístupů k této problematice. Většina byla poněkud jednostranná, neboť zdůrazňovaly některé z fakticky se uplatňujících efektů na úkor jiných, ve skutečnosti nesmírně zvažujících. Teprve v posledních letech se snad dali postupně vytvářet potřebně integrovaný teoretický model. Jeho šíření je početně velmi náročné. Přճoře stále ještě není tento model samostatnou teoretickou konstrukcí, aníže se proto opírat o empiricky získané parametry a charakteristiky existujících komplexních částic.

Pokusíme se nyní velmi zjednodušeně, a proto i do značné míry nepřesně, objasnit hlavní faktory uplatňující se při vytváření atomové a elektronové konfigurace komplekšní částice. Aby výklad byl co nejznázornější, zvolíme za příklad konkrétní komplex iontový.

- **Elektronová konfigurace oktaedrických komplexů**

 K nejbožnějším a nejfrekventovanějším komplexním částicím patří takové, jejichž středovým atomem je přechodný kov v kladném oxidaciční stávěci, koordinace číslo má hodnotu 6 a koordinační polyedr má tvar oktaedru. Takovéto uspořádání má například anion hexaaktyanočetnanatový [Fe(CN)₆]³⁻.

 Můžeme si jej představit jako kation Fe³⁺ ležící v počátku souřadných systémů, k němuž se větší části kladných a záporných směrů souřadných os připsané ligandy, anionty CN⁻, způsobem uvedeným na obr. 25-3a. Valenční šířka iontu Fe³⁺ s elektronovou konfigurací 3d⁶ 4s⁰ 4p⁰ je zřetelné energeticky oválněná fyzikálním působením ligandů. Toto fyzikální působení spočívá v uplatnění kvantově chemické interakce orbitálů ligandu a středového atomu, v působení elektrostatického pole nábojů přítomných na částicích, v působení permanentních a indukovaných dipolů ligandů a v některých dalších interakcích. Souhrně se celý tento efekt působení ligandů nazývá vícekomponentového pole.

1) Termín ligandové pole je analogií pojmu krystalové pole, zavedeného Bethem (1929). Bethe se zabýval otázkou energetického ovlivnění orbitalů ve valenční sféře iontu vyskytujícího se v krystalové hmotě, které je vytvářeno přítomností všech ostatních iontů. Elektrostatické pole působí na ion zabudovaný v krystalu nazval Bethem krystalovým poli. Analyzoval její symetrii a působení na jednotlivé typy atomových orbitalů. Představy o krystalovém poli se staly základem a výhodným při objednávání vlivu ligandů na uspořádání a energetickou posloupnost orbitálů středového atomu komplexní částice.
Ligandové pole působí na obsazené a formálně i na prázdné orbitaly valenční sféry a zvyšuje jejich energii. Zvýšení energie je pro jednotlivé orbitaly rozdílné a závisí především na jejich orientaci k nehomogennímu ligandovému poli. Ty orbitaly, jejichž „lásky“ jsou orientovány do míst se největší intenzitou ligandového pole (v násilně případě 3d_{π}, 3d_{π}, 4p_{π}, 4p_{π}, a do určité míry i 4s), zvýší značně svou energii. Zrcadleně menší je vzrůst energie u orbitalů orientovaných mezi osy (3d_{σ}, 3d_{π}, a 3d_{π}). To znamená, že systém orbitalů 3d středového atomu ztratí touto energickou diferenciaci původní pětinasobnou degeneraci a rozpadne se na dvě skupiny orbitalů:

1. orbitaly 3d_{σ}, a 3d_{π}, označované souhrnně jako orbitaly ε_{ρ}, umístěné energeticky vysoko, a
2. orbitaly 3d_{π}, 3d_{σ}, a 3d_{π}, označované symbolem τ_{ρ}, umístěné energeticky podstatně niže.²)

Vzdálenost mezi energetickými hladinami obou skupin orbitalů ve vzniklé komplexní části se obvykle označuje Δ(ε_{ρ}) (obr. 25-3c).

Umístění šesti valenčních elektronů iontu Fe^{2+} v nově organizované energetické posloupnosti valenčních orbitalů, která se vytvořila působením ligandového pole šesti iontů CN^{−}, bude jiné než v původním neovlivněném iontu Fe^{2+}. Elektrony zaplněné bez zbytku třikrát degenerovaný orbital τ_{ρ}, a valenční sféra iontu nabude konfigurace (τ_{ρ})^{6}. Naopak orbitaly ε_{ρ} a samozřejmě i již dříve neobsazené orbitaly 4s a 4p_{σ}, 4p_{π}, 4p_{π}, zůstane bez elektronů (obr. 25-3c). Avšak právě do nich, do nejnižších elektronky neobsazených orbitalů středového atomu, bude směrovat tok elektronové

¹) Symboly ε_{ρ}, τ_{ρ} a některé další, použité v následujícím textu, souvisí se symetrií a degenerací orbitalů takto označených; jejich přesný význam a smysl objasňuji nesouměrně.

519
hustoty při vzniku donor-akceptorových vazeb σ mezi donorovými atomy ligandů a středovým atomem. Při názorném výkladu vzniku těchto vazeb můžeme říci, že tyto orbitály hybridizují (D^3SP^3) a vytvářejí řesti oktaedricky orientovaných orbitálů, které se překryjí s řesti vhodně orientovanými orbitály ligandů, obsahujícími nevazebné elektronové pary. Vznikne tak řest vazeb Fe-C=N typu σ. Těchto řetěz vazeb je realizováno obsazením řesti vazebných orbitálů σ^2_{δ^*} dvanácti elektronů. Protivazebné působení orbitálů σ^*_{δ^*} dříve neobsazené (obr. 25-3b).

Kyanidové ionty však patří do skupiny ligandů se σ-donorovými a současně π-akceptorovými schopnostmi. Proto vytvořením řesti vazeb σ nebudou proces vzniku pojítka mezi ligandy a středovým atomem ještě ukončen. Z třikrát degenerovaného souboru orbitálů t^2g středového atomu dojde ke zpětné donaci elektronové hustoty do energeticky nejnižších neobsazených orbitálů ligandů, do protivazebných π* (obr. 25-3b). Tím se vytvoří v komplexní částici ještě jeden systém vazeb typu π. Tato interakce je na obr. 25-3c vyjadřena zmenšením energie orbitálů t^2g a vzájemné energie orbitálů π*. Výsledkem obou interakcí, σ i π, je vznik velmi pevného pojítka v iontu hexakyanodleznitánovém.

a) Geometrie částice; b) znázornění interakce σ mezi jedním z ligandů a středovým atomem;

c) diagram MO

Obdobně, prakticky stejné vazebně uspořádání jako hexakyanodleznitánový ion má ion hexakyanodleznitánový [Fe(CN)₆]³⁻. Rozdíl je v tom, že ve vazebném systému této částice je o jeden elektron méně. Valenční řestě železitého kationtu v oktaedrickém poli ligandů má konfiguraci t^2g³ a obsahuje jeden nepárový elektron. Diagram MO, znázorňující vznik vazeb σ v iontu [Fe(CN)₆]³⁻, je tedy šikmo jako u iontu [Fe(CN)₆]⁴⁻. Interakce typu π, vznikající překryvem orbitálů t^2g, středového atomu s protivazebnými orbitály π*, je zprostředkována jen pěti elektronů. Ion [Fe(CN)₆]³⁻ jeví snahu doplnit sí elektron chybějící v orbitalech t^2g, a má proto zřetelně oxidacení účinky.

520
Jiné uspořádání vazeb jsme nuceni předpokládat v hexafluoročeleznitraném iontu \([\text{FeF}_6]^{3-}\). Jeho konfigurace je oktaedrická a ion by měl být obdobu předchozích částic, zejména iontu \([\text{Fe(CN)}_6]^{3-}\), s nímž je izoelektronový. Ale není tomu tak, a to hlavně proto, že ionty F\(^-\) vytvářejí mnohem slabší ligandové pole než ionty CN\(^-\), a také proto, že ionty F\(^-\) nemají π-akceptorové schopnosti. Vznik vazby v iontu \([\text{FeF}_6]^{3-}\) vysvětluje obr. 25-4, jejíž uspořádání a smysl jsou stejné jako u obr. 25-3. Slabé ligandové pole iontu F\(^-\) má sice oktaedrické uspořádání a vytváří energickou diferenciaci orbitálů 3d iontu Fe\(^{3+}\) na orbitály t\(_2g\) a e\(_g\), ale rozdíl v hodnotách energie \(\Delta(e_g)\) cbou těchto skupin orbitálů je jež malý. Jejich obsazení elektronky se proto řídí Hundovým pravidlem a je takové, jako kdyby k diferenciaci vůbec nedošlo. To znamená, že při elektronky je v souboru tři orbitály t\(_2g\) a dvou orbitály e\(_g\) středového atomu umístěno s nevykompenzovanými spiny. Zjednodušeně lze říci, že hybridizaci AO středového atomu vznikne šest orbitálů d\(^2\) sp\(^3\), směřujících proti původně nevazebným orbitálům p ligandů, a vzájemným překrývem se vytvoří šest vazebných molekulových orbitálů \(\sigma_{sp^3}\), a šest protivázebných MO \(\sigma_{d^2}\). Vzniklo vazebné orbitály jsou plné obsazeny šesti elektronovými páry, alesoučasně dva nepárové elektrony z původních orbitálů d\(_{eg}\) středového atomu jsou vyneseny na dva přítomné molekulové orbitály \(\sigma_{sp^3}\) a snaží řád i energii vazeb Fe\(^++\)-F. Poněvadž navíc nedochází k výraznému uplatnění interakce \(\pi\), není komplexní částice \([\text{FeF}_6]^{3-}\) zdaleka tak pevným útvarem jako \([\text{Fe(CN)}_6]^{3-}\) nebo \([\text{Fe(NH}_3)_6]^{3-}\).

Z výkladu vazby v uvedených komplexních částicích vyplývají zcela obecné závěry:

1. Ligandy vytvárají silné ligandové pole při oktaedrické koordinaci na středovém atomu štěpí soubor jeho orbitálů d na skupiny orbitálů t\(_z^2\) a e\(_g\). Vzdálenost mezi energetickými hladinami obou skupin orbitálů, označovaná \(\Delta(e_g)\), je velká, přetísnění degenerace orbitálů d je odstraněno a event. přítomné elektrony valenční sféry středového atomu se umístí v orbitálech t\(_z^2\). Při všech třech elektroncích ve valenční sféře středového atomu vznikají konfigurace s částečně nebo úplně vykompenzovanými spiny a vznikající uspořádání se nazývají nízkospinové.

2. Ligandy, jejichž ligandové pole je slabé, také štěpí systém orbitálů d středového atomu na orbity t\(_z^2\) a e\(_g\) a v levém vzdálenosti mezi energetickými hladinami částice do dvou typů orbitálů je malá a elektrony se umístí do celého souboru pěti orbitálů d podle Hundova pravidla. Vzniklá uspořádání se proto nazývají rysospinové.

Vzdálenost mezi energetickými hladinami orbitálů t\(_z^2\) a e\(_g\) v komplexních částicích je stanovená vyhodnocením absorpcí spektér těchto látek v viditelné nebo ultravioletní oblasti. Přítomný paramet \(\Delta(e_g)\) je velmi ušlechtněnou sile ligandového pole. Po určení jeho hodnot v rozšířené skupině oktaedrických komplexních iontů bylo možné se sestavit běžné ligandy do řady podle významné sily ligandového pole. Podle experimentálního zdroje tohoto počítače se nepřesné hodnot spektrálních řad ligandů. Její uspořádání je následující:

\[
\begin{align*}
\text{I}^- &< \text{Br}^- < \text{ClO}_4^- < \text{Cl}^- < \text{SCN}^- < \text{NO}_2^- < \text{F}^- < \text{S}_2\text{O}_8^{2-} < \text{CO}_3^{2-} < \text{OH}^- < \text{NO}_3^- < \\
&< \text{SO}_4^{2-} < \text{H}_2\text{O} < \text{CO}_2 < \text{NCS}^- < \text{NO}_2^- < \text{NH}_3 < \text{pyridin(N)} < \\
&< 1,2\text{-ethanediamin(N,N)} < \text{hydroxyamin(N)} < \text{NO}_2 < \text{H}^- < \text{CH}_3 < \text{C}_6\text{H}_5 < \\
&< \text{C}_6\text{H}_5^- < \text{CO} < \text{CN}^-
\end{align*}
\]

Umístění ligandu v řadě je závislé na tom, který z atomů ligandu zastává funkci donorového atomu, a na tom, zda ligand vystupuje jako jednodonorový či vicedonorový. Donorové atomy jsou proto v řadě vytištěny řádně, popř. se u názvu částice uvádějí v závorce.

Uvedené pořadí ligandů má jen kvalitativní charakter a je do určité míry ovlivňováno středovými atomy a některými dalšími faktory. Při přesné kalibraci na určitou skupinu (typ) komplexních částic může získat význam polokvantitativního parametru.
Elektronová konfigurace tetraedrických a tetragonálních komplexů

Poznátečk, že ligandy se od sebe liší intenzitou pole, kterým působí na středový atom a jeho valenční orbitály, i zjišťuje, že způsob obsazení valenční sféry středového atomu elektrony závisí na tom, jak silné je pole na ni působící, platí zcela obecně. Tyto efekty se projevují v podstatě stejným způsobem i v komplexních částicích s jinými koordinačními čísly a jinými koordinačními polyedry. Pouze diferenčiace energii orbitalů d valenční sféry je v těchto případech odlišná od diferenčiace u oktaedrického ligandového pole. Nicméně i zde platí, že největší ryze energie lze pozorovat u těch orbitálů středového atomu, které svými „lásky“ měří proti souboru orbitálů donorového atomu ligandu a při vzniku komplexní částice se s nimi překrývají.

Obr. 25-5: Diferenciaci souboru orbitalů d středového atomu v hypotetických komplexních částicích s týmž druhem ligandů a s týmž středovým atomem při způsobu koorunace:
a) oktaedrickém, b) tetraedrickém, c) tetragonálním

Na obr. 25-5 je schematicky znázorněno štěpení systému orbitalů d v ligandových polích o některých nejčastěji se vyskytujících symetriích. V levé části obrázku je pro srovnání zvono uvedeno štěpení souboru orbitalů d v poli oktaedrické symetrie (6h). Uprostřed a vpravo jsou uvedena štěpení v poli tetraedrickém (Td) a tetragonálním (D_{4h}). Uvedené typy koordinace představují nejčastěji způsoby, jimiž jsou v komplexních částicích realizována koordinácia čísar středových atomů rovně a. Všechna tři štěpení orbitalů d jsou znázorněna pro tých druh ligandů. Z obrázku je vidět, že nejen způsoby, ale i míra diferenčiace orbitalů d závisí na typu koordinoanícího polyedru. Vzdálenosti mezi energetickými hladinami skupin orbitalů t_a a e, vzniklé pohyby orbitalů d v tetraedrickém poli, činí těch největších devíti a kvality zúčastněných částic pouze čtyři devíti vzdáleností mezi energetickými hladinami orbitalů t_a a e, vytvořených štěpením orbitalů d v oktaedrickém poli. Tetragonální pole za týchž podmínek vyvolá naopak větší vzdálené energicky hladin systému orbitalů d. Mezi nejvýššími hladinami b_1g a b_2g lze být v některých případech stejně energetický rozdíl jako mezi orbitaly d diferenčovanými oktaedrickým polem. Orbitaly a_1g a e_g vznikající v tetragonálním poli, bývají naproti tomu energeticky velmi blízko sebe.

Uvedená schémata štěpení orbitalů d středových atomů v ligandových polích o různé sy-
metrií nám umožňují poměrně jednoduším zdůraznit vazby v běžných komplexech. Výklad vazby v oktaédrických komplexních částech nám na začátku tohoto odstavce posloužil k uvedení do celé problematiky. Nyní uvedeme příklady tetraedrických a tetragonálních komplexů.

Obr. 25-6. Vznik systému čtyř vazeb σ v tetraedrickém iontu tetrakys(thiokyanato)kobalt(natanovém $\text{[Co(SCN)$_4$]}^2-$

Obr. 25-7. Vznik systému čtyř vazeb σ v tetraedrickém iontu tetrachloronikelnatanovém $\text{[NiCl$_4$]}^2-$

Tetraedrické komplexy, v nichž by silně ligandové pole vytvořilo na středovém atomu nízkospinové uspořádání, nejsou známy. Je to zcela pochopitelné, uvážíme-li, že veličina $\Delta(S_0)$ na obr. 25-5 je méně než polovinu veličiny $\Delta(S_0)$. Ani ligandy z pravého konce spektrochemické řady nejsou při tetraedrické koordinaci na středovém atomu schopny vyvolat tak rozsáhlou diferenciaci energii jeho orbitálů, aby zaplňování těchto orbitálů elektrony proběhlo jinak než za respektování Hundova pravidla a aby v případě přítomnosti vhodného počtu elektronů vznikalo nízkospinové uspořádání.

Příkladem vysokospinového tetraedrického komplexu může být ion tetrakys(thiokyanato)kobalt(natanový, stálý v nevodných roztocích. Vazba v této částici je znázorněna na obr. 25-6. Z obrázku vyplývá, že sedm elektronů středového atomu kobaltu v oxidačním stavu II je uspořádáno v systému orbitálů 3d bez výraznějšího podílu na vazbě. Elektronové páry ligandů jsou umísťovány do vazebních orbitálů vzniklých překryvem orbitálů 4s a 4p středového atomu (hybridizace SP^3) s orbituly ligandů a jsou přičinou vzniku čtvrtice tetraedricky orientovaných donor-akceptorových vazeb σ v komplexní částci.

Zcela obdobná je situace a uspořádání vazeb v tetrachloronikelnatanovém iontu (obr. 25-7). Jeho atomová konfigurace je také tetraedrická.

U čtvercových komplexů jsou naproti tomu častá nízkospinová uspořádání, neboť i ligandy s nepříliš silným polem vyvolají při tomto uspořádání značnou diferenciaci energii orbitálů d.
Typickým příkladem je tetrakyanonikelnatnanový ion (obr. 25-8). Osm valenčních elektronů středového atomu niklu v oxidačním stavu II je uspořádáno nízkospinově na orbitálech e_g, a_{1g} a b_{2g} a podílejí se na tvorbě zpětné interakce π mezi středovým atomem a ligandy. (Tvorbě interakce π není v diagramu MO znázorněna.) Donace nevazebných pároval ligandů do čtverce orbitalů d_{sp^2} vzniknou hybridizaci a vznik čtyř orbitalů $\sigma_{d_{sp^2},\sigma}$, obsazených osmi elektronů, jsou přičinou vytvoření vazeb σ mezi ligandy a středovým atomem.

 Poněkud překvapuje, že čtvercové planární konfiguraci má též ion tetraamminnědřitý.

Obr. 25-8. Vznik systému čtyř vazeb σ v tetrakyanonikelnatnanovém iontu tetrakyanonikelnatnanovém $[\text{Ni(CN)}_4]^{2-}$. Tvorbě zpětné interakce π není diagramem znázorněna.

Obr. 25-9. Vznik systému čtyř vazeb σ v tetrakyanonikelnatnanovém iontu tetraamminnědřitým $[\text{Cu(NH}_3]_4]^{2+}$.

Obr. 25-10. Vznik systému čtyř tetraedricky orientovaných vazeb v molekule tetrakarbonylu niklu. Interakce π není na obrázku znázorněna.

524
Středový atom mědi v oxidácím stavu II má devět valenčních elektronů. Čtyři ligandy vnášejí do systému vazeb čtyři elektronové páry exhibits tetragonální plánární konfigurace. Čtyři elektronové páry jsou ve čtyřech orbitalů \(\sigma_{2p_x} \), čtyři elektronové páry jsou na orbitálech středového atu (\(\sigma_{2p_z} \)) a (\(\sigma_{2p_y} \)). Poslední ze sedmnácti elektronů je umístěn na jednom ze čtyř protivazebných působících orbitalů \(\sigma_{2p_z} \) (obr. 25-9).

Pěkným příkladem toho, jak počet valenčních elektronů na středovém atomu může v některých případech principiálním způsobem ovlivnit atomovou konfiguraci komplexní částice, je po- rovnání vazby v již uvedeném tetrapykonikelnatranovaném iontu a v molekule tetrapykonikelnatru niklu. Atom niklu je v této molekule v oxidácím stavu 0 a jeho valenční sfera obsahuje deset elektronů. Zjistíme to, že kompletně zaplněné orbitaly d se nemohou podílet na tvorbě vazeb. Donorový typu \(\sigma \) směřuje od ligandů k orbitalům \(4s \) a \(4p \) středového atomu (hybridizace SP \(^3\)) a molekula je na rozdíl od tetrapykonikelnatranovaného iontu tetrapykonikelnatru (obr. 25-10). Současně vystupují karbonylové skupiny jako akceptorové \(\pi \) a odcervňávají do svých protivazebných orbitalů \(\pi^* \) elektronovou hustotu z orbitalů d středového atomu za vzniku zpětné interakce \(\pi \).

- **Jahnův-Tellerův jev**

Zajímavý a důležitý efekt, který lze experimentálně potvrdit studiem jmenovitých detailů atomové konfigurace komplexních částic, předpověděli a teoreticky podložili Jahn a Teller (1937). Podle jejich teorémů musí každý soubor atomů, který nemá lineární uspořádání a je elektronově degenerován, podléhnout drobné deformaci, jež sniží jeho symetrii a sejme jeho degeneraci.

Obr. 25-11. Stabilizace oktaedrické částice s degenerováním stavením malou deformací za vzniku proti oktaedru protažené nebo zkrácené tetragonální bipyramidy

V oblasti komplexních částic je tento jev velmi častý. U oktaedrických komplexů jsou podmínky pro vznik Jahnova-Tellerova jevu splněny tehdy, jestliže populační elektronů na orbitálech \(\epsilon_p \) a \(\epsilon_g \) je taková, že některé z těchto orbitalů není zaplněn ani úplně, ani z poloviny a ani není prázdny. Je tomu tak u konfigurací \(\epsilon_g \), jestliže \(r = 1, 2, 4 \) nebo 5, a u konfigurací \(\epsilon_g \) při \(q = 1 \) nebo 3. Takového oktaedrického komplexu jsou neapaticně deformovány, např. protaženy, nebo naopak zkráceny do tvaru tetragonální bipyramidy apod. (obr. 25-11). Přiživotnost jevu je skutečnost, že při uvedených elektronových konfiguracích mají minimální energií stavu, kdy elektronové oblasty nejsou ve sknetu částice zcela souměrně, tedy tak, aby odpovídá symetrii oktaedru. Výsledkem je zkrácení, resp. protažení některých vazeb mezi donorovými a středovými atomy a deformace původního ideálního tvaru částice jako celku. K Jahnově-Tellerovu jevu dochází pravděpodobně i u koordinačních polyedrů jiného než oktaedrického typu. Jahnův-Tellerův jev se uplatňuje i tehdy, když elektronové degenerovaný stav vznikl ať po elektronové excitaci komplexní částice.
Popis vazby v koordinačních sloučeninách s využitím představy delokalizovaných MO

Teorie MO-LCAO ve své klasické podobě nepotřebuje při výkladu vazby v jakkoli složitých sloučeninách představu hybridizace ani představu vazeb lokalizovaných mezi jednotlivé dvojice atomů (str. 105). Místo toho pracuje metodou řešení překryvů v systému lineárně se kombinujících AO. Jak jsme poznali při aplikaci tohoto postupu na molekulu vody (str. 223), je takováto cesta velmi málo názorná. Ale je to cesta, která poskytuje skutečnosti nejblížší, a tedy nejpravdivější obraz, jaký si o uspořádání vazeb ve víceatomových částicích můžeme utvořit.

Velmi úspěšně byla tato metoda aplikována na komplexní částice. Úplný popis tohoto postupu, zejména jeho matematické stránky, překračuje rozsah našeho výkladu a nemůže zde být uveden. Můžeme však naznačit jeho základní myšlenky a ukázat, jaká představě o vazbě v koordinačních sloučeninách vede.

Prvním krokom při aplikaci metody MO-LCAO na komplexní částici je sdružení výchozích orbitalů ligandů (jejich lineárních kombinací) do takových uskupení, která jsou k operacím symetrie přislíbujícím grupám symetrie, do které patří daná komplexní částice, bud symetrická, nebo antisymetrická. Říkáme, že z původních orbitalů ligandů vytváříme tzv. skupinové orbitály. Na pravé straně obr. 25-12 je tento postup ukázán pro oktaedrickou komplexní částici obecného vzorce ML_6 (Me je středový atom a L -- ligand). Je vidět, že šest nevazebných orbitalů ligandů, připravených k vytvořit šest donor-akceptorových vazeb σ se středovým atomem, se vzájemně kombinuje na šestici skupinových orbitálov. Podle chování k některým operacím symetrie grupy symetrie C_6 (do které patří oktaedr) a podle jejich energie lze tyto skupinové orbitály rozdělit na dvakrát

Obr. 25-12. Diagram MO částice MeL_6 získaný klasickým postupem MO-LCAO. Oblastí vlnové funkce o kladném znaménku jsou řada funkcí. Zaplnění orbitalů elektrony je třeba v diagramu doplnit podle kvality a odařivého stavu středového atomu

526
degenerované orbitály e_g třikrát degenerované orbitály t_{2g} a nedeegnerovaný orbital a_{1g}. (Pro nás výklad postačuje vztah na vědomí uvedené značení a nezbývat se jeho význáním.) Prostorové uspořádání skupinových orbitálů oktaedrické částice a jejich energie jsou znázorněny v pravé části obrázku.

Druhým krokem při rešení vazby v komplexní částici je předchozímu kroku zcela obdobné rozšíření AO středového atomu. Předpokládejme pro názornost, že jde např. o prvek prvé přechodné řady, konkrétně o atom železa. Orbitály $3d_{xy}$, $3d_{yz}$ a $3d_{zx}$ tvoří skupinu, kterou podle chování k operacím symetrie lze označit symbolem t_{2g}, orbitály $3d_{z^2}$ a $3d_{x^2}$ jsou dvojicí orbitálů e_g. Orbitál $4s$ je orbitálem typu a_{1g} a orbitály $4p_x$, $4p_y$, $4p_z$ představují třikrát degenerovaný systém orbitálů t_{2g}. Z následně tvaru orbitálů na obr. 25-12 je vidět, že orbitály stejného značení u středového atomu a ve skupinových orbitálech ligandů skutečně vykazují shodné chování k operacím symetrie.

Vlastní vznik vazeb v komplexní částici si lze představit jako překrýv orbitálů těže symetrie. Tento proces, přesně řečeno jenom jeho energetický průběh, je znázorněn ve střední části diagramu MO. Prostorové vyjádření tvaru vznikajících MO není pro pochopení tvorby vazeb v částici bezpodmíněně nutné a jelikož je graficky velmi náročné, na obr. 25-12 je neuváděno. Dostatek informaci poskytuje hladinový diagram MO. Můžeme z něj vyčíst, že trojice orbitálů t_{2g} středového atomu se překrývá s trojicí t_{2g} skupinových orbitálů ligandů za vzniku trojice važebních t_{2g} a trojice protivažebných t_{2g} MO komplexní částice. Obdobné překrýv obou orbitálů a_{1g} vytváří jeden važebný orbital a_{1g} a jeden protivažebný orbital a_{1g} a překrývem dvou dvojic orbitálů e_g vznikají dva važebné orbitály e_g a dva protivažebné orbitály e_g. Pouze tři orbitály t_{2g} středového atomu se nemohou účinně překrýt s řadou ze skupinových orbitálů σ ligandů. To se v diagramu MO kompletní MeC₄ projevuje tím, že jejich energie zůstává v podstatě nezměněná a že zastavují úlohu nevažebných orbitálů.

Porovnáme-li diagram MO z obr. 25-12 s diagramem MO iontu $\text{[Fe(CN)₅]^{4-}}$ z obr. 25-6, zjistíme, že mezi nimi není principiální rozdíl. Nevýznamný způsob výkladu vazby nás však přesvědčuje o tom, že MO komplexní částice mají polycentrický charakter a vazba v částici je do značné míry kolektivizována.

Odobným způsobem, jako byl ten, který jsme právě použili, by bylo možné vyjádřit i interakci π v uvedené komplexní částici. Vidíme tedy, že orbitály t_{2g} bohužel ligandů nevažebných orbitálů a jejich překrýv skupinový orbitály ligandů by byl přílišnou vazbou interakce typu π v komplexní částici. Diagram MO, vyjadřující obě interakce, je již značně komplikovaný a nepřehledný.

• Vazba v komplexech s nespecifikovanými donorovými atomy

V posledním dvacetiletí se velmi rozvinula chemie koordinačních sloučení s nespecifikovanými donorovými atomy. Byla zkoumána vazba v těchto látkách, jejich reakce, struktura a vlastnosti. Některé z nich nalezly významné technické uplatnění.

Doposud bylo připraveno několik set sloučení tohoto typu. Poměrně značná část jich zároveň nalezla do skupiny látek organokovových, poněvadž jsou v nich vytvořeny vazby mezi kovem a skupinou atomů uhličitu.

na obr. 25.14. Vazebný orbital π₅ⁿ molekuly etylenu, obsazený elektronovým párem, se překrývá s neobsazeným valenčním orbitálem b₁₉ (tj. 5dₓ₋ₙ₊₁ středového atomu).

Překryvem vzniká dvojice nových orbitálů, z nichž jeden jako obvykle působí vazebně, neboť je umístěn energeticky niže než původní orbitály, a působení druhého je protivazebné.

Obr. 25.13. Atomová konfigurace komplexního aniontu Zesovy soli

Obr. 25.14. Vazba mezi molekulou etylenu a středovým atomem Pt⁺⁺ v aniontu Zesovy soli

Elektronový pár, původně přítomný na orbitalu ligandu, samožetně přechází do vzniklého vazebného orbitálu. Tím se prostorově posouvá směrem od ligandu ke středovému atomu a je při čím vzniku donor-akceptorové vazby.

Soudíme s tímto procesem dochází k vytváření ještě dalšího pojetí, a to tak, že jeden z dvojice orbitálů π₅ⁿ středového atomu, např. orbital 5dₓ₋ₙ₊₁, obsazený elektronovým párem, se zpětně překrývá s orbitálem ligandu. Tak se obdobným mechanismem jako v předchozím případě tvoří další donor-akceptorová vazba, která však má prostorové uspořádání vazby π a elektronový pár se při jejím vzniku posouvá opačně směrem, tj. od středového atomu k ligandu.

Lze tedy, že molekula etylenu vystupuje jako donor i akceptor elektronů – podél osy vazby elektronový pár poskytuje centrálnímu atomu a většinou osy jiný elektronový pár naopak od centrálního atomu přijímá.

V posledním období byla v odborné literatuře podrobněji probírána otázka, který z prázdnných orbitálů ligandu se vlastně podílí na akceptaci elektronového páru středového atomu. Některé analýzy problému, výpočty a vyhodnocení změn délky vazeb, k nimž dochází v molekule etylenu při jejím zabudování do komplexní částice, nавeduje tomu, že tímto orbitálem pravděpodobně není protivazebný orbital π⁺₅ⁿ, jak se dříve předpokládalo (obr. 25.14), ale spíše jsou to prázdnné orbitály 3s obou atomů uhličí.

Podobně uspořádání vazeb jako v Zesově soli lze předpokládat i v užích ostatních látek s nespecifikovanými donorovými atomy. Je v podstatě vždy o molekulové nebo ionové ligandu, které obsahují orbitály typu π (nejčastěji delokalizované) obsazené elektrony. Elektronová hustota z těchto orbitálů se přesouvá do vakantních orbitálů středového atomu, a tím vzniká vazebná interakce. Ta může, ale nemusí být doplněna zpětným přesunem jiných elektronových parů ze středového atomu do vhodně orientovaných vakantních orbitalů ligandu.

528
Na obr. 25-15 jsou uvedeny některé zajímavé příklady sloučenin komplexního charakteru s nespecifikovanými donorovými atomy a schematizovány znázorněny atomové konfigurace molekul bis(h⁵-cyklopentadieny)kobaltového komplexe, bis(h⁵-benzen)chromu, (h⁵-1,5-cyklooctadien)-tetrakarbonylmolybdenu a (h⁵-2-butenyl)-trikarbonylkobaltového komplexe a ionů [h⁵-C₃B₄H₁₄]⁰ [h⁵-C₃B₄H₁₄]⁺ [h⁵-C₃B₄H₁₄]⁻ [h⁵-C₃B₄H₁₄]₂⁺.

Obr. 25-15. Komplexní sloučeniny a iony s nespecifikovanými donorovými atomy.
a) Bis(h⁵-cyklopentadieny)kobaltový komplex; b) bis(h⁵-benzen)chrom; c) (h⁵-1,5-cyklooctadien)-tetrakarbonylmolybdenu; d) (h⁵-2-butenyl)-trikarbonylkobaltový komplex; e) ion [h⁵-C₃B₄H₁₄]⁻; f) ion [h⁵-C₃B₄H₁₄]⁺.

25.3 VLASTNOSTI KOORDINAČNÍCH SLOUČENIN

K nejzávažnějším fyzikálně chemickým vlastnostem komplexních částic patří jejich stabilita – schopnost se svázat bez porušení komplexní struktury v roztocích, popř. schopnost vznikat koordinačními procesy v soustavách obsahujících jejich stavební jednotky. Vyznámaná je též interakce komplexních částic s elektromagnetickým zářením, spojená s absorpcí záření o určitých vlnových délkách, a tím podmíňená barevnost těchto látek a struktura jejich absorpčních spektre. Pro poznání vazby v komplexních částicích má značný význam studium jejich magnetických vlastností.

V teorii i praxi se uplatňují výsledky výzkumu chemických reakcí koordinačních sloučenin. Velmi intenzivně se rozvíjí studium koordinačních reakcí v biologických soustavách a při některých katalytických dějích.

S uvedenou problematikou se v této oddílu seznámíme v tomto oddílu.
Stabilita koordinačních sloučenin

Zatímco stabilita jednoduchých sloučenin se vyjadřuje pomocí standardních slučovacích teček nebo změnou Gibbsovy energie, provázejícími vznik sloučeniny z prvku, je u koordinačních sloučení a jmenovitě u komplexních částic v nich obsažených obvykle vyjadřovat termodynamickou pravděpodobnost jejich tvorby v roztocích změnou Gibbsovy energie, ke které dochází, když se komplexní částice tvoří nikoli z prvku, ale z východních stavebních jednotek — středových iontů a ligandů.

Rovnováha tvorby komplexních částic v roztocích se vyjadřuje rovnovážnými konstantami komplexity (stability). Konstanta platná pro děj představovaný připojením nebo odtržením jediného ligandu se nazývá konsekutivní (postupná nebo dílčí) rovnovážná konstanta. Například pro jednotlivé koordinační chloridové iónu na ion kadmianý jsou konsekutivní konstanty stability definovány takto:

\[
\begin{align*}
\text{Cd}^{2+} + \text{Cl}^{-} & \rightleftharpoons \text{CdCl}^{+} & K_1 &= \frac{[\text{CdCl}^{+}]}{[\text{Cd}^{2+}][\text{Cl}^{-}]} \\
\text{CdCl}^{+} + \text{Cl}^{-} & \rightleftharpoons \text{CdCl}_2 & K_2 &= \frac{[\text{CdCl}_2]}{[\text{CdCl}^{+}][\text{Cl}^{-}]} \\
\text{CdCl}_2 + \text{Cl}^{-} & \rightleftharpoons \text{CdCl}_3^+ & K_3 &= \frac{[\text{CdCl}_3^+]}{[\text{CdCl}_2][\text{Cl}^{-}]} \\
\text{CdCl}_3^+ + \text{Cl}^{-} & \rightleftharpoons \text{CdCl}_4^{2-} & K_4 &= \frac{[\text{CdCl}_4^{2-}]}{[\text{CdCl}_3^+][\text{Cl}^{-}]} \\
\end{align*}
\]

Hranaté závorky vyjadřují aktuální (skutečné, okamžitě) rovnovážné koncentrace částic v nich uvedených. Rovnovážné konstanty stability jsou tedy konstantami konsentracemi.

Souhrnný chemický děj, vznik komplexu s koordinačním číslem rovným v našem případě čtyři, je vyjádřen celkovou konstantou komplexity, jež se rovná součinu všech čtyř konsekutivních konstant stability:

\[
\text{Cd}^{2+} + 4 \text{Cl}^{-} \rightleftharpoons \text{CdCl}_4^{2-} \quad K = K_1 K_2 K_3 K_4 = \frac{[\text{CdCl}_4^{2-}]}{[\text{Cd}^{2+}][\text{Cl}^{-}][\text{Cl}^{-}][\text{Cl}^{-}]}
\]

Hodnoty celkových i konsekutivních konstant komplexity získáváme z rozlišených měření v systémech komplexotvorných částic. Slouží k výpočtu rovnovážných koncentrací komplexních částic v systémech známého složení a umožňují mnoho dalších početních bilancí takových fyzikálně chemických dějů, jejichž součástí je tvorba komplexu, např. rozpuštění sráženiny v důsledku tvorby koordinační sloučeniny. Vzáhy pro konstanty komplexity jsou těž součástí kinetických rovnic systémů, ve kterých se na reakčním ději podílejí komplexní částice.

Hodnoty konstant komplexity sice obecně sousedí s povnossi vazeb vznikajících komplexníích částicích, ale současné jsou velmi výrazně ovlivněny změnami provázejícími solvatací všech zúčastněných iontů molekuly a rozpuštědla. Mezi hodnotami konstant komplexity a energii vazeb v komplexu proto není přímá určitost. Velikost každé konstanty stability je naopak velmi ovlivňována fyzikálně chemickými podmínkami: molekulární solvatací, zejména teplotou a koncentraci elektrolytů i neelektrolytů přítomných v roztoku.

Konstanty stability v podstatě charakterizují termodynamickou pravděpodobnost vzniku komplexní částice v daném systému za daných podmínek. Avšak kromě toho může při vzniku i rozpadu komplexní částice získanou úlohou aktivační energie. Především je tomu tak tehdy, mě-li tato energie velkou hodnotu. Často se stává, že komplexní částice, která je málo stabilní termodynamicky,
se přesto v roztoču nerozpadá, neboť rozpad částice se vyžaduje velkou hodnotou aktivační energie. Říká se pak, že termodynamicky málo stabilní komplexní částice se vyžaduje velkou kinetickou stabilitou.

- Spektra koordinačních sloúčenin

Barevnost látek je, jak známo, známou toho, že při interakci látky s viditelným polychromatiky elektromagnetickým zářením dochází k selektivnímu pohlcování tohoto záření v jedné nebo více oblastech jeho vlnových délek.

Fyzikální podmínka absorpcí elektromagnetického záření látkami může spočívat v uskutečnění různých konkrétních fyzikálních změn. Všechny však patří do skupiny procesů, při kterých stavební jednotky látky — molekuly, ionty nebo elektrony — mění svůj energetický stav. Zatímco energeticky chudé elektromagnetické záření velkých vlnových délek (λ > 1000 nm) se spotřebovává na zvýšení vibrační nebo rotationální energie molekul, a naopak energeticky bohaté krátkovlnné záření (λ < 100 nm) vyzvednou elektrony z vnějších hladen elektronového obalu atomu, souvisí absorpci viditelného světla s excitací valenčních elektronů. Kvanta viditelného elektromagnetického záření o vlnové délce 400 až 700 nm (tj. o vlnočtech v intervalu od 25 000 do 14 285 cm⁻¹) mají energii v rozmezí přibližně od 3,1 do 1,8 eV. Jestliže v látce energetický rozdíl mezi energeticky nejvyššími hladinami obsazenými elektrony a energeticky nejnižšími hladinami neobsazenými elektrony spadá alespoň v jedincích případě do uvedeného intervalu energií, může po splnění některých dalších podmínek docházet při interakci látky s viditelným elektromagnetickým zářením k absorpci záření odpovídající vlnové délce. Absorpce přítom obvykle probíhá v širším intervalu vlnových délek, neboť přesně hodnoty energie obou hladin, mezi nimiž překáži elektron, jsou poněkud neurčité („rozmanité“) v důsledku termického pohybu (vibrací) atomů. V absorpčním spektru látky proto pozorujeme přítomnost pas s, a nikoli jednotlivých čar.

V mnohých jednotlivých sloúčenin je energetický rozdíl mezi základním stavem a stavem excitovanými většinou 4 až 5 eV. Takovéto látky se nám jeví jako bezbarvé, neboť viditelné světlo neabsorbuje, excitační jejich valenčních elektronů může vyvolat pouze ultrařadové záření obsahující fotony o velké energii.

U sloúčenin přechodných kovů a u komplexních částic s iontem přechodného kovu jako středovým atomem je situace znížená. Energetický rozdíl mezi orbitály od zvětšení zaplněněmi elektrony a orbitály (n + 1)p nebo (n + 1)p, popř. energetický rozdíl mezi ligandovým polem diferencovanými hladinami valenčních orbitálů d u komplexních částic, odpovídá energii fotonů viditelného elektromagnetického záření. Prostředí komplexní sloúčeniny přechodných kovů jsou proto všechny barevné látky. Při porovnávání skupin těchto sloúčenin pozorujeme, že změny vazebné situace na středovém atomu jsou často provázeny změnami barvy, jež jsou odrazem změn v uspořádání absorpcních spektrov.

Rozsáhlý experimentální materiál o přechodech d-d v koordinačních sloúčeninách dovoluje vysvětlit jisté všeobecné poznatky o závislosti energetické diferenciaci orbitálů d (a tím i polohy absorpčních pasů přechodů d-d ve spektru komplexů) na oxidačních číslech středových atomů, na jejich atomových číslech, na symetrii koordinačního polyedru a na povaze ligandů:

1. Hodnoty ΔE(d₈), ΔE(d₆) a ΔE(d₅) obvykle rostou s rostoucí hodnotou oxidačního čísla středového atomu. Například ΔE(d₈) u komplexních částic kovů prvé přechodné řady se pro středové
atomy v oxidacičním stavu II pohybují se v rozmezí od 0,93 do 1,55 eV (tj. v intervalu vlnových délek 1330 až 800 nm a vlnočtě 7 500 až 12 500 cm⁻¹) a pro středově délkový atom v oxidacičním stavu III mezi hodnotami 1,75 a 3,1 eV (715 až 400 nm, 14 000 až 25 000 cm⁻¹).

2. Hodnoty Δ(ε₇) a Δ(ε₉) se u středových atomů těži skupiny periodického systému prvků (při těch hodnotách oxidacičního čísla a těch řadách) sestávají především od překroku přechodů elektronů směrem od vakuola k původnímu náboji elektronů.

3. Parařadí nesporně je, že přechody a-d, které jsou nejčastěji přičinou absorpce viditelného světla, nuklearněi sloučeninami, a tedy i přičinou barevnosti valně části těchto látek, jsou z hlediska tzv. výběrových spektroskopických pravidel procesy „zakázanými“. Pravděpodobnost jejich uskutečnění způsobí, že na vytvoření obou hládek, mezi nimiž přecházejí při absorpci světla elektron, se podílejí pouze orbitály d středového atomu, jen nulová. Podíl orbitál a-p a některých skupinových orbitál lůdek na tvorbě MO komplexní částic a do jisté míry i vibračním spektu atomů je přičinou toho, že přecen je se přechody d-a uskutečňují u určité, i když nepříliš velkou pravděpodobností. Absorpcí světla v důsledku přechodů d-a proto nikdy nebyť příliš intenzivní.

U komplexních částic se uplatňují ještě další typy elektronových přechodů, které jsou však méně časté, a nebudeme se jimi proto zabývat.

- Magnetické vlastnosti komplexních částic

Paramagnetismus, projevující se tím, že látka je určitou silou vzdálená od nehomogenního vnějšího magnetického pole, pozorujeme u komplexních sloučenin, které se v souboru svých MO mají nepárové elektrony. Naopak u látek bez nepárových elektronů zjistíme velmi slabé vypuzování z magnetického pole (silou asi 100krát menší, než je sila vzdálení v případě paramagnetismu). Tento jev se nazývá diamagnetismus látky.

Přičinou silového ovlivnění látky magnetickým polem v případě paramagnetismu je převážně interakce mezi spinem v látku přítomných nepárových elektronů a tímto vnějším nehomogenním magnetickým polem. Experimentálně měřené sily, jakou jsou látky vzdáleny od uměle vytvořených nehomogenních magnetických polí, musí posloužit k určení počtu nepárových elektronů v látku a po přepočtu vede ke zjištění počtu nepárových elektronů přítomných v jediné komplexní částici. Nepárové elektrony jsou nejčastěji lokalizovány na její středovém atomu. Tento atom se často nazývá paramagnetické centrum.

Ponevadž užívaní elektronů vznikající na středovém atomu komplexní částice v silných a slabých lorganických polích (str. 521) se v některých případech různě počtem nepárových elektronů,
je zjištění přítomnosti a míry paramagnetismu látky velmi cennou experimentální metodou umožňující určit počet nepárových elektronů a vyslovit názor na způsob vazby v komplexní částici. V tab. 25-3 je znázorněno uspořádání elektronů na středových atomech s jedním až s deseti elektrony na orbitalech d, tedy v systémech d¹ až d¹⁰, v silném a slabém oktaedrickém ligandovém poli. Výplývá z ní, že systémy d¹ až d⁵ mají v každé z obou situací jiné uspořádání. Magnetická měření mezi proto oba případy dobře experimentálně rozlišit.

<table>
<thead>
<tr>
<th>Systém</th>
<th>Silné ligandové pole</th>
<th>Slabé ligandové pole</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Íµ</td>
<td>Íµ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d¹</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>d²</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>d³</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>d⁴</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>d⁵</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>d⁶</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>d⁷</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>d⁸</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>d⁹</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>d¹⁰</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Magnetické chování komplexních částic bývá často komplikováno tím, že interakce spinu elektronu s vnějším magnetickým polem není jediným příspěvkem vyvolávajícím paramagnetické chování látky. Hlavně u středových atomů z druhé a třetí řady přechodných kovů se uplatňuje též interakce mezi magnetickým momentem vznikajícím v důsledku orbitalního pohybu elektronů a vnějším polem. Navíc v látkách, v jejichž struktuře nejsou jednotlivá paramagnetická centra dostatečně oddělena (spojená se např. přímou vazbou kov—kov nebo městkovým ligandem), dochází k složitým interakcím mezi magnetickými momenty jednotlivých center a výsledné magnetické chování látky je pak superpozicí řady efektů. Nicméně právě tyto složitosti magnetického chování látek jsou zdrojem dalších informací o jejich vnitřní struktuře.

• **Rozdělení reakcí koordinačních složení**

Reakce koordinační složení se rozumí jakýkoliv chemický děj, v němž jako reaktant vystupuje koordinační složení. Při jejich širším chápaní toho pojmu můžeme za reakci koordinační složení označit i takový děj, ve kterém komplexní částice bud jen přechodně vzniká, nebo je jeho produktem. Reakce koordinačních složení, resp. jejich jednotlivé kroky lze nejlépe klasifikovat podle toho, jaký je rozsah změn atomové a elektronové konfigurace částice a na které části komplexní částice jsou tyto změny lokalizovány.

1. Nejmenším změnám podléhá struktura komplexní částice tehdy, když se při reakci mění pouze její vnější koordinační sféra; když např. dochází ke změně kompenzujícího iontu, mění se solvovací částice molekulami rozpouštědla, asociace komplexních částic v roztoku nebo jejich
uložení v mřížce tuhé látky. Příkladem reakce tohoto typu je výložení žluté sraženiny hexanitrokobaltanu draselněho nebo amonného, když se k vodněmu roztoku hexanitrokobaltanu sodného přidá draselná nebo amonná sůl:

\[\text{[Co(NO}_2\text{)]}_3^{2-} + 3 \text{K}^+ \rightarrow \text{K}_3[\text{Co(NO}_2\text{)]}_3 \]

Hexanitrokobaltatanový ion se při tomto ději zbavuje své solvatační sféry a zbudovává se do mřížky tuhé látky. Dochází přitom jen k malým a nepodstatným změnám délky vazeb v komplexní částici. Jiným příkladem je reakce, kdy se z vodného roztoku tzv. Renneckovy soli - diamaminotetrakis(thiokyanato)chromitanu amonného - po vnesení kationtů některých kovů nebo nitrosového kationtu vylučují analytické významné barevné „renneckáty“:

\[\text{NO}^+ + [\text{Cr(NH}_3\text{)]_3(SCN)\text{]}^- \rightarrow \text{NO[Cr(NH}_3\text{)]_3(SCN)\text{]}^- \]

2. Velmi malé změny konfigurace komplexních částic zaznamenáváme, když částice podléhají izomerizačním dějům. Za izomerizaci lze považovat všechny intramolekulární změny struktury komplexní částice, které se neprerušují změnou jejího stochiometrického složení. Známá je izomerizační reakce přeměny nitrokomplexu na nitritokomplex:

\[[\text{Co(NH}_3\text{)]}_3[\text{NO}_2\text{]}]^{2+} \rightleftharpoons [\text{Co(NH}_3\text{)]}_3[\text{ONO}]]^{2+} \]

V ligantru NO\text{₂} dochází ke změně donorového atomu. Ačkoliv do této skupiny reakcí formalně patří i mnohé další izomerizační reakce (str. 151), např. u iontu tri(oxalato)železitanových reakce

\[\text{[Fe(C}_2\text{O}_4\text{)]}_3^{3-} \rightleftharpoons \text{I-[Fe(C}_2\text{O}_4\text{)]}_3^{3-} \]

je takovéto jejich zařazení často velmi problematické, protože skutečný mechanismus průběhu těchto reakcí bývá složitější a uplatňují se v něm kroky, které poznáme v dalších bodech tohoto třídiení. Například v uvedeném případě dochází při průběhu racemizační reakce tri(oxalato)železitanového iontu obojím směrem nejprve k odpoutávání chelatových ligandů jedním nebo oběma donorovými atomy a po přechodném obsazení volných míst koordinačního polyedru molekulami rozputněl na za úzavření tří chelatových cyklů.

3. Změnu počtu elektronů komplexní částice jsou provázeny všechny oxidace-reduční reakce koordinačních sloučení. Rozlišení mechaniky přenosu elektronů mezi reaktanty nebo mezi substrátem a elektrodou jsme poznali při popisu elementárních reakčních kroků (str. 190). Jen zřídka je oxidace nebo redukce komplexní částice prostým přenosem elektronu. Příkladem tak jednoduchých dějů jsou pravděpodobné oxidace iontů [Mn\text{III}(CN)\text{]}_6^{3-} a [Fe\text{VI}(CN)\text{]}_6^{3-} na [Mn\text{IV}(CN)\text{]}_6^{3-} a [Fe\text{VII}(CN)\text{]}_6^{3-} a samozřejmě i opačně probíhající redukce. Ve většině oxidace-redučních reakcí komplexních iontů je i samotný proces oxidace-redučního děje komplikovanější a navíc mu mohou předcházet nebo po něm následovat reakce, jako je např. atak ligandu na středový atom, eliminace určitéch skupin atomů nebo vzájemné reakce ligandů.

4. Významně je skupina reakcí, při nichž mitem v komplexní částici, které podléhá hlavní a největší vazebné změně, je některý z atomů ligandů. Příkladem příkladem reakce tohoto typu jsou interakce palladatného komplexu s diketony:
a ferrocenu s acetanhydridem:

\[
\begin{align*}
\text{Fe} & \quad + \quad \text{H}_3\text{PO}_4 \\
\text{C} & \quad \equiv \quad \text{C} \\
\text{CH}_3 & \quad \equiv \quad \text{CH}_3 \\
\end{align*}
\]

5. Nejběžnější jsou u komplexních částic reakce, při nichž vazebné změny postihují středový atom, čímž se často mění i sama podstata uspořádání v dané komplexní částici. Jsou to především samotné reakce vzniku nebo zániku komplexní částice koordinací ligandů na středový atom, popř. rozpadem komplexu na výchozí stavební jednotky. Patří sem i adice dalších ligandů na již existující komplexní částici i opačné děje, např.

\[
[\text{Pt(NH}_3])_2^2^+ + 2 \text{CH}_3\text{CN} \quad \Rightarrow \quad [\text{Pt(NH}_3)](\text{CH}_3\text{CN})_2^2^+
\]

a substituční reakce, probíhající různým mechanismem (str. 192), např.

\[
[\text{Co(NH}_3])_2\text{Cl}]^2^+ + \text{H}_2\text{O} \quad \Rightarrow \quad [\text{Co(NH}_3)](\text{OH})_2^2^+ + \text{Cl}^-
\]

\[
\begin{align*}
\text{R}^1 & \quad \text{R}^2 \quad \text{R}^3 \\
\text{C} & \quad \equiv \quad \text{C} \\
\text{R}^1 & \quad \equiv \quad \text{R}^2 \\
\text{R}^3 & \equiv \quad \text{R}^4 \\
\end{align*}
\]

V dalších krocích jsou novými členty molekulami ethinu vytvořeny z koordinací sféry tři aryllové skupiny R za současně redukce středového atomu chromu na oxidaciční stav 0. Potom vzniká vzájemnou reakcí ligandů druhá molekula substituovaného benzenu. Produktem reakce je substituovaný bish[5-benzenc]chrom:
Příklady některých technicky významných reakcí koordinačních sloučenin

Isomerací reakce alkenu spočívající v tom, že v molekule migruje po řetězci dvojná vazba, nebo v tom, že dochází k izomeraci cis-trans alkenu, mohou být katalyzovány hydridy nebo hydridokomplexy některých kovů (Rh, Fe, Ni aj.). Mechanismus děje spočívá v tom, že alkén vytvoří přechodný (h2-alken)nikelnatý komplex se středovým atomem NiII. Jeden z atomů vodíku molekuly alkenu přejde jako ligand na středový atom a zbylý sklení alkenu se pak již poutá jako h2-alken. Zpětným přechodem atomu vodíku na alkén a uvolněním alkenu substituci vzniká volná molekula alkenu s dvojnou vazbou posunutou o jeden článek řetězce. Zjednodušeně, bez znázornění ostatních ligandů, je tento proces vyjadřen schématem

Velmi obdobný je i mechanismus izomerace cis-trans.

Některé komplexy Ru, Rh, Pd, Ir, Ni a jiných kovů jsou schopné katalyzovat hydrogenaci alkenu. Mechanismus katalyzované reakce naznačuje zjednodušeně toto schéma:

Velmi zajímavý je předpokládaný mechanismus jednoho z nejstarších průmyslově využívaných procesů oxidace etylenu (a jiných alkenu) na aldehydy. Reakce probíhá ve vodním roztoku chloridu palladnatého, chloridu měďnatého a chlorovodíku. V roztoku se tvoří komplexní ionty [Pd(II)Cl4]2−, které reakci s plynným ethyleneum, uváděným do reakční směsi pod tlakem, poskytují v prvním reakčním kroku částici [Pd(II)Cl(h2-C2H4)] 2−, jejíž struktura je zcela obdobná struktuře aniontu Zeitovy soli (str. 527). V druhém kroku reakce je hydrolytickou reakcí substituován jeden z chloridových iontů vzniklá částice molekulou vody. Ta však ztratí jeden ze svých protonů
a vzniká tak nakonec komplex \([\text{Pd}^2\text{Cl}_2\{\text{OH}\}[\text{h}^2-\text{C}_2\text{H}_4]\}]^-.\) Inzercí molekuly ethylenu do vazby Pd—OH je potom zahájen děj znázorněný schématem:

\[
\begin{array}{c}
\text{Cl} \\
\text{Cl} \\
\text{Pd} \\
\text{H} \\
\text{H}
\end{array}
\quad \equiv \quad
\begin{array}{c}
\text{Cl} \\
\text{Cl} \\
\text{Pd} \\
\text{H} \\
\text{H}
\end{array}
\quad \equiv \quad
\begin{array}{c}
\text{OH} \\
\text{Cl} \\
\text{Pd} \\
\text{H} \\
\text{H}
\end{array}
\]

Poslední z uvedených částí se rychle rozpadá za vzniku acetaldehydu CH₃CHO, elementárního palladia, chlorovodíku a chloridových iontů. Vzniklé palladium okamžitě podléhá oxidaci přítomnou soli mědiatou:

\[\text{Pd} + 2 \text{Cu}^{2+} \rightarrow \text{Pd}^{2+} + 2 \text{Cu}^{+}\]

Měděná sůl se spontánně oxiduje vzduchem:

\[4 \text{Cu}^{+} + 4 \text{H}_2\text{O}^{+} + \text{O}_2 \rightarrow 4 \text{Cu}^{2+} + 6 \text{H}_2\text{O}\]

Ion \(\text{Pd}^{2+}\) je koordinován přítomnými ionty \(\text{Cl}^–\) a děj se opakuje.

V podstatě obdobnými katalytickými mechanismy probíhají i některé další průmyslové významné procesy, jmenovitě dimerace, oligomerace a polymerace molekul alkenů a dienů, popř. i cyklizace a kopolymorace těchto látek.

Mezi selektivními procesy zavádění kyslíku do uhlovodíkových tetřevců mají významné místo reakce s částí oxidu uhelnatého, tzv. hydroformylovace. Při styku některých elementárních kovů se směsí \(\text{H}_2\), \(\text{CO}\), alkenu a některých dalších látek pod tlakem se tvoří komplexní sloučeniny typu \([\text{Co}(...\text{H})]_n\), \([\text{Rh}(...\text{H})(...\text{Ph}_3)]_n\) aj. \([\text{Ni}(...\text{CO})]_n\) aj. Tyto látky mají klíčovou úlohu ve vlastním katalytickém mechanismu. Jeden z těchto poznaných sledů reakčních kroků si nyní vymysleme. Do vazby kov—vodka, znázorněme ji Me—H, vstoupí inzerčním mechanismem molekula alkenu. Hned poté opět inzercí, vstoupí do nové vzniklé vazby kovu s uhlikovým atomem molekuly CO. Reakce je dokončena regenerací východojícího kompleku těčkoum sloučeniny s aktivním vodíkem, kterou označíme HY. Celý uvedený děj je vyjádřen schématem:

\[
\begin{array}{c}
\text{Me—H} \\
\vdots
\end{array}
\quad \rightarrow \quad
\begin{array}{c}
\text{Me}—\text{C}—\text{C}—\text{H} \\
\vdots
\end{array}
\quad \rightarrow \quad
\begin{array}{c}
\text{MeH} + \text{Y—C}—\text{C}—\text{H} \\
\vdots
\end{array}
\]

Podle toho, jaká sloučenina je použita ve funkci HY, vznikají jako konečné produkty reakce aldehydy, kyseliny, alkoholy, amidy kyselin, ketony nebo estery.

Velmi intenzivní se dnes zkoumá možnost technického využití katalytických reakcí, při nichž do koordinační sféry středového atomu vstupují molekuly \(\text{O}_2\) nebo \(\text{N}_2\) a jsou katalytickým procesem většinou do uhlovodíkových tetřevců, nebo, v případě dusíku, jsou hydrogenovány za vzniku amoniaku, hydrazinu, alkylaminů apod.

\(^{11}\) Ph = fenyl.

537
26 Chemie přechodných kovů

Jako přechodné jsou označovány prvky zařazené v periodické tabulce ve skupinách 3A až 1B. V poslední době k nim bývají počítány i kovy ze skupiny 2B (Zn, Cd, Hg), ažkoli nesplňují definici přechodného prvku. Podle definice je přechodným takovým prvkem, jehož atomy alespoň s jedním ze svých nejrůznějších oxidácích států (četně oxidácího stavu 0) vykazují neúplné obsazení orbitálů d nebo f valenční sféry. Přitom za neúplné obsazení se považuje přítomnost jednoho až devíti elektronů na orbitalech d a jednoho až čtyřnácti elektronů na orbitalech f.

Přechodné prvky, v jejichž valenční sféře nejsou přítomny neúplně obsazené orbitaly f, bývají nazývány prvky bloku d (str. 158). Pokud mají neúplně zaplněné orbitaly 3d, jsou to prvky první přechodné řady:

\[
\begin{align*}
21 \text{Sc} & \quad 22 \text{Ti} & \quad 23 \text{V} & \quad 24 \text{Cr} & \quad 25 \text{Mn} & \quad 26 \text{Fe} & \quad 27 \text{Co} & \quad 28 \text{Ni} & \quad 29 \text{Cu} & \quad 30 \text{(Zn)}
\end{align*}
\]

Je-li součástí jejich valenční sféry neúplně obsazený soubor orbitalů 4d, jde o druhou přechodnou řadu:

\[
\begin{align*}
29 \text{Y} & \quad 40 \text{Zr} & \quad 41 \text{Nb} & \quad 42 \text{Mo} & \quad 43 \text{Tc} & \quad 44 \text{Ru} & \quad 45 \text{Rh} & \quad 46 \text{Pd} & \quad 47 \text{Ag} & \quad 48 \text{(Cd)}
\end{align*}
\]

Elektrony neúplně obsazený systém orbitalů 5d mají prvky třetí přechodné řady:

\[
\begin{align*}
55 \text{La} & \quad 72 \text{Hf} & \quad 73 \text{Ta} & \quad 74 \text{W} & \quad 75 \text{Re} & \quad 76 \text{Os} & \quad 77 \text{Ir} & \quad 78 \text{Pt} & \quad 79 \text{Au} & \quad 80 \text{(Hg)}
\end{align*}
\]

Přechodné prvky mají neúplně zaplněné orbitaly f, popř. orbitaly f, jejichž zaplnění bylo právě dokončeno, označujeme jako prvky bloku f. V případě souboru orbitalů 4f jde o tzv. lanthanoidy, prvky následujiící v periodickém systému po lanthanu:

\[
\begin{align*}
57 \text{Ce} & \quad 58 \text{Pr} & \quad 59 \text{Nd} & \quad 60 \text{Pm} & \quad 61 \text{Sm} & \quad 62 \text{Eu} & \quad 63 \text{Gd} & \quad 64 \text{Tb} & \quad 65 \text{Dy} & \quad 66 \text{Ho} & \quad 67 \text{Er} & \quad 68 \text{Tm} & \quad 70 \text{Yb} & \quad 71 \text{Lu}
\end{align*}
\]

Neúplné zaplnění orbitalů 5f je charakteristické pro skupinu tzv. aktinoidů, do níž se obvykle za-

hrnují, byť s určitými výjimkami (viz dále), prvky následující v přirozeně posloupnosti prvků po aktinii:

\[
\begin{align*}
92 \text{Th} & \quad 93 \text{Pa} & \quad 94 \text{U} & \quad 93 \text{Np} & \quad 94 \text{Pu} & \quad 95 \text{Am} & \quad 96 \text{Cm} & \quad 97 \text{Bk} & \quad 98 \text{Cf} & \quad 99 \text{Es} & \quad 100 \text{Fm} & \quad 101 \text{Md} & \quad 102 \text{No} & \quad 103 \text{Lr}
\end{align*}
\]

Všechny prvky mající přechodný charakter jsou prvky kovové, a proto se běžně nazývají přechodné kovy.

538
26.1 OBECNÁ CHARakteristika Přechodných kovů

Přechodné kovy v elementárním stavu jsou většinou obtížně tavitelné a mechanicky značně pevné. Vysokým bodem tání a velkou mechanickou pevností se vyznačují především kovy ze střední části bloku d. Také jejich tepelná a elektrická vodivost je velká.

Z technického hlediska jsou přechodné kovy a jejich slitiny většinou typickými kovovými materiály. Chemicky tomu tak není, neboť až na kovy skupiny 3A nevykazují přechodné kovy dostatek elektropozitivity, jejich oxidy a hydroxidy nejsou vyhraněnějšími zásadami, a naopak mohou z těchto sloučenin, zejména je-li kov ve vyšším oxidacičním stavu, mít uměrně nebo kyselé.

Všeobecně platí, že oxidaciční stavě přechodných kovů jsou velmi proměnlivé a pestré, neboť atomy těchto prvků se stabilizují dosažením nejrůznějších nepravidelných elektronových konfigurací. Přihlídejme-li k existenci neštěstných, výjimečných sloučení přechodných kovů a jejich doběhnutí je poměrně velkou skutečností, můžeme říci, že přechodným kovům jsou dostupné všechny nebo téměř všechny kladné oxidaciční stavy počínaje oxidacičním číslem I a končí oxidacičním číslem, které odpovídá číslu skupiny, do níž je prvek v periodickém systému zařazen. Mimo to jsou u přechodných kovů v některých jejich sloučeninách (vesměs komplexního charakteru) reálné dokonce i záporné oxidaciční stavy. Je samozřejmé, že přechodně prvkové se od sebe liší jak stabilním všech oxidacičních stavech, tak i jejich frekvence ve sloučeninách. Výklad stability oxidacičních stavů přechodných kovů nebyvá s výjimkou maximálních kladných oxidacičních stavů jednoduchý, neboť obvykle nejde o prosté dosažení nějakého jednoznačně jednotlivého oxidacičního konfigurace.

Nejlepší obsazení valenčních orbitalů d elektrony u přechodných kovů je hlavní příčinou takto unikátně rychleho od evasionu v jejich oxidacičních stavů. Mimo to podmiňuje již daleko dva charakteristické rysy sloučení přechodných kovů. Nejlepší zaplněné orbitaly d nebo f často obsahují nepravé elektrony. Toto se projevuje paramagnetismem takovýchto látek (str. 532). Navíc dochází v těchto složitých snadno k prevzetí elektronů (str. 531) spojeným s absorpcí viditelného světla. S tím souvisí známá barevnost valné části sloučení přechodných kovů, komplexních iontů atd.

Při celkovém pohledu na chemii přechodných kovů a jejich dělení je ještě povinné pomoci, že tyto prvky, uspořádané v periodické tabulce, vyznačují podobnost svých chemických vlastností jak v periodách, tak i v skupinách. Podobnost vlastností přechodných prvků současně spolu v periodách je vyvolána malým rozdílem hodnot elektronegativity a poloměrů atomů nebo izoterních iontů. Podobnost valenčních součástí prvků obsahuje valenčních štítů přechodných kovů. V bloku d prvků převládá podobnost vertikální až na výjimky, jako je třeba zelenk. Přitom platí, že nejvyhraněnější vlastnosti mají nejlehčí kovy z těchto skupin, tedy kovy první přechodné řady. V bloku f tvořeném lanthanoidy a aktinoidy jednoznačně převládá horizontální podobnost. Zcela extrémní je u lanthanoidů, mnohem méně patrná a řadou výjimek poroveně je vazebná podobnost prvků skupiny aktinoidů.

Uvedená skutečnost budeme respektovat i při výkladu chemie přechodných kovů. Přechodné kovy budeme probírat po skupínách periodického systému. Lanthanoidy a aktinoidy vyhodíme jako dva oddělené soubory prvků, přizpůsobují se ke skupině 3A a k jejím dvěma členům, lanthanu a aktinu.

26.2 SKUPINA SKANDIJA, LANTHANOIDY A AKTINOIDY

Skandium, yttrium, lanthan a aktinium jsou prvky skupiny 3A periodického systému. Vyznačují se elektronovou konfigurací valenční štěrby ns2 (n−1)d1. Se zřetelem k pozoruhodněmu jeho významu v nich byly vytvořeny orbitální orbitaly f a třeba do skupiny navíc zařadit dalších 28 prvků.

Čtrnáct prvků následujících v přirozené řadě prvků po lanthanu zapříná (s určitými drobnými nepravidelnostmi) orbitaly 4f. Mají tedy konfiguraci 6s2 5d1 4f1 4d2 5d3 6d4 7s2. Poznámku obsazování
systému orbitálů 4f, skrytého uvnitř atomů, nemá vliv na jejich vazebné možnosti, a naopak ta část valenční sfeřy, která způsobuje vazby u těchto atomů uskupuje, zůstává v podstatě neznámena, jsou chemické vlastnosti, lanthanoidů výrazně uniformní. Přitom všech čtrnáct prvků je vyslovenou analogi lanhanu.

Obdobně čtrnáct prvků následujících po aktiniu zaplňuje vnitřní orbitály 5f, a jsou proto analogie aktinia. Poměrně velký počet atomů podél celého aktinoidového periodického systému je podobnost těchto prvků s aktiniovými v některých případech velmi nezřetelná. Mnoho z aktinoidů se blíží svými chemickými vlastnostmi prvkům v jiných skupinách periodického systému.

Charakteristickým rysem chemie skandia, yttria, lanhanu, lanthanoidů, aktinia a některých aktinoidů je to, že se dosti výrazně odchyluje od představchemického chování typických přechodných kovů, jak jsme již popsal v předchozím oddíle. Tyto kovy jsou poměrně výrazně oxidativní (neelektropozitivnější ze všech přechodných kovů) a elektronová konfigurace jejích valenční sfeřy se stabilizuje odrážením tří elektronů na konfiguraci vzácného plynu. Je tak dosaženo oxidačního stavu III. Ke stabilizaci jiným způsobem nedochází. Pouze u lanthanoidů a aktinoidů jsou poměrně stálé i jiné oxidační stavy než III. Tedy u prvků skupiny 3A chybí proměnlivost oxidačních stavů charakteristických pro přechodné kovy. Poměrně poměrně odrážením tří elektronů na konfiguraci vzácného plynu je u skandia, yttria, lanhanu a aktinia dosaženo konfigurace vzácného plynu a jejich valenční orbitály d) jsou prázdné, nejsou sloučeny těchto prvků barevně ani paramagneticky. I tím se tyto prvky odlučují od typických přechodných kovů.

Skandium

Jeho atomy mají elektronovou konfiguraci valenční sfeřy 4s² 3d¹. Při vytváření vazby se stabilizují odrážením tří elektronů na konfiguraci argonu a dosahují oxidačního stavu III.

I když v rámci skupin o stává skandium nejčastěji elektropozitivním prvkem, řadí se k málo ušlechtilým kovům. Snadno reaguje s vodou, vzdušným kyslíkem, oxidem uhličitým a kyselinami. Má nařízně skonštruktování i jiné komplexní ionty a má v nich koordinální číslo 4 až 6. Jako donorové atomy se v těchto částech uplatňují jeho látky O a F. Vodík skanditý Sc₂O₃, a hydrid skanditý Sc₄(OH)₄ jsou amfoterní a ve skupině 3A nejčastěji bazické.

Florid, uhličitan, sian, fosforečan a šavelan skanditý jsou velmi rozpustné látky. Rozpustné soli skandité, např. důjčitý, snadno hydrolyzují a vznikají tak oxid-solí, hydrid skanditý nebo oxid skanditý.

Technický význam sloučení skandia je malý.

Yttrium

Atomy yttria v základním stavu mají elektronovou konfiguraci valenční sfeřy 5s² 4d¹. Stejně jako skandium uvolňují velmi ochutné celou trojič valenčních elektronů, nabývají elektronové konfigurace kryptoru a dosahují oxidačního stavu III. Používají je yttrium ještě elektropozitivnější než skandium, jsou je sloučeniny poměrně iontovéjší, oxid a hydroxid jsou bazické i bazické i elementární yttrium je ještě menši ušlechtilé než skandium.

Sloučeniny yttria, zejména Y₂O₃ (tzv. yttriový granát) nalezly významné použití i v elektrotechnice (mikrovlápní technika, laser) a v jaderné technice (moderatory).

Lanthan a lanthanoidy

Dalšími prvkami skupiny 3A je lanthan a lanthanoidy, které se s elektronovou konfigurací valenční sfeřy 6s² 5d¹. Nabývá stabilního oxidačního stavu III a jejich chováním je něco znělšího, ale vytvářejí se již větší silně bazické a zcela postrádají amfoterní charakter. Jsou
Proto také velmi dobře rozpustné ve vodě. Poněvadž kation lanthanitý má elektronovou konfiguraci xenonu, jsou lanthanité soli velmi bezbarvé a diamagnetické. Lanthanité ionty jeví jen malou tendenci k tvorbě komplexních částic.

Elektronové konfigurace atomů lantanoidů, tedy článků prvků následujících po lantanu a lantantu chemicky velmi příbuzných, jsou spolu s konfiguracemi vznikajícími při dosažení poměrně stálých oxidačních stavů uvedeny v tab. 26-1.

Tabulka 26-1. Elektronové konfigurace atomů lantanoidů a vyjádření stability jejich oxidačních stavů

<table>
<thead>
<tr>
<th>Prvek</th>
<th>Elektronová konfigurace valenční sféry</th>
<th>Oxidační stav</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4f</td>
<td>5d</td>
</tr>
<tr>
<td>57La</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>58Ce</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>59Pr</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>60Nd</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>61Pm</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>62Sm</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>63Eu</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>64Gd</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>65Tb</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>66Dy</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>67Ho</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>68Er</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>69Tm</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>70Yb</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>71Lu</td>
<td>14</td>
<td>1</td>
</tr>
</tbody>
</table>

*) Velikost kroužků kvalitativně odpovídá stabilitě uvedeného oxidačního stavu.

Z tabulky vyplývá, že kromě hlavního oxidačního stavu III se u lantanoidů vyskytují oxidační stav II (u Sm, Eu, Tm a Yb) a IV (u Ce, Pr a Tb). Oproti je potvrzována správnost již dříve uvedeného poznatku, že poměrně stálé jsou s poloviny a úplně zaphalené skupiny degenerovaných orbitálů. Kladné oxidační stavy jsou charakterizovány výskytem elektronových konfigurací f⁷ a f⁶, jakož i f⁴. Vznikají je tehdy, musí-li být přítom některá porušené výstavbové princip nebo dosaženo jiného oxidačního stavu než III.

Poněvadž lantanoidy mají neúplně obsazený systém orbitálů 4f umístěný hluboko v elektronovém obalu atomu a vnitřní část valenční sféry, rozhodující o rozměrech atomu, je naopak neměnná, pozorujeme ji při postupu v řadě prvků od lanthanu až k luteceu, že poloměry jejich atomů a iontů (3+) se nejen nezvětšují, ale naopak porušují zmenšují. To proto, že se vzniklo náboje jádra je elektronový obal, jmenovitě jeho vnitřní část, lokalizován blíže k jádru. Jev je při již dříve uveden jako tzv. lantanoidovou kontrakci (str. 123).

Typická je pro skupinu lantanoidů výrazná uniformita jejich chemických i fyzikálních vlastností. Svým chemickým chováním se velmi blíží lanthanu. Stejně jako lanthan poskytuje tyto kovy při spálení na vzduchu oxidy typu Mo₂O₃; výjimkou je cer, tvořící CeO₂.
Jsou Neušlechtile, značně reaktivní a mají pro svou výraznou elektropozitivitu sklon tvořit převážně iontové vazby. V jejich vzájemných slitinách a ve slitinách s jinými kovy se tvoří vazba kovová.

Oxidy a hydroxidy těchto kovů jsou silně bazické.

Atomy lantanoidů v oxidárním stavu III obsahují většinu nepárových elektronů, a jsou proto paramagnetickými centry. U praseodymu, neodymu, promethia a samaria a u dysprosia, holmia, erbia a thúlia je přítomnost nepárových elektronů těží příčinou barevnosti jejich sloučení.

Kompleksotvornost lantanoidů není sice jejich výraznou vlastností, ale komplexy vytvářejí, mají v nich dokonce vysoká koordinační čísla (6 až 9), avšak stabilita těchto komplexních částic bývá malá.

Technický význam lantan an lanthanoidů (důležitě se vyskytujících v zemské kůře, a proto velmi vzácných a obtížně připravitelných1) byl v minulosti mizivý. Nyní jejich uplatnění dosti rychle vzrůstá. Lanthanoidy se používají jednak v elementárním stavu, např. v metalurgii (str. 473), jednak ve formě sloučení. Oxidy některých lanthanoidů jsou složkami keramických materiálů a skel, popř. se používají k jejich barvení. Další sloučeniny lantanoidů se uplatnily v katalyzaci, v elektrotechnice a elektronice (ultrafalové, viditelné a infračervené lasery, barevné obrazovky aj.).

Aktinium a aktinoidy

Z prvků následujících v přirozené řadě za aktiníni — aktinoidů — se v přírodě vyskytuje ještě thorium, protaktinium a uran. I tyto prvky jsou radioaktivní. Ostatní aktinoidy, tzv. transurany, se v přírodě nevyskytují a byly připraveny jadernými reaktory.

Jak již bylo uvedeno, je skupina aktinoidů z hlodiska chemických vlastností mnohem méně uniformní než lantanoidy. Uvoľňování elektronů a vytváření stabilních elektronových konfigurací je značně nepravidelné. Přítom tendence poskytovat valenční elektrony do vytvářených vazeb a dosahovat vysokých kladných oxidárních stavů je u některých aktinoidů velká a do značné míry souvisí i s jejich značnou elektropozitivitou. Přehled více či méně stabilních oxidárních stavů aktinoidů podává tab. 26-2. jak vidíme, thorium je nejstabilnější v oxidárním stavu IV, a proto se řadí svým chemickým chováním k prvky skupiny 4A; obdobně protaktinium s poměrně velmi stálým oxidánním stavem V se připomá ke skupině 5A a uran, běžně se vyskytující v oxidárním stavu VI, bývá často zařazen do skupiny 6A. Také u neptunia a plutonie existuje vzťah ke skupině 7A a je projevuje se tím, že u nich může být dosaženo oxidánního stavu VII. Další prvky následující v přirozené řadě po plutoniu mají opět chemicky velmi blízko k aktiníni, a jsou tedy typickými představiteli aktinoidů. Také u aktinoidů se zmenšují polomer řízne barevních iontů v přirozené řadě prvků, jde o tzv. aktinoidovou kontrakci.

Všechny aktinoidy v elementárním stavu jsou velmi elektropozitivní a neušlechtile kovy, reagující se vzduchem i s vodou. Chemie nižších oxidázních stavů aktinoidů je chemii iontových sloučení. Pro výšší oxidánní stav je charakteristická tvorba oxaanionů výraznějším uplatněním kovalentní vazby. Běžná je u aktinoidů tvorba komplexních částic; středový atom v nich mají velká koordinační čísla, obdobně jako u lanthanoidů, ale tyto komplexy nejsou příliš stabilní. Část chemické uplatnění v techniky a průmyslové praxi není u aktinoidů s výjimkou některých sloučení uranu a thoria velké. Avšak zcela mimofádný význam i uplatnění mají aktinoidy —

1) Promethium se v přírodě nevyskytuje a bylo připraveno uměle.
af již v elementární formě, nebo ve formě skloučenín – v jaderném inženýrství a jaderné energetice, v lékařství, biologii a biocherně, v zemědělství i v řadě dalších oborů vědy a techniky.

Tabulka 26-2. Elektronové konfigurace atomů aktinoidů a vyjádření stability jejich oxidacíích stavů

<table>
<thead>
<tr>
<th>Prvek</th>
<th>Elektronová konfigurace valenční sféry</th>
<th>Oxidační stav</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4f</td>
<td>5d</td>
</tr>
<tr>
<td>Ac</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Th</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Pa</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>U</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Np</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Pu</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Am</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Cm</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Bk</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Cf</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Es</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Fm</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Md</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>No</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>Lr</td>
<td>14</td>
<td>1</td>
</tr>
</tbody>
</table>

*) Velikost kroužků kvalitativně odpovídá stabilitě uvedeného oxidacíního stavu.

26.3 SKUPINA TITANU

Tuto skupinu tvoří prvky *titan, zirkonium a hafnium*. Chemickým chováním a elektronovou konfigurací se k ní přimyká *aktíniové thorium a zřejmě je jejím členem i prvek s atomovým číslem 104 – *kurátozium*. O thorio jsem se zmínili při výkladu chemických aktinoidů a uměle připravené kurátoziovum je prozatím chemicky zcela bezvýznamně, proto se zde uvedenými dvěma prvky nebudeme zabývat.

Skupině titanu přísluší v periodickém systému prvků označení skupina 4A. Její prvky mají *elektronovou konfiguraci* valenční sféry n²(n – 1)d². Mohou se proto stabilizovat odlučením čtyř elektronů na elektronovou konfiguraci vzácných plynů a dosahovat maximálního oxidacíního stavu IV, který je u všech tří prvků hlavním oxidacíním stavením. Z trojice těchto prvků nejstarší vytváří nižší oxidacíni stavy a dokonce i stavy záporné titan. Prokazuje tak svou příslušnost ke skupině předchozích kovů. Zirkonium a hafnium mají vzájemně velmi podobné chemické chování. Oba prvky jsou totiž přibližně stejně elektropozitivní, oba stejně neochotně nabývají oxidacíních stavů nižších než IV a poloměry atomů Zr⁴⁺ a Hf⁴⁺ jsou si velmi blízší.

Oxidační stav IV je absolutní hodnotou příliš výsoký, aby mohl být realizován vysloveně iontovou vazbou. Vázby vytvářené titanem jsou proto vazbami převážně kovalentními. Iontovitost obdobných vazeb zirkonia a hafnia je zřetelně vyšší.
Znázorně elektropozitivitou titanu, zirkonia a hafnia se projevuje lítm, že jsou v elementárním stavu mělo ušlechtilo. Přítom je pozoruhodné, že všechny tři kovy, ačkoliv by měly reagovat i s vodou, se velmi obtížně rozpuštět v kyselinách. Příčinu je těžba vidět v kinetických závazných mechanizmu rozpuštění a v pasivaci povrchu kovů. Svědčí o tom to, že odolnost konkrétního kovového materiálu velmi závisí na jeho čistotě a na mechanickém zpracování povrchu.

Titan

Atomy titanu mají elektronovou konfiguraci valenční středy 4s² 3d² a mohou nabývat oxi-

dačních stavů IV, III, II, 0, -I a -II. Stálý je pouze oxidáni stav IV s elektronovou konfigurací

vzácného plynu argonu a formalně prázdnými orbitály d (konfigurace d⁰).

V běžných jednoduchých sloučeních se atomy Ti⁴⁺ poukazí ke vznikábo významným čtyřmi

kovalentními tetraedricky orientovanými vazbami (hybridizace D²S). Příkladem je vazba v mole-

kule TiCl₄. Atomy Ti⁴⁺ mohou být i estivazivé. Šestice vazeb je přídomněm oktaedricky (hybridizace D²S²). Toto struktura má např. ion TiCl₆⁶⁺. Jeden výjimečně jsou atomy Ti⁴⁺ pětivazivé, pokud k této nežádoucí koordinaci dochází, má koordinaci polyédr tvar trigonální bipyramidy (hybridizace DSP²). V několika případech mají atomy Ti⁴⁺ koordinaci číslo 7 nebo 8.

Jde o komplexní částice, v nichž jsou ligandy ionty F⁻, např. O²⁻.

Obdobnými způsoby jako atomy Ti⁴⁺ se vžává i atomy Ti³⁺ (elektronovou konfiguraci d¹). Atomy Ti²⁺ (konfigurace d²) bývají koordinovány téměř výhradně oktaedricky, stejně jako velmi nestálé a jen v komplexních částicích existují atomy Ti⁰ (konfigurace d⁰), Ti⁻¹ (konfigurace d⁴) a Ti⁻² (konfigurace d⁶).

Sloučeniny Ti⁴⁺ jsou až na výjimky bezbarvé a diamagnetické. Sloučeniny titanu v nižších

oxidačních stavech jsou barevné (modré, fialové, hnědé), paramagnetické a vždy velmi snadno oxidovatelné na sloučeniny Ti⁴⁺. Redukce Ti⁴⁺ na nižší oxidační stavy vyžaduje naopak použití silných reduktovatelů.

2 TiCl₄ + H₂ = 2 TiCl₃ + 2 HCl

Reaktivita elementárního titanu je zejména při vyšších teplotách značná. Titan reaguje s vodíkem, kyslíkem, halogeny, dusíkem, uhlíkem, křemičem a borem za vzniku binárních slou-

čením, z nichž mnohé jsou velmi pevné, tvrdé a tepelně odolné látky. Spalováním kovového titanu v kyslíku vzniká TiO₂, avšak při určitých podmínkách spalování se tvoří i řada nižších oxidů.

V kyselinách se titan rozpuštět neochotně, zvláště je-li čistý a jeho povrch je mechanicky vyleštěn. Reakcí s kyselinou chlorovodíkovou za nepříjemnost kyslíku vzniká silt TiCl₄.

2 Ti + 6 HCl + 12 H₂O = 2 [Ti(H₂O)₆]⁺Cl⁻ + 3 H₂

Produktom oxidace kovového titanu kyselinou dusičnou je hydratovaný oxid titanitičitý. Titan se dále rozpuští i v kyselině fluorovodíkové (viznájí fluorokomplexy Ti⁴⁺ a Ti⁳⁺) a v horké kon-

centrované kyselině sírové (tvoří se TiOSO₄, zřetelně se využívá TiO₂ c hydratované formě). Odolavá však působení roztoků a tavenin hydróxidů alkalických kovů.

Přev organokovové sloučeniny titanu byly izolovány a identifikovány teprve před třiceti lety. Až dosud byly popsány látky, v nichž titan vykazuje oxidální stav IV, III a II. Jsou to slou-

čeniny obecných vzorců R₄ Ti, R₂ Ti a R₂ Ti, kde R je alkyl nebo aryl. Část ze skupin R v molekule typu R₄ Ti ovšem může být nahrazena halogenem, alkoxylkou skupinou apod. Proto např. kromě (C₅H₅)₂ Ti existuje i (C₅H₅)₂ Ti(OCH₂CH₂CH₂CH₂) a kromě (CH₃)₄ Ti též (CH₃)₂ TiCl₂ atd. Organokovové sloučeniny typu R₄ Ti a R₂ Ti jsou podstatně méně stálé a méně běžné než sloučeniny typu
R₂Ti. Poměrně dobrou stabilitu vykazují organometokové sloučeniny s nespecifikovanými donorovými atomy uhličí, např. \([\text{H}^3\text{C}-\text{C}H_2]_2\text{Ti}\) a \([\text{H}^3\text{C}-\text{C}H_2]_2\text{Br}\). Všechny jsou však organometokové sloučeniny titanu extrémně snadno hydrolyzovatelné na vazbě \(
abla - \nabla\), a pokud obsahují atom Ti v nižším oxidacičním stavu, pokračují se oxidují při styku se vzduchem.

Velký význam má intermediární tvorba vazeb \(\nabla - \nabla\) v klasicke Zieglerové–Nattaově katalyzované polymeraci alkenů. Jde o důj, jestliže do vazby \(\nabla - \nabla\) vstupují inercním mechanismem další a další molekuly ethenu za vzniku rozsáhlého lineárního uhlikátoho řetězce:

\[
\nabla - \nabla + n\text{CH}_2=\text{CH}_2 = \nabla \nabla - \nabla \nabla^{-n}\n\]

Při tomto heterogenně nebo i homogenně realizováním výrobním procesu se do systému tvořeného TiCl₃ a R₃Al zavdí ethen nebo jiný alkén. Dnes se však již široce uplatňují katalytické systémy s jinými komponentami.

Také TiO₂ patří k technicky významným sloučeninám titanu. Vyskytuje se v přírodě ve třech modifikacích: Redukční chloraci se TiO₂ převádí na TiCl₃. Tato kapalina se destiluje a potom hydrolyzuje na čistý TiO₂. Pod názvem titanová bílina slouží tento jemně krystalický oxid jako pigment v keramice, při výrobě barev, smaltů aj.

Podvojné oxidy Ti²⁺ a Me⁶⁺ (Me = Ca, Sr, Ba, Zn, Fe, Mn, Mg) o složení MeTiO₃ často nesprávně jako titančitanu, nelezí pouze jako keramické materiál na výrobě konduktorů. BaTiO₃ je piezoelektrický materiál a používá se v ultrazvukových generátořích.

Kovalentní karbidy a nitridy titanu, připravované redukcí TiO₂ uhličtem nebo přímým slučováním titanu s dusíkem, vyznačující se kapalinou kovalentníh nějkou typu NaCl, jsou mimořádně tvrdé a netřeskavé materiály uplatňující se při obražení kovů.

- Zirkonium a hafnium (viz na str. 572)

26.4 SKUPINA VANADU

Vanad, niob a tantal jsou prvky skupiny 5A. K této skupině bývá též přiřazován jeden z aktinoidů – protactinium – a patří do ní i uměle syntetizovaný prvek o atomovém čísle 105.

Prvky skupiny vanadu mají elektronovou konfiguraci valenční sféry \(n^m(n-1)d^\). Formální ztrátou všech pětých elektronů valenční sféry získají elektronovou konfiguraci vzácných plynů a nabývají maximálního oxidácího stavu V. U prvku skupiny 5A je tento nejvyšší oxidácí stav staven neštěstí. Avšak zjmena vanad snadno dosahuje též oxidací stavu nízké. Vanad tedy vyzkazuje typické chování přechodného kovu. Podstatně méně je vyvinuta variabilita oxidácích stavů u niobu a tantalu. Oba prvky si jsou chemicky velmi blízké. Důvod je stejný jako u prvku skupiny 4A (zirkonia a hafnia) – malé rozdíly v atomových i iontových poloměrech obou prvku, nepatrný rozdíl hodnot elektronegativity a malá ochota stabilizovat se v nížších oxidácích stavech.

Již u prvky skupiny 4A jsem konstatoval, že jejich nejvyšší oxidaciční stav nemůže být realizován iontovou vazbou. Totéž tím spíše platí pro prvky skupiny vanadu a pro jejich oxidacičen stav V.

Všechny tři kovy jsou v elektroinám stavu poměrně uslechtilé, ale navíc se jejich povrch při styku s vodou a s roztoky kyselin pasivuje. Výsledkem je velká odolnost všech tří kovů k oxidujícím kyselinám.

- Vanad

Vanad má elektronovou konfiguraci valenční sféry \(4s^2 \text{d}^1\). Jeho atomy mohou nabývat oxidácích čísel V, IV, III, II, I, 0 a –I. Velmi stabilní je oxidacičen stav V (elektronová konfigurace d⁵), zejména když vazebními partnery atoma vanadu jsou atomy vysoko elektroaktivní.
Atomy vanadu v oxidacičním stavu V mohou mít tetraedrickou \(\text{VO}_4^{3-} \), trigonalně bipyramidální \(\text{VF}_6^2- \), oktaedrickou \(\text{VF}_6^- \) a dodekaedrickou \(\text{VO}_4^{2-} \) koordinaci. Sloučeniny V⁷⁺ jsou diamagnetické, kdežto u sloučení vanadu v nižších oxidacičních stavech pozorujeme naopak paramagnetické chování a barevnost. Atomy vanadu v oxidacičních stavech V, IV a III jsou stálé v formě oxokomplexů, hydrooxokomplexů a aquokomplexů v vodních roztocích, zatímco sloučeniny V⁷⁺ v vodní roztoku jeví značnou nestabilitu, neboť redukují protony na elektroanodní vodík. Ještě nižší oxidaciční stavy jsou u vanadu stálé výhradně jen v některých neběžných komplexních částicích. Jako ligandy v nich vystupují částice s vyslovenými σ-donorovými i π-donorovými schopnostmi a zvětšují hustotu elektronového obalu na středovém atomu.

Elementární vanad je odolný proti působení kyselin a vodních roztoků hydroxidů. Snadno se rozpouští jen v kyselině fluorovodíkové. Mimoto jej rozpouštějí pouze koncentrované oxidující kyseliny, avšak jak za horka. V taveninách hydroxidů alkalických kovů se vanad rozpouští za vývoje vodíku a vzniku vanadičanů.

Jsou známy jeho oxidy \(\text{V}_2\text{O}_3 \), \(\text{V}_2\text{O}_5 \), \(\text{V}_2\text{O}_5 \), \(\text{V}_2\text{O}_3 \) a \(\text{V}_5\text{O}_3 \), \(\text{V}_5\text{O}_3 \), \(\text{V}_5\text{O}_3 \) je oxid kovalentního charakteru s kyselými vlastnostmi, ale \(\text{V}_5\text{O}_3 \) je jen iontový a zřetelně bazický. Zbytek dvou oxidů tvoří přechod mezi oběma extrémy.

Oxid vanadičný \(\text{V}_2\text{O}_5 \) se nejlepší připravi termickým rozkladem tetravanadičanu amonového:

\[
(\text{NH}_4)_2\text{V}_2\text{O}_5 = 2\text{V}_2\text{O}_5 + 4\text{NH}_3 + 2\text{H}_2\text{O}
\]

Vzniká těž spakováním vanadu v kyslíku. Ostatní oxidy se získávají poměrně snadno redukci \(\text{V}_2\text{O}_5 \), oxidem sířičitým, vodíkem nebo přímo kovovým vanadem.

Jako chemická individua jsou známy dvě kyseliny vanadičné, \(\text{H}_2\text{V}_2\text{O}_7 \) a \(\text{H}_2\text{V}_4\text{O}_{12} \). Od nich a od dalších hypotetických kyselin polyvanadičných se odvozuje složení rozsáhlé skupiny vanadičanů, např. \(\text{Me}_2\text{V}_2\text{O}_7 \), \(\text{Me}_5\text{V}_2\text{O}_6 \), \(\text{Me}_5\text{V}_2\text{O}_7 \), \(\text{Me}_5\text{V}_2\text{O}_{12} \) atd. Ve vodních roztocích vanadičanů nastává v závislosti na hodnotě pH roztoků kondenzace na polyvanadičany:

\[
\begin{align*}
2\text{V}_2\text{O}_5^- + 2\text{H}_2\text{O} & \rightarrow \text{V}_2\text{O}_7^{2-} + 3\text{H}_2\text{O} \\
2\text{V}_2\text{O}_7^{2-} + 4\text{H}_2\text{O} & \rightarrow \text{H}_2\text{V}_4\text{O}_{12}^{3-} + 5\text{H}_2\text{O} \\
2\text{H}_2\text{V}_4\text{O}_{12}^{3-} + 2\text{H}_2\text{O} & \rightarrow \text{H}_2\text{V}_8\text{O}_{16}^{5-} + 3\text{H}_2\text{O}
\end{align*}
\]

Mimoto se tvoří i pentavanadičanové ionty \(\text{H}_2\text{V}_8\text{O}_{16}^{5-} \) a jí.

Velmi zajímavý je pohled na stabilitu halogenidů vanadu. Fluor dokáže svou velkou elektro-negativitou stabilizovat vanad především v jeho nejvyšších oxidacičních stavech. Je proto známy sloučeniny \(\text{VF}_3 \), \(\text{VF}_4 \) a \(\text{VF}_5 \). Fluoridy vanadu v nižším oxidacičním stavu nebyly připraveny. Opačně je tomu u jodidů. Pod stabilizuje nízké oxidaciční stavy atomů vanadu, a proto známe pouze jodidy \(\text{V}_3 \) a \(\text{V}_5 \). Halogenidy vanadu v oxidacičním stavu V, IV a III všměr ve vodě hydrolyzují. Hydrolyzou vanadičných sloučenin je přítom značná; soli vanadičné naproti tomu hydrolyzují jen nepatrně. Při hydrolyze halogenidů vanadičných vznikají v prvé fázi halogenid-oxid, při úplné hydrolyze v alkaličním prostředí se tvoří vanadičanové ionty. Halogenidy vanadatné, stejně jako ostatní vanadatné soli, jsou schopny redukce reakce s protony ve vodných roztocích. Jejich redukčním působením vzniká vodík a vanad se oxiduje na vyšší oxidaciční stav.

K stálým sloučeninám vanadu patří síran vanaditý, podvojní síran vanaditý typu \(\text{Me}_2\text{V}_2\text{O}_6(\text{SO}_4)_2 \), \(\text{H}_2\text{O} \), sulfidy a polysulfidy vanadu v různých oxidacičních stavech a zejména jeho karbidy a nitridy, které mají intersticiální uspořádání mřížek a jsou velmi tvrdé a netěkavé.

Poměrně pevně je chemie koordinačních sloučení vanadu. Vanad v oxidacičním stavu V se ochotně stává středovým atomem fluorokomplexů a oxokomplexů. V nižších oxidacičních stavech pak vytváří velmi rozsáhlou řadu komplexních částic a podobně se svou komplexotvorností atomům \(\text{Fe}^{II}, \text{Fe}^{III}, \text{Cr}^{III} \). V takovýchto komplexech má nejčastěji koordinační číslo 4 nebo 6.
Z organokovových sloučenin vanadu je třeba připomenout karbonyly, např. [V(CO)₅], a cyklopentadieny s nespecifikovanými donorovými atomy uhlíku, např. [(h⁵-C₅H₅)₂V], [(h⁵-C₅H₅)₂VY] a [(h⁵-C₅H₅)₂V₂] (Y = Cl, alkyl, aryl aj.). Některé z těchto sloučenin se stejně jako podobné sloučeniny titanu uplatňují při katalytických kopolymeracích směsi alkenů.

Významné upotřebení v katalýze má V₂O₅ (str. 203). Velmi rozšířené je již uvedené použití kovového vanadu v ocelářství.

- Niob a tantal

Podle výstavbového principu by atomy těchto prvků měly mít elektronovou konfiguraci valenčních sfer 5s² 4d⁴ a 6s² 5d⁴. Předpokládá se, že v atomech niobu je tato konfigurace přesným a na energetický poměr výhodnějším řešením, protože uspořádání 5s² 4d⁴ je energeticky vyhodnější. Chemické chování niobu tím není nijak odlišné.

Oba prvky nejznámější oxidaci stavy V₂O₅, které jsou při obdobjí vzduchu vytvářející atomy vanadu V⁴⁺. Nižší oxidaci stavy jsou u niobu a tantalu málo obvyklé a značně nestálé.

Elementární niob a tantal jsou velmi odolné k působení kyselin. Koncentrované oxidující kyseliny je dokonce ani za horčík nerozpusťejí. Oba kovy odolávají i působení lučištní kyseliny.

Jednou z významných vlastností niobu je jeho neobvyklé stavy, které jsou všechny oxidující kyselinami, vektorám vodě a zeleně.

Bezvodý oxid niobiového a oxid tantaliového lze připravit dehydratací hydrátů těchto oxidů nebo soli. Reakci se roztavenými hydroxy alkalkických kovů.

Bezvodý oxid niobiového a oxid tantaliového lze připravit dehydratací hydrátů těchto oxidů nebo soli. Reakci se roztavenými hydroxy alkalkických kovů.

- Niob i tantal v oxidaci stavy V₂O₅ se občas stávají středovými atomy fluorokomplexů a oxidokomplexů a mají v těchto částech velká koordinace čtýř.

Nejvýššího oxidaci stavy dosahují niob a tantal i ve svých halogenidech. Halogeny niobiového a tantaliového jsou velmi silné látky.

Nižší oxidaci stavy vykazují atomy niobu a tantalu v poměrně silných oxidících reakcích Nb₂O₅, Nb₂O₇, Ta₂O₅, Ta₂O₇. Připravu se redukci s elektrolytickým nebo elektrolytickým kovem.

Smešování látky Nb₃O₉ a halogenidy typu NbY₄, Ta₂O₅ (Y = F, Cl), je velmi silná a stále látky niobsobě vzniklou niobiu a tantalu je stabilní a těchto čtyři oxidaci čtýř.

Chemické vlastnosti sloučenin niobu a tantalu je velmi silná prozkoumána. Studována byla tvorba a vlastnosti karbonylových, cyklopentadienidů a alkylkových.

26.5 SKUPINA CHROMU

Skupina 6A periodického systému obsahuje kovy chrom, molybden a wolfram. Svým chemickým chováním se k ni přiměřeně těži aktinoid uran. Vlastnosti jiných členů této skupiny by při respektování výstavbového principu měla mít elektronovou konfiguraci ns²(n−1)d⁴. U chromu a molybdenu lze pozorovat přesnější jediného elektronu ze vzniku elektronové konfigurace ns²(n−1)d⁴. Na chemické chování obou prvků tato skutečnost nemá vliv.

Všechny prvky skupiny 6A se mohou stabilizovat formálním odtržením šesti elektronů za zvýšenou elektronovou konfiguraci vzácněho plynu a dosažení maximálního oxidace stavy VI. Stejně jako tomu bylo v předchozích skupinách periodické tabulky prvků, je i zde tento nejvyšší možný oxidace stav stává nejčastějším. Nejvýše realizován tvorba iontové vazby, případně

547
vyhodně vznikem vazeb kovalentních. Relativně nejméně stabilitu tohoto voského oxidačního stavu vykazuje chrom. Sloučeniny Cr³⁺ jsou všemisně silná oxidovadla. Liší se tak od obdobných sloučenin molybdenu a wolframu, jejichž oxidační působení je mnohem slabší.

Kromě nejvýššího oxidačního stavu VI dosahují prvky skupiny chromu řady dalších nižších oxidačních stavů, a jsou proto typickými představiteli přechodných kovů. Přítom největší variabilitu oxidačních stavů pozorujeme u chromu.

Odolnost kovů skupiny chromu proti působení chemických prvků a sloučenin vzrostá k rostoucímu atomovému číslo prvku, tedy od chromu k wolframu. Například chrom reaguje se všemi halogeny, molybdenem již nepodléhá reakci s jodem a wolfram je i při vyšších teplotách odolný proti působení jodu i bromu. Také ochota reagovat s kyslíkem, chlorkygeny, uhličtem, křemičtem nebo borem je největší u chromu. Za povinností stojí, že žádný z těchto kovů nereaguje s vodíkem. Podobným způsobem se mění ve skupině 6A i schopnost kovů reagovat s kyselinami.

Aktinoid uran, pokud jej ke skupině přílišme, porušuje všechny uvedené reglace, vykazuje velkou reaktivitu k prvkům i sloučeninám, reaguje s kyselinami i hydroxydami a podléhá reakci s vodíkem. Může být oznámen za velmi reaktivní, značně elektropozitivní a neustálezhý kov.

Chrom

Chrom má elektronovou konfiguraci valenční sféry 4s² 3d⁶. Nejstálejšími a nejšílejšími dosažovanými oxidačními stavu chromu jsou VI (konfigurace d⁶) a III (konfigurace d⁵). Za nepřítomností redukovaných látek je stálý též oxidační stav II (konfigurace d⁷). Relativní stálost byla prokázána ještě u oxidačních stavů V, IV, I, 0, −I a −II. Atomy chromu v oxidačním stavu VI vykazují výlučně tetraedrickou (anion CrO₄²⁻) nebo deformovanou tetraedrickou (anion Cr₂O₇⁴⁻, molekula Cr₂O₇²⁻) konfiguraci. K vytvoření čtyř vazeb přispívá na atomu chromu orbitaly 4s a 3d (hybridizace D⁴). Na slabé interakci π se vedou orbitaly 3d v menší míře podílejí i orbitaly 4p.

Velmi stálý oxidační stav III je realizován u atomu chromu využitelně jen oktaedrickou nebo deformovanou oktaedrickou koordinací [mřížka Cr₂O₃, anion [Cr(CN)₆]⁴⁻ a j.].

Elementární chrom je za laboratorní teploty na vzduchu zcela stálý, neboť se jeho povrch pasivuje. Rozpouští se ochotně ve zvlhčené kyselině chlorhydrákové a kyselině sírové. Při styku s taveninami hydroxydů alkalických kovů za přítomnosti vzdušného kyslíku poskytuje chromany.

Chrom tvoří dva významné oxidy. Oxid chromový CrO₃, který je silně kyselý, má kovalentní charakter a s vodou dává roztok kyseliny chromové. Oxid chromitý Cr₂O₃ je naproti tomu amfoterní látkou a vodě se nerozpouští. Je-li vyžehnán, nereaguje s kyselinami. Oxid chromový je vyslovený oxidačním činidlem, s mnoha látkami schopnými oxidace reaguje dokonce explozivně. Oxid chromitý je naopak redoxně indiferentní. Oxid chromový lze připravit kondenzací chromanu v sílě kyselin prostředí:

\[\text{CrO}_3^+ + 2 \text{H}_2\text{O}^- = \text{Cr}_2\text{O}_3 + 3 \text{H}_2\text{O} \]

Oxid chromitý se nejčastěji připravuje rozkladem dichromanu amonného

\[(\text{NH}_4)_2\text{Cr}_2\text{O}_7 = \text{Cr}_2\text{O}_3 + \text{N}_2 + 4 \text{H}_2\text{O} \]

nebo především v přímé horké redukci chromanů a dichromanů (např. uhličtem nebo sírou).

Také hydroxid chromitý Cr(OH)₃ je amfoterlní látkou. Se silnými zásadami poskytuje hydroxo-chromitany

\[\text{Cr(OH)}_3 + \text{OH}^- = [\text{Cr(OH)}_4]^− \]

548
a s kyselinami naopak dává soli chromitě. Lze jej připravit hydrolyzou soli chromitých v alkalicím prostředí.

Oxidy a hydroxidy obsahující atomy chromu v dalších, méně běžných oxidačních stavech jsou vesměs látky málo stálé.

Chromany jsou soli kyseliny chromové H₂CrO₄. Žlutě zbarvený chromanový anion podléhá v kyselém roztoku kondenzační reakci

\[
2 \text{CrO}_4^{2-} + 2 \text{H}_2\text{O}^+ = \text{Cr}_2\text{O}_7^{2-} + 3 \text{H}_2\text{O} \\
\text{Cr}_2\text{O}_7^{2-} + \text{CrO}_4^{2-} + 2 \text{H}_2\text{O}^+ = 3 \text{CrO}_4^{2-} + 3 \text{H}_2\text{O}
\]

která vede ke vzniku oranžově zbarvených polychromanových aniontů. Od nich se odvozuje stehniomietrické složení dichrománů, trichrománů a dalších sloučení tohoto typu. Chromany i polychromany jsou silná oxidovadla. Chromany lze připravit neutralizací vodných roztoků kyseliny chromové, lze je těžit z různých

\[
2 \text{Cr}_2\text{O}_7^{2-} + 4 \text{Na}_2\text{CO}_3 + 3 \text{O}_2 = 4 \text{Na}_2\text{CrO}_4 + 4 \text{CO}_2
\]

Formální náhradou atomu kyslíku v chromanovém iontu atomem halogenu vzniká anion halogenochromový, je přítomen v halogenochromanech, např. v chlorochromanu draslém

\[
\begin{array}{c}
\text{K}^+ \\
\text{Cl} \\
\text{Cl} \\
\text{Cl} \\
\text{Cr} \\
\text{O} \\
\text{O}
\end{array}
\]

který se připraví varem kyseliny chlorovodíkové s dichromanem:

\[
2 \text{K}_2\text{Cr}_2\text{O}_7 + 2 \text{KCl} = 2 \text{KCrO}_4\text{Cl} + \text{H}_2\text{O}
\]

Nahrazením dvou atomů kyslíku v chromanovém iontu atomy chloru se získá molekula dichlorid-dioxidu chromového CrCl₂O₂. Tuto červenou kapalinou látku lze připravit reakcí

\[
2 \text{K}_2\text{Cr}_2\text{O}_7 + 4 \text{KCl} + 3 \text{H}_2\text{SO}_4 = 2 \text{CrCl}_2\text{O}_2 + 3 \text{K}_2\text{SO}_4 + 3 \text{H}_2\text{O}
\]

Obdobné sloučeniny obsahují brom nebo iod, však lze je prakticky nezískat.

Při přímém slučování halogenů s chromem lze u chromu dosáhnout nejvyšší oxidačních stavů V a IV, a to jenom při vzniku fluoridů (existují CrF₃ a CrF₄), ostatní halogeny poskytují halogenidy chromitě [CrCl₃, CrBr₃ a CrI₃]. Jejich redukcí např. vodíkem se připraví halogenidy chromaté [CrCl₂, CrBr₂ a CrI₂]. Ve vodních roztocích lze redukovat všechny chromité sloučeniny na sloučeniny chromaté účinkem kovového práškového chromu nebo zinku, popř. katodickou redukcí, např.

\[
2 \text{Cr}^{3+} + \text{Zn} = 2 \text{Cr}^{2+} + \text{Zn}^{2+}
\]

Možné zbarvení soli chromaté je extrémně účinná redukovaná, schopná stejně jako soli valnitelné redukovat za vhodných podmínek protony z vodního roztoku na elementární vodík.

Sulfidy chromu ve vyšších oxidačních stavech nejsou známy. Stálý je sulfid chromitý Cr₂S₃, který lze získat přímou syntezou z prvků.

Znázorňávají se tři nitridy a karbidy chromu, jmenovitě CrN, CrN₂ a Cr₂C₂.

Komplexní sloučeniny chromu jsou jedinou z nejrozšířenějších a nejrozmanitějších skupin komplexních sloučení. Nejčastěji v nich vystupuje v roli středového atomu kation chromitý.
Obvyklými ligandy jsou molekuly vody, amoniaku, aminů, pyridinu, močoviny a ionty F⁻, Cl⁻, Br⁻, CN⁻, SCN⁻, C₂O₄²⁻, NO⁻ i řada dalších.

Zajímavou skupinu látek tvoří estery kyselin chromově. Také třída organokovových sloučenin chromu je velmi rozsáhlá a pevná. Kromě hexakarbonylu chromu [Cr(CO)₆] a jeho derivátů, např. typu [Cr(CO)₅Y] ± (x + y = 6, Y = CN⁻, SCN⁻, NCS⁻, CI⁻, Br⁻, I⁻, PR₃, NH₃ aj), byly připraveny bishexa-berzenychrom ([(h₆-C₆H₆)₂Cr], chromocen ([(h₅-C₅H₅)Cr] a další sloučeniny smíšeného typu, např. [(h₅-C₅H₅)Cr(CO)₃H], [(h₅-C₅H₅)Cr(CO)₂] aj).

Technický význam sloučenin chromu je značný. Oxid chromový je složkou pokovovacích lázní, používá se jako oxiadací činidlo a může být výhodou látkou pro přípravu některých organokovových sloučenin a esterů kyselin chromově. Chromocen a estery kyselin chromové se uplatňují v katalytické chemii, zejména v organické syntéze. Soli chromitě a chromany slouží k vybarování tkanin, k mření a lepání kovů a v kožedělném průmyslu při vyčišťování kůží. Chromany se též užívají při výrobě organických barvírů. Některé sloučeniny chromu mají upotřebení jako anorganické pigmenty (Cr₂O₃, PbCrO₄ aj). V ocelářství, při výrobě slitin neželezných kovů a při proti korozní ochraně kovových součástek je používán chrom, jak jsme se již díváme zmínto, velmi významné. Ale svrhnutého zdroje chromu se vyčerpává a mimo to jsou jeho sloučeniny (Cr₃⁺) toxické, a tedy je výrobě velmi nebezpečné, a proto se v poslední době usiluje o jejich nahrazení jinými materiály vhodných vlastností.

- Molybden

Atomy molybdenu mají elektronovou konfiguraci valenční sféry 5s¹ 4d⁵. Snadno se stabilizují dosažením oxidaceho stavu VI (konfigurace d⁶), v němž formálně mají konfiguraci vzácněho plynu kryptonu. Stálý je též oxidaci stav IV (konfigurace d⁵). Poměrně běžné jsou sloučeniny molybdenu v oxidacích stavech V (konfigurace d⁴), III (konfigurace d³) a II (konfigurace d²). V některých sloučeninách chemického charakteru byla prokázána existence oxidacích stavek I (konfigurace d²), 0 (konfigurace d⁰) a -II (konfigurace d⁴).

\[\text{Mo} + 3 \text{NaNO}_3 + \text{Na}_2\text{CO}_3 = \text{Na}_2\text{MoO}_4 + 3 \text{NaNO}_2 + \text{CO}_2 \]

Jeho oxid, hlavně oxid molybdenu(6) MoO₃, se chovají jinak než sloučeniny chromu. MoO₃ je nerozpustný ve vodě, má vysoký bod tání a také jeho kyselost a oxidaceční účinky jsou podstatně menší než u oxidu chromového. Odechyně chování je vytvořeno polynerním charakterem místy oxidu molybdenu(6), vytišti elektroozitivitou molybdenu ve srovnání s chromem a podstatně větší stabilizou oxidaceho stavu VI. Redukci MoO₃ oxidem lze získat oxid molybdéničitý MoO₂⁺. Jako mezistupně těto reakce vznikají smíšené tuhé oxidy obsahující atomy Mo⁶⁺, Mo⁵⁺ a Mo⁴⁺.

Reakcí MoO₃ s oxidu nebo oxidu hydroxydů alkalických kovů lze připravit molybdény, které patří mezi nejstáléjší sloučeniny molybdenu. Jejich oxidaceční účinky ve srovnání s účinky chromu jsou zřetelně slabší. Význam je sklon molybdénanového aniontu k polykondenzaci, kterou lze pozorovat v neutrálních a kyselých rozčelech. Prostřední tetraedrický anion molybdénanový MoO₄⁻₂ je stálý pouze v alkalickém prostředí. Dojeďte-li k otupení bazity roztoku přidávkem kyselin, nastává kondenzace na heptamolybdenan

\[7\text{MoO}_4^{2⁻} + 8\text{H}_2\text{O}⁺ = \text{Mo}_7\text{O}_{24}^{3⁻} + 12\text{H}_2\text{O} \]
nebo oktamolybdenan:

\[8 \text{MoO}_4^{2-} + 12 \text{H}_2\text{O}^+ = \text{Mo}_8\text{O}_{26}^{26+} + 18 \text{H}_2\text{O} \]

Kondenzační reakce podléhá molybdenanový anion někdy i za spolupůsobí cizích aniontů, které
jevi podobnou kondenzační schopnost. V takovém případě se tvoří tzv. heteropolyaniony, např.

\[\text{PO}_4^{3-} + 12 \text{MoO}_4^{2-} + 24 \text{H}_2\text{O}^+ = \text{PMo}_{12}\text{O}_{40}^{24-} + 36 \text{H}_2\text{O} \]

Zajímavou strukturou vzniklého heteropolyaniontu zachycuje obr. 26-1. Jednotlivé oktaedry na
obrázku znázorněné představují skupiny MoO₆, vytvářející strukturu složitého aniontu. Ve středu
celého útvaru je tetraedricky koordinovaný atom P⁺.

![Obr. 26-1. Prostorová struktura iontu tetrakis(trimolybdatofosforečnanového P[Mo(O₂)₆]₂⁺](image)

Kyselina molybdenová H₂MoO₄·H₂O na rozdíl od kyseliny chromové prakticky postrádá
oxidační účinky. Je velmi málo rozpustná ve vodě. I tím se výrazně líší od kyseliny chromové.
Kyselinu molybdenovou lze připravit vytvořením silnou minerální kyselinou z molybdenanu.

Halogenidy molybdenu se odvozují od jeho oxidačních stavů VI, V, IV, III a II. Fluor
v důsledku velké hodnoty elektronegativity lépe stabilizuje vyšší oxidační stav molybdenu (existují
MoF₆, MoF₅, MoF₄ a MoF₃), jod naproti tomu poskytuje jodid molybdenu v nižších oxidačních
stavech (existují MoI₄, MoI₃ a MoI₂). Struktura nižších halogenidů molybdenu je velmi složitá,
napr. MoCl₂ má polyjednou strukturu s vazbami Mo—Mo. Atomy Mo⁷⁺ nejsou ve struktuře
této sloučeniny ve skutečnosti vůbec přítomny. Podobné uspořádání mají i halogenidy Mo₂⁰⁺, MoIV⁺
a MoV⁺. Všechny halogenidy molybdenu podléhají při styku s vodou hydrolyze a halogenidy mo-
lybenu v nižších oxidačních stupnících se za přítomnosti vodu uvolňují kyslík i oxidují.

Molybden vytváří dva stálé sulfidy — MoS₂ a MoS₃. Pro molybdenanový anion je charakte-
ristická jeho schopnost nahradit své atomy kyslíku atomy síry za vzniku aniontu tetrathio-
molybdenanového:

\[\text{MoO}_4^{2-} + 4 \text{S}^{2-} + 4 \text{H}_2\text{O} = \text{MoS}_2^{2+} + 8 \text{OH}^- \]

Stejné jako chrom a kovy skupiny 5A tvoří i molybden intersticiální nitridy a karbidy
(Mo₅N₉, MoC), vznášející se velmi kompaktními, velkou tvrdostí a malou těžkostí.

Molybden se vyznačuje velkou schopností k tvorbě komplexních částic, a to především
molybden v oxidačních stavech VI, V a IV. Molybden jako středový atom dosahuje vysokých
koordinačních čísel (často se vyskytuje koordinační číslo 8). I když ligandy se uplatňují CN⁻, SCN⁻,
F⁻, Cl⁻, O²⁻, OH⁻, některé organicke anionty a molekuly (cheláty) a anorganické oxaanionty

55
Rozsáhlá je skupina organokovových sloučenin molybdenu. Molybdén se vžde se skupinami CO za vzinku karybnylů a jejich derivátů a je schopen vazby s anionty C₄H₄⁺ a anionty boranů a karbonanů i s alkyly a arylly. V organokovových sloučeninách se vyskytují též vazby Mo—Mo a Mo—halogen.

Největší použití má molybdén v elementárním stavu v ocelářství při výrobě některých speciálních slitin vynikajících velkou chemickou odolností. Uručité uplatnění nalezly jeho solidy (jako maživa), heteropolykyselany (v analytické chemii) a smíšené oxidky, vyznačující se intenzivně modrým zabarvením (analytická chemie, barvářství).

Wolfram

Atomy wolframu s elektronovou konfigurací valenční sféry 6s² 5d⁴ jeví výraznou snahu stabilizovat se na oxiдаční stav VI (konfigurace d⁶). Přestože jsou pro wolfram dosažitelné i nižší oxiдаční stavy, tendence k jejich realizaci je minimální.

Oxid wolframový a wolframy nemají téměř žádné oxiдаční účinky. Kyselina wolframová je ve vodě nerozpustná a může se připravovat vytišněním ze svých soli — wolframanů — silnéjšími minerálními kyselinami. Je málo kyselá a také nemá oxiдаční účinky. Wolframy polykondenzují v kyselém prostředí a kromě izopolyaniontů vytvářejí za přítomnosti vhodných cívic aniontů i heteropolyaniony.

Redukci wolframanů alkalických kovů se tvoří intenzivně zbarvené těžké fáze, tzv. wolframové bronzy, v nichž je čast atomů wolframu redukována na oxiдаční stav W⁷⁺ a složení těchto látek je proto nesetchohiemtrické.

Celé chemie wolframu připomíná chemii molybdenu, a to jak existenci a vlastnostmi bi-nárních sloučenin, tak i chováním wolframanů a dalších ternárních sloučenin.

Méně rozsáhlá je chemie jeho organokovových sloučenin i variabilita typů těchto látek. Totě platí i o komplexních sloučeninách wolframu. Wolfram v oxiдаčním stavu VI může být ko-ordinován jen několika málo druhů ligandů. Nižší oxiдаční stavy, které by se mohly v tvorbě komplexních částic výraznější uplatnit, nejsou, jak již bylo uvedeno, u wolframu běžné.

Uran

Uran patří do skupiny aktinoidů. Švédci o tom i uspořádání jeho valenční sféry 7s² 5f³ 6d¹. Chemickým chováním se však blíží prvěk skupiny chromu. Poněvadž jak kovový uran, tak i uranát může i jeho sloučeniny mají technický význam, uvedeme jeho podrobnější charakteristiku.

Nejvýši oxiдаční stav, jakého může uran dosáhnout, je VI (elektronová konfigurace d⁶ f⁹). Mimoto jsou stejné jako u ostatních prvěk skupiny chromu stálé jeho oxiдаční stavy V, IV a III. Elementární uran je kov velmi málo ušlechtilý a dosti elektropozitivní. Na vzduchu se prudce oxiduje, při spalování shozí na smíšený oxid U₃O₈.

Oxid uranový UO₂, který lze připravit termickým rozkladem dusičanu uranu UO₂[NO₃]₂, je slabě amfoter. Rozpustí se v kyselinách na uranylové soli a s roztoky hydroxidů alkalických kovů poskytuje uranany. Diuranan sodný Na₂U₃O₈·6H₂O má použití jako pigment (uránová žluť).

Z halogenidů uranu je důležitou sloučeninou UF₆, který v důsledku kompaktní struktury své oktadrické molekuly je látkou těkavou. Toho se využívá při dešťení izotopů ²³⁵U a ²³⁸U při získávání jaderného paliva.

552
Uran ve svých komplexních sloučeních dosahuje velmi vysokých koordinačních čísel (8 až 12). Tvorba komplexů uranu je velmi důležitým jevem v procesech dělení komponent „vyhololeho“ jaderného paliva a při získávání uranu a jeho sloučení z přírodních zdrojů.

26.6 SKUPINA MANGANU

Jižní členy jsou mangan, technecium a rhenium. Mangan a rhenium mají elektronovou konfiguraci valenční sféry ns²(n − 1)d⁵. U technecia je jeden elektron převeden z orbitálu s do orbitálu d. V periodickém systému prvky vytváří skupinu manganu skupinu 7A.

Valná část sloučení manganu, technecia a rhenia má kovalentní charakter. Výraznější podíl iontovosti lze předpokládat jen u takových sloučenin, v nichž je kov v nízkém kladném oxidačním stavu (II).

Mangan patří k prvům v přírodě dosti rozšířeným, a je proto poměrně dostupný. Radioaktivní technecium se v přírodě sice vyskytuje (vzniká v nepatrné míře rozpadem jader uranu), ale tak vznášejí, že se je donedávna v přírodě nedálo prokázat. Hlavním jeho zdrojem byly a jsou nukleární syntézy, spočívající v bombardování jader molybdenu deuteroný.

Rhenium patří k nejvaznějším kovům, vyskytujícím se v přírodě ve velmi malém množství.

- Mangan

Atomy manganu se vyznačují elektronovou konfigurací valenční sféry 3d⁶. Při formálním odtržení všech sedmi valenčních elektronů nabývá mangan maximálního oxidačního stavu VII (konfigurace d⁵). Prakticky všech sloučeních Mn⁷⁺ jsou atomy manganu koordinovány tetraedricky (hybridizace Dₛ⁵) a systém vazeb je proveden interakcí r. Příkladem je uspořádání aniontu MnO⁴⁻ nebo molekulu H₂MnO₄, Mn₂O₆ aj. Oxidační stav VII u manganu zdejška není stálý, atomy Mn⁷⁺ se často redukují na nižší oxidační stavy.

Velmi stabilní je oxidační stav II (konfigurace d⁵). Koordinacím polyedrem atomů Mn⁵⁺ bývá čtvercová čtverec čtyředr. Ještě je vznikne jeho rozpora s atomy Mn⁷⁺ a silně elektronegativní atomu Mn⁵⁺ nebo skupiny atomů, má vzniknout vazba výraznější iontový charakter.

Stálý je u manganu též oxidační stav IV (konfigurace d³). Je nejčastěji realizován oktaedrickou koordinací. Atomy Mn⁴⁺ mají zřetelné oxidační účinky a jejich snaží se přijít na velmi stálý oxidační stav II.

U manganu se vyskytuji i další oxidační stavy VI (konfigurace d¹) a V (konfigurace d²), např. v oxoaurtitech MnO₄⁻ a MnO₆⁻ nebo v některých komplexních částicích. Oxidační stav III (konfigurace d⁴) má mangan jak v některých binárních sloučeních (např. MnF₃), tak i v komplexních částicích [(Mn(CN)₆)³⁻].

V komplexních sloučeních s ligandy CO, NO, CN⁻, některými organickými molekulami a ionty se mohou stabilizovat i neobvykle oxidační stavy I (konfigurace d⁵), 0 (konfigurace d⁶), −1 (konfigurace d⁷), −II (konfigurace d⁸) a −III (konfigurace d⁹).

Mangan je obzvlášť tavitelný neušlechtilý kov. Rozpouští se ve vodných roztocích kyselin a hydroxidů alkalických kovů za uvolnění vodíku a vzniku sloučení Mn⁴⁺. Nejeví sklon k pasivaci svého povrchu.
Zeleně zbarvený oxid manganyt MnO má zřetelně bazické chování. Ani běžný a ve vodě ne-
rozpevněný Mn(OH)₂ není amfoterní, má bazický charakter a rozpouští se v kyselinách za vzniku
manganátu solí. Při stiku se vzdusným kyslíkem se oxiduje na nestálý hnedý hydratovaný oxid
manganitý, popř. až na černý Mn₂O₇.

Oxid manganitý MnO₂ je sloučenina vyznačující se zejména v kyselém prostředí silnými
oxidačními činšti. Je zřetelně amfoterní.

Oxidy, resp. hydratované oxidy manganu v oxidacích stavcích V a VI nejsou známy.

Hypotetickou nebo jen intermediárně vznikající kyselinu manganovanou je nutno považovat
za silnou kyselinu. Známé jsou její soli — manganany. Manganany jsou v tůhlem stavu stálé, v roz-
tocích však pouze v případě, když prostředí je silně alkalkické. V kyselém roztocích disproporcionují:

\[3 \text{MnO}^{2-} + 4 \text{H}_2\text{O}^+ = 2 \text{MnO}_2^- + \text{MnO}_2 + 6 \text{H}_2\text{O}\]

Oxid manganitý MnO₂ je exploziívni, silně kyselá zelená kapalina. S vodou poskytuje
velmi silnou kyselinu manganovanou H₂MnO₄, která je stejně jako MnO₄⁻ silným oxidovačem.

Kyselina manganitá je stálá jen ve vodním roztoku. Soli — manganany — jsou rovněž
silně oxidovadla. V kyselém prostředí se redukují až na súl manganatou:

\[\text{MnO}_4^- + 8 \text{H}_2\text{O}^+ + 5 e^- = \text{Mn}^{2+} + 12 \text{H}_2\text{O}\]

V alkalkickém prostředí nastává redukce na hydratovaný oxid manganitý:

\[2 \text{MnO}_2^- + 3 \text{SO}_4^{2-} + \text{H}_2\text{O} = 2 \text{MnO}_2 + 2 \text{OH}^- + 3 \text{SO}_4^{2-}\]

Naopak oxidovaná súl manganatou nebo oxid manganitý na manganitanový anion je možné
jen nejsilnějšími oxidace činšti, např. PbO₂, PrO₂, CeO₂, některými peroxydlovými
(částího kyseliny peroxydovu), BiO₃⁻, FeO₄²⁻, (IO₄⁻), Br⁻, nebo anodickou oxidací. K usku-
tečné oxidace se podle použitího oxidace činšti může pracovat also kyselým, nebo v zá-
saditím prostředí. Téměř všechny tyto oxidace jsou katalyzovány přítomností stop těžkých kovů
ve výchovních chemikáliích.

Halogeny manganu se odvozují pouze od jeho oxidacích stavů II a III, fluoridy těž od
oxidaceho stavu IV. Sulfdy manganu jsou dvě: MnS a MnS₂. Oba lze připravit přímou syntézou
z prvků, prý, na něco ve formě trů různých modifikací struktur ve vodním roztoku soli manganaté
sulfanem.

Vznik karbidu Mn₃C příslušným složením prvků je přičinou toho, proč nelze vyrábět kovový
mangan redukce jeho oxidů těžkou. Mn₃C je netěšená intersticíální složeninou.

Dušík tvoří s manganem dva nitridy, Mn₃N a Mn₅N.

Existuje i řada dalších binárnych složenin manganu s nekovy a s polokovy.

Karbonyl mangany má složení \([\text{Mn}_{12} \text{CO}_{14}]^2\) a odvozuje se od něj velká skupina dalších
složenin, např. \([\text{Mn}_{12} \text{CO}_{14}]^2\), \([\text{Mn}_{9} \text{CO}_{14}]_2\) (L = PF₅, PCl₅, P(C₂H₅)₃, P(C₅H₁₄)₃ aj.). Tyto látky
lze přiřadit do velmi početné skupiny organokových složenin typů RMn₃Y (např. CH₃MnCl),
Mn₂R₂ (např. Mn₂(CH₃)₂) a Mn₃R₃ (např. Mn₃(CH₃)₃), MeMn₃R₃ (např. LiMn₃(C₂H₅)₃) aj. Je známa
i skupina organokových s nespecifikovanými vazbami, např. acetylidy, allylidy a cyklopentadieny
manganu.

Technický význám mají složeniny MnO₂, Mn₂O₃ a KMnO₄ jako oxidovač. Veľké
uplatnění nalezl kovový mangan v ocelářství při legování ocelí a závazné je i jeho použití při
výrobě slitin neželezných kovů.

Technecium a rhenium

Valencií síra atomů technecia má elektronovou konfiguraci 5s¹4d⁶, u rhenia obdobně
jako u manganu má valencií síra uspořádání 6s²5d⁵. Oba prvky se přesto od sebe velmi málo

554
liší svými chemickými vlastnostmi a vlastnostmi svých sloučenin. Rozhodující vliv na chemické chování technecia a rhenia má především stabilita jejich jednotlivých oxidačních stavů, která je v obou prvků obdobná.

Na rozdíl od mangany je u technecia a rhenia stále především jejich nejvyšší oxidační stav VII. To je patrně i z existence a relativní stability některých jejich binárních sloučenin.

U technecia jsou známy dva oxidy – černý TeO₂ a žlutý Te₂O₇. U rhenia byla zjištěna existence tři oxidů – černého Re₂O₇, červeného ReO₃ a žlutého Re₂O₇. Zatímco Te₂O₇ je dosti silným oxidovadel, je u Re₂O₇ tato vlastnost již značně utlumená. Nejvyšší oxid obou prvků mají silně kyselé vlastnosti. S vodou poskytují kyselinu techneciovou a kyselinu rheniovou. Od těchto kyselin se odvozují příslušné soli – technecistany a rhenistany. Kyseliny a jejich soli mají oxidaci schopnosti, avšak zdaleka ne tak mohutné jako obdobné sloučeniny mangany.

Zatímco jsou známy halogenidy mangany v oxidačních stavcích II, III a jen výjimečně IV, pozorujeme u technecia a rhenia tvorbu halogenidů odvozených od značně vyšších oxidačních stavů (Te – IV, V₁, Re – III, IV, V, VI, VII). Většina těchto halogenidů vzniká přímým sloučováním prvků, poř. redukcí nebo termickým rozkladem vyšších halogenidů.

Analogická je i tvorba sulfidů u technecia a rhenia. Byla prokázána existence sulfidů Te₂S₄, TeS₂, Re₂S₃ a ReS₃. Již sama skutečnost, že Te₂S₄ a Re₂S₃ jsou stálé látky nepodlžající vnitřní redoxní změně, při níž by se snižoval oxidační stav kovu a sulfidový anion, by se oxidoval na elementární síru, svědčí o tom, jak stále je oxidační stav VII u obou kovů.

Rhenium a technecium tvoří karbonyly a organokovové sloučeniny obdobných typů jako mangany. Ve srovnání se sloučeninami mangany jsou tyto látky poněkud méně prostudovány.

Podobná situace je i u komplexních sloučenin technecia a rhenia. Navíc snaha vystupovat v roli středových atomů komplexních sloučenin je u technecia a především u rhenia poměrně malá. Rhenium vytváří komplexy pouze s anionty F⁻, OH⁻ a O₂⁻, díleží těž s některými organickými anionty a s molekulami, jako je amoniak, pyridin, aminy a některé další.

Technický význam sloučenin technecia a rhenia je nevěký. Rhenium jako elementární kov nebo ve formě sitin se uplatňuje v některých speciálních přístrojích (termoelektrické články, topná zařízení) ve vědě a technice. Sloučeniny rhenia a kovového rhenium mají upřesněni v katalyze (katalýza hydrogenačních a dehydrogenačních procesů ve organické chemii).

26.7 TRIÁDA ŽELEZA

Osmou skupinu ¹) periodického systému tvoří devět prvků, rozdělených do tři trojic, tzv. triád. Prvá z nich – triáda železa – obsahuje prvky železo, kobalt a nikl z prvé přechodné řady.

V přírodě se tyto prvky vyskytují poměrně kumulováno v ložiskách, takže jsou dobře do-

¹) V názvu této skupiny se obvykle vynechává značení písmenem a skupina vzácných plynů se v tom případě označuje jako skupina nutlíc. Užívá se však i jiný způsob značení, při němž se vzácné plynové považovač za skupinu 8B a prvky z tríad železa, lehkých a těžkých platinových kovů za prvky skupiny 8A.
stupně. Nejvíce je rozšířeno železo, pak nikl a na posledním místě v této trojice prvků je nejméně hojný kobalt.

Velký technický význam těchto kovů, zejména železa, je všeobecně známý.

Železo

Atomy železa mají elektronovou konfiguraci valenční slohy \(4s^2 3d^6\). Železo dosahuje oxidučních stavů II (konfigurace \(d^5\)) a III (konfigurace \(d^4\)). Jednoduché soli železnaté jsou vše stálé, ale mají redukční schopnosti, a proto velmi snadno podcházejí oxidací vzdutým kyslíkem nebo jinými oxidovadly na soli železité. U komplexních částic se středovými atomy Fe\(^{3+}\) je tomu naopak, tyto koordinací sloučeniny jsou většinou dosti stálémi oxidovadly a redukují se uvolněně na stálé komplexní částice se středovým atomem Fe\(^{3+}\). Tento jev byl již na str. 320 vysvětlen.

Kromě uvedených nejběžnějších oxidacech stavy se atomy železa mohou stabilizovat dosazením poměrně vysokého kladného oxidaceho stavu VI. Oxidační schopnosti sloučenin obsahujících atomy Fe\(^{3+}\) jsou extrémní.

Dalšími zvláštními výjimečnými oxidacemi stavy železa jsou V (konfigurace \(d^4\)), IV (konfigurace \(d^3\)), III (konfigurace \(d^3\)), I (konfigurace \(d^2\)) a II (konfigurace \(d^1\)).

Oba nejstáléjší oxidacní stavy, II a III, se u atomu železa realizují vznikem při tetraedrické nebo oktaedrické koordinaci [hybridizace \(D_4^2\) a \(D_3^3\)].

Čisté železo je poměrně někdy, kudy kov je ferromagnetický. Není kovem ušlechtilým a v kyselinách se rozpouští za vývoje oxidu a vzniku soli železnatých:

\[
Fe + 2H_2O^+ \rightarrow Fe^{2+} + 2H_2O + H_2
\]

V přítomnosti kyslíku nebo při rozpořažení v oxidačních kyselinách se tvoří soli železné. Velmi odolné je železo proti pásobení roztoků hydroxidů alkalických kovů nebo jejich tavenin.

Při vyšších teplotách se železo sloučuje se všemi nekovy na binární sloučeniny a v mnohých kovy pokrytuje intermetalické sloučeniny nebo slitiny. Na vzdachu podobně pásobení vzdutého kyslíku a vlhkosti a rezavé. Vysvětluje čisté železo s kompaktní polykrystalickou strukturou nebo naopak slitiny železa s jinými kovy a také železo s obsahem karbidů a grafického uhlíku mohou být proti korozi velmi odolné.

Jsou známy dva jednoduché oxidy železa – oxid železnatý FeO a oxid železitý Fe\(_2\)O\(_3\), a jeden smíšený oxid železnato-železitý Fe\(_3\)O\(_4\).

Oxid železnatý FeO je hrozivější než Fe\(_2\)O\(_3\). V kyselinách se dobře rozpouští za vzniku soli železnatých, pokud není přítomen vzdušný kyslík, který by byl velmi rychle oxiwowal na soli železnaté. Již sám FeO má v těch fází nestochiometrické složení, neboť obsahuje kromě atomů Fe\(^{3+}\) také atomy Fe\(^{2+}\), a to i tehy, kde připrava např. termickou dehydratací hydroxidu železnatého nebo rozkladem uhlíkatého železnatého probíhala za napětí uvdachu.

Červený oxid železitý je v jedné ze svých modifikací ferromagnetický. Rozpořádají se v kyselinách za vzniku soli železnatých. Jeho tavení s oxidy jiných kovů vede k vzniku podtových oxidů se spinelovou nebo „obrácena“ spinelovou strukturou.

Tavením FeO nebo Fe\(_2\)O\(_3\) s oxidy nebo hydroxidy alkalických kovů se tvoří nepříliš stálé železaty a železitany. To svědčí o částečně amfoteršti charakteru obou oxidů.

Bílý hydroxid železnatý, stálý jen za nepřítomnosti vzdutého kyslíku a oxidovadel a rezavé zbarvený hydroxid železnitý vznikají při alkalizaci vodných roztoků železnatých a železitých solí v důsledku hydrolyzy obou kationů. Acidobazické chování hydroxidu železnatého a hydroxidu železitého je stejné jako u příslušných oxidů.

Halogény železa se odvozují od oxidacech stavy II a III. Pouze jednotlivé železity je jednou z látek této skupiny, kterou nelze připravit se železem k oxiacačne-redukočnemu ději, při němž atomy Fe\(^{3+}\) oxidují jedy na elementární jod. Hologény železa v obou oxidacech stavech stejně
jako všechny ostatní soli železnaté a železité hydrolyzují ve vodných roztocích v závislosti na hodnotě pH roztoku a koncentraci soli na částice různého typu, např.

\[
\begin{align*}
H_2O & \quad O \quad OH_2 \\
Fe & \quad \left[\begin{array}{ccc}
H_2O & \quad H & \quad H & \quad OH_2 \\
Fe & \quad \left[\begin{array}{ccc}
H_2O & \quad O & \quad OH_2 \\
H & \quad H & \quad H & \quad H & \quad H_2O \\
\end{array} \right]
\end{array} \right]^{4+}
\end{align*}
\]

Hluště a rozpouštější hydrolyzu podléhají soli železité.

Oxidační schopnost atomů Fe\(^{III}\) je tak velká, že postačuje k oxidaci S\(^{2-}\) na elementární síru. Proto existuji sulfid železatý FeS a disulfid železatý FeS\(_2\), ale existence sulfidu železitého Fe\(_2\)S\(_3\) prokázána nebyla. Sulfid železatý i disulfid železatý se nejíže připravují syntézou z prvku.

S uhličtem poskytuje železo karióry, jmenovitě karhid trželeza Fe\(_2\)C, který se tvoří při rozpouštění ulhiku v roztaženém železe. Je přítomen v polykrystalické struktuře oceli a velmi ovlivňuje její mechanické vlastnosti.

S dusíkem tvoří železo intersticiální nitridy Fe\(_3\)N a Fe\(_4\)N.

Tvorbou vyšších kladných oxidácích stavů není u železa běžná. Lze jich dosáhnout jen velmi intenzivní oxidací. Například oxid železatý i oxid železitý poskytují v oxidujících bazických taveninách železany:

\[
Fe_2O_3 + 3 \text{KNO}_3 + 4 \text{KOH} \rightarrow 2\text{K}_2\text{FeO}_4 + 3\text{KNO}_2 + 2\text{H}_2\text{O}
\]

Tyto červenofialové látky jsou stále jen v tuhé fázi nebo v silně alkalickém vodném roztoku. Železany patří k nejmohutnějším oxidacím prostředkům. Jejich termickým rozkladem nebo naopak oxidaci nižších oxidácích stavů železa v taveninách cestami blízkými té, již bylo použito k připravě železanů, lze připravit nestálé železitánny a železičitaný.

Železo v oxidacích stavech II a III velmi ochotně vytváří komplektní sloučeniny. V komplexních částicích dosahují spíše výjimečné koordinaci číslo 4 nebo 5, nejběžnější jsou jeho oktaedrické komplexy s koordinací číslem 6. Při tvorbě komplexních částic se nejvíce uplatňují ligandy CN\(^{-}\), SCN\(^{-}\), NO\(^{3-}\), NO\(_2\), H\(_2\)O, CO, SO\(_3\)\(^{2-}\), Cl\(^-\), F\(^-\), Br\(^-\), a jiné, mnohé další. Komplexními sloučeninami železa jsou také látky, které mají nesmírně významné uplatnění v živé hmotě (Krevní barvivo hemoglobin).

Neobyčejně rozsáhlá je chemie organokovových sloučenin železa. Kromě klasických organokovových sloučenin s vazbou Fe-C typu \(\sigma\), komplexních karbonylů, hydrídokarbonylů, halogenokarbonylů a dalších obdobných látek tvoří nejrozšířenější skupinu ty sloučeniny, které nemají specifikovanou vazbu mezi určitým atomem ulíhku a atomem železa. Nejvýznamnějším reprezentantem látek tohoto typu je bílý\(^{2-}\)-cyklopentadienylněželezo, tzv. ferrocen. Jeho molekula je formálně tvorená dvojicí planárních cyklopentadienidových iontů, které leží ve dvou rovnoběžných rovinách a uzavírají mezi sebou lon Fe\(^{2+}\). Vazba v tomto uskupení nemá iónový charakter. Molekula ferrocenu má podobné chemické vlastnosti jako molekuly aromatických uhlovodíků s delokalizovanými systémy vazeb \(\pi\). Vodíky obou kruhů mohou být u ferrocenu substituovány organickými i některými anorganickými substituenty. Cyklopentadienidové ionty se mohou nahradit molekulami benzenu nebo jiného aromátu, cyclobutenu, cyclobutadienu, skupinami molekul CO a řadou dalších.

V technické praxi se uplatňují především oxidy železa, zejména Fe\(_2\)O\(_3\), užívaný jako pigment a jako komponenta při výrobě farb a jako leštící prostředek pro úpravu povrchu materiálů. Fe\(_3\)O\(_4\) se používá na výrobě elektrody pro některé tavné elektrolýzy. Oba oxidy se používají jako mírná oxidovadla, katalyzátory a slouží i při výrobě velmi čistého železa.
Soli železné i železnaté, získávané průmyslově rozpouštěním železa, jeho oxidů nebo uhlíčitanu v kyselinách, mají v chemické praxi rozdílné upotřebení. Hydroxid železnitý Fe(OH)₃ vy- loučený alkalickou hydrolýzou slouží k čištění vody a k výrobě dalších sloučenin železa. Heptahydrát síranu železnatého FeSO₄·7H₂O se vyrábí rozpouštěním železa ve zředěné kyselině stříbro:

\[
\text{Fe} + \text{H}_2\text{SO}_4 \rightarrow \text{FeSO}_4 + \text{H}_2
\]

Uplatňuje se při výrobě modrého pigmentu, tzv. berlínské modře, v barvářství, ke konzervování dřevěných předmětů a v zemědělství jako insekticid. Stalejší než všechny ostatní železnaté sloučeniny je podvojně síran amonno-železnatý (NH₄)₂Fe(SO₄)₃·6H₂O. Chlorid železný v bezvodém stavu se připravuje průmyslově přímou syntézou z prvků. Jako hydrát krystalizuje z vodních roztoků po rozpouštění železa v kyselém chlorovodíkem a následné oxidaci přímným chlorem:

\[
\text{Fe} + 2\text{HCl} \rightarrow \text{FeCl}_3 + \text{H}_2
\]

\[
2\text{FeCl}_2 + \text{Cl}_2 \rightarrow 2\text{FeCl}_3
\]

Bezwodový FeCl₃ se užívá v organických technologiích jako oxidovadlo, jako katalyzátor Friedel-Craftsových syntez, v textilním průmyslu jako mořídlo. Uplatňuje se i v průmyslu fotografičkém, v elektrotechnice při výrobě těstěných spojů a v řadě dalších oblastí.

Z komplexních sloučenin jsou technicky významné kyanokomplexy, především hexakyanoonaduřetan draslý K₄[Fe(CN)₆]·H₂O. Získáva se tak, že se kyanovodík obsažený v koksařenském plynu vypírá amonickým vodným roztokem FeSO₄. Vzniklý kyanokomplex se oddělí srážením výpanou solí a pak se konvertoval draslou. Hexakyanoozidonat draslý slouží k výrobě hexakyanoozidonatu draslého a již uvedeného modrého pigmentu berlínské modře.

Z karbonylu je významný [Fe(CO)₅], připravený průmyslově reakcí velmi jemné rozptýleného železa s oxidem uhelnatým za zvýšeného tlaku. Karbonyl [Fe(CO)₅] se používá k získání vosku čistého železa (termickým rozkladem) anebo k připravě jemného Fe₂O₃ (spalováním). Některé z organokovové nalezly uplatnění v organické katalyze, podobně jako i velmi čisté elementární železo.

- **Kobalt**

Další oxidacní stav V (konfigurace d⁴), IV (konfigurace d⁵), stejně jako I (konfigurace d⁶), 0 (konfigurace d⁵) a −I (konfigurace d¹⁰), byly sice u kohouta popsány, avšak jsou zcela neběžné a vyskytují se jen v několika málo sloučeninách.

V porovnání s elementárním železem je kobalt poněkud ušlechtilějším kovem. To se projevuje jeho stálostí na vzduchu. Rozpouští se v kyselinách, ale pokud mají oxidátní schopnosti, je rozpouštění značně zpomalováno vysokou povrchu kovu. S kyslíkem se sloučí až při vysokých teplotách. Podílela též reakce s nekvy, opět za vyšší teploty, ale i v tomto případě je jeho reaktivita menší než reaktivita elementárního železa. Kobalt je feromagnetický, těžkotavitelný a mechanicky velmi pevný kov.
Tvoří dva jednoduché oxidy — oxid kobaltnatý CoO a oxid kobaltitý Co₂O₃. Mimo to je znám i smíšený oxid Co₃O₄.

Hydroxid kobaltitý Co(OH)₃ je moderá, časem růžovější látka, kterou lze vytvořit z ručným odtokům kobaltitých soli učiněm zásad. Snadno, např. i vzdutným kyslíkem, se oxiduje na huňdí Co(OH)₂. Hydroxid kobaltitý Co(OH)₃ je pokud amfoterů.

Halogenidy kobaltu se odvozují od jeho oxidace oun I. jsou známy jak v bezvodé, tak i v hydratované formě. Z halogenidů kobaltitých je dostupný bezvodý CoF₃ připravený přímou syntézou z prvku a CoF₂ + H₂O, který může být získán anodicí oxidací roztoku CoF₂ v kyselině fluorovodíkové. Ostatní halogenidové anionty podléhají oxidacímu působení atomů Co⁷, a odpovídající halogenidy kohaltit se proto netvoří ani v roztoku, ani v tuhé fázi.

Větší zajímavou skupinu tvoří karbonyly kohaltit. Až došlo byly poznány tři sloučeniny — [Co₃(CO)₉]⁻, [Co₄(CO)₁₂]⁻ a [Co₅(CO)₁₄]⁻. Odvozují se od nich rozšířená skupina derivátů — hydridokarbonylové, halogenokarbonylové a dalších sloučenin vesměs komplexního charakteru. Jsou známy organokomplexní sloučeniny kohaltitu s vazbami C—Co typu a sloučeniny s nespecifikovanými vazbami a donorovými anionty. Analýzí ferrocenu, o němž byla zmínka při výkladu chemie železa, je sloučenina kohaltitocen [Co₇(C₅H₅)₃]⁻, která existuje i řada jiných obdobných sloučenin, v nichž jako ligandy s nespecifikovanými donorovými anionty vystupují aromatické molekuly, allylova skupina, molekuly diev a podobně.

Jak atomy Co⁷, tak i atomy Co⁶ se ochotně stávají středovými atomy komplexních částic. Všeobecně lze říci, že ve vodných roztocích se tvoří i jsou stabilní komplexní částice s oktaedrickou koordinací atomu Co⁶. Pokud je oktaedricky koordinován atom Co⁷, bývá vzniklý komplexní částice značně redoxně labilní, zejména když koordinující ligandy vytvářejí silné ligandové pole. Příkladem je již známý ion hexahydrokobaltnatanový [Co(CN)₆]⁴⁻, který se velmi snadno oxiduje na ion hexahydrokobaltnatanový [Co(CN)₆]³⁻, tím, že uvolní jeden elektron. V roli ligandů nejčastěji koordinovaných na atomu kobaltu Co⁷ a Co₅⁷ vystupují částice CN⁻, SCN⁻, NH₃, CH₃, Br⁻, I⁻, NO₂⁻, H₂O, OH⁻, SO₄²⁻, CO₃²⁻ a řada organických sloučenin a jejich aniontů.

Technické uplatnění kohaltitu a jeho sloučenin není rozšířeno. Elementární kohalt je složkou některých tvrdých a tepelně odolných slitín, popř. i speciálních slitin, určených pro dlouhodobý styk s živými tkáními (endoprotezy). Některé sloučeniny komplexního charakteru se uplatňují v analytické chemii, např. N₄⁺[Co(NO₂)₆]. Křemičitan kohaltitá jsou hlavní složkou modrých smaltů a modrého (tzv. kobaltového) skla.

• Nikl

Nikl má elektronovou konfiguraci valenční sféry 4s² 3d⁸ a je třetím prvkem tríady železa. Ve svých jednoduchých i komplexních sloučeninách se vyskytuje především v oxidacním stavu II (konfigurace d⁹). Atomy Ni⁶ jsou redoxně zcela stálé. Při dosažení oxidacního stavu II se mobou
kolem atomu Ni³⁺ vytváří nejprv nejzajímavější koordinační polyedry. Byvá to čtverec, trigonální bipyramid, tetragonální pyramid, oktaedr i trigonální antiprizma. Tetraedrická koordinace atomu Ni³⁺ nebyla dosud popsána.

Ostatní oxidáční stav je u niklu naopak velmi málo stálé. Až dosud byly popsány sloučeniny s atomy Ni vykazujícími oxidáční čísla IV (konfigurace d⁸), III (konfigurace d⁷), II (konfigurace d⁶) a 0 (konfigurace d⁰). Formálně se vytváří v komplexních sloučeninách i oxidáční stav −I.

Zelený oxid nikelnatý NiO obsahuje ve své místě stejně jako FeO a CoO část atomů ve vyším oxidáčním stavu (Ni⁴⁺). Jeho stehiometrické složení je proto vždy poněkud porušeno a rozpouští se v kyselině chlorovodíkové, vzniká v důsledku oxidace chloridových iontů atomy Ni⁴⁺ malé množství elementárního chloru.

Termickým rozkladem dusičnanu nikelnatého nebo oxidu vodní suspenze Ni(OH)₂chloranem či peroxydramen lze připravit čerpný nerozpustný produkt, který obsahuje nikl v oxidáčním stavu III, popř. IV. Sloučení tuhé fáze bývá vyjadřováno vzorcí Ni₃O₂(OH)₄, Ni₃O(OH) nebo NiO₂·nH₂O.

Hydroxid nikelnatý lze vyložit z roztoků nikelnatých soli účinkem hydroxidů alkalických kovů jako světle zelenou objemnou krajetinu. Jejím rozpouštěním v kyselinách se opět získává soli nikelnaté.

Také halogenidy, sulfidy, karbony a další binární sloučeniny niklu se vesměs odebírají od jeho oxidáčního stavu II. Ovšem např. u sulfidů existuje vyjma v podobě sloučeniny se strukturou spinelu a obsahem atomů Ni⁰ i Ni²⁺ stehiometrií odpovídající vzorce Ni₃S₄.

Nikl je stejně jako kobalt a železo tvoří řadu organokových sloučenin. Některé z nich patří k typům látek s vazbou C—Ni typu σ, v jiných jsou donorové atomy nespecifikovány. Příkladem látek této druhé skupiny je nikloencen [Ni(b₃-C₅H₃)₂] a další obdobné komplexy atomu Ni³⁺ s alkeny, alkény, allylovy skupinou aj. Technicky významnou látkou je tetrakarbonylniklu [Ni(C₅H₅)₂] vyráběnou v Mondově procesu reakcí CO s práškovým niklem nebo reakcí CO se suspenzí NiS v alkalickém vodním roztoku:

\[
\text{NiS} + 5 \text{CO} + 4 \text{OH}^- = [\text{Ni(CO)}₅] + S^{2-} + \text{CO}_₂ + 2 \text{H}_₂\text{O}
\]

Závěrem je i použití některých organokových sloučenin niklu a soli nikelnatých při výrobně olejovacích alkenů.

Byly popsány i kooperativní sloučeniny niklu v některých nelze z oxidáčních stavech, ale nejzásadnější skupinu komplexů tvoří částice se středovým atomem Ni³⁺. U částic stálých v roztocích se nejčastěji vyskytuje koordinace číslo 4 (čtverec) nebo 6 (oktaedr). Komplexy niklu ve oxidáčním stavu II jsou redně zcela stálé. Již jako ligandy se v nich uplatňují především částice NH₃, CN⁻, H₂O, SCN⁻, F⁻, Cl⁻, Br⁻, NO₂⁻, deriváty fosforu a arsenu, pyridin, thioethanolin i řada dalších organických ligandů.

Elementární nikl má významnější použití při výrobě speciálních slitin (pro elektrotechnický a potravinářský průmysl). Práškový nikl se uplatňuje jako katalyzátor při katalytické hydrogenaci tuků. Šíran nikelnatý, vyráběný rozpouštěním jemně rozptýleného niklu nebo Ni(OH)₂, v H₂SO₄, je složkou většiny niklových lázní a slouží jako výchozí surovinu pro výrobu prakticky všech katalyzátorů obsahujících niklu.

560
26.8 PLATINOVÉ KOVY

Prvky druhé a třetí třídy 8. skupiny periodického systému se označují souhrnným názvem platinové kovy. Přítom prvky druhé třídy (Ru, Rh, Pd) se nazývají léské a prvky třetí třídy (Os, Ir, Pt) těžké platinové kovy.

V této šestičlenné skupině kovů převládá vertikální podobnost chemických vlastností. Dosahovanými oxidačními stavů a chemickým chováním vůbec se sobě podobají prvky ve dvojicích ruthenium – osmium, rhodium – iridium a palladium – platina.

Společným znakem všech platinových kovů je jejich ušlechtělost, proměnnost dosahovaných oxidačních stavů a mimořádný sklon k tvorbě komplexních častic. Lze dokonce říci, že chemie těchto kovů je do značné míry chemií jejich komplexních sloučenin.

Platinové kovy jsou velmi odolné proti působení nekovů. Reagují s nimi až při vyšších teplo-
tách a ani pak tyto reakce nejsou nikdy spontánní. K podstatněmu zvýšení jejich reaktivity dochází, jsou-li kovy použity ve formě jemných prášků. Platina v kompaktní formě velmi odolavá působení kyslíku, ruthenium se neslučuje s roztavenou říčou ani s jejími pářemi. Podobně jsou iridium a rhodium odolné k působení halogenů.

Všechny platinové kovy jsou obtížně tváře a velmi malo těkavé. Chemická vazba mezi atomy platinových kovů v elementárním stavu má čistě kovový charakter.

Na rozdíl od většiny ostatních kovových prvků jsou platinové kovy v přírodních zdrojích přítomny většinou v nesloučené formě. V přírodě jsou malo rozšířené a jejich výskyt může být vysloveně difuzní.

Technický význam platinových kovů je poměrně značný. Zajímavá je, že v poslední době vzniklo používání těchto kovů a jejich sloučenin tak, že kapacita jejich přírodních zdrojů již nestačí.

- *Ruthenium a osmium*

Atomy ruthenia mají elektronovou konfiguraci valenční sféry 5s¹ 4d⁸, atomy osmia 6s² 5d⁶. Chemicky jsou si oba prvky ve velice blízké.

Ruthenium i osmium Mohou ve svých sloučeninách dosáhnout vysokého kladného oxidačního stavu VIII (konfigurace d⁶). Přitom se tyto sloučeniny s atomy Ru⁺⁷ a Os⁺⁷ vyznačují velkou redoxní stabilitou a jsou poměrně velmi dobře dostupné. Dobrou stabilitu vykazují i oxidační stavy VI (konfigurace d⁶) a IV (konfigurace d⁴). O proměnnosti oxidačních stavů obou prvků svědečí skutečnost, že jsou u nich známy a popsány i všechny další oxidační stavy od VIII do –II.

Některé z nich, zejména II a III, jsou opět poměrně stabile.

Ru₂O₃ má velmi silné oxidační účinky a velmi snadno se explozivně rozkládá.

Také u osmia jsou nejdejstupňovějšími oxidů osmiový Os₂O₃ a oxid osmijový OsO₃. Prvky u nich, žlutě zbarvený a kapalný OsO₃, vzniká složením osmia s kyslíkem za vysoce teploty. Černý oxid osmijový Os₂O₃ lze získat redukcí OsO₃ a to nejlepší přímo kovovým osmiem. OsO₃ má podstatně ménější oxidace účinky než Ru₂O₃ a také jeho složení k explozivnímu rozkladu je mnohem méně.

Z oksaniových ruthenia jsou nejdejstupňovějšími a nejstálějšími látkami ruthenany (anion RuO₂⁻) a ruthenistany (Ru₂O₄⁻). Zelené ruthenany se tvoří při tavení kovového ruthenia nebo Ru₂O₃ se

V halogenidech, sulfidech a některých dalších binárních sloučeninách je ruthenium v oxidacním stavu III, IV nebo V, kdežto osmyan poskytuje poměrně stabilní halogenidy osmia v oxidacích stavech II, III, IV, VI a VII. I to je důkazem ménších oxidacíčních účinků a větší stability oxidacíčního stavu VIII u osmia.

Ruthenium i osmium tvoří též organokovové sloučeniny. Velmi jednodušeně lze říci, že jsou to vesměs látky obdobného typu jako u železa.

Ruthenium i osmium v elementárním stavu i jejich sloučeniny mají použití v katalýze. Kovy se uplatňují při hydrogrenačních reakcích, např. při hydrogenci ahu a dině. Ruthenium katalyzuje Fischerovo-Tropschovu reakci hydrogencéoxidu uhlíkátného na methan, hydrogencen benzenu a dalších aromátů i redukci cukrů na polyalkoholy. Také oxid osmičelý, vyvážený spalováním osmia v proudu kyslíku v červeném žaru, nalezl použití v organické katalýze.

Rhodium a iridium

Valenční sféra rhodia má elektronovou konfiguraci 5s² 4d⁷. U iridia je orbital 6s prázdný, a elektronová konfigurace je tedy 6s² 5d⁹. Přítom oba kovy se sběry svými chemickými vlastnostmi a chováním svých sloučenin velmi blíží.

Nejběžnější i nejstálejší oxidacíni stav rhodia je III (konfigurace d⁷). Iridium má dva stabilní oxidacíni stavy III (konfigurace d⁷) a IV (konfigurace d⁶). Běžně jsou též některé sloučeniny s atomy Rh⁴⁺ a Ir⁴⁺. Vyšší oxidacíni stav Rh⁴⁺, Ir⁴⁺, nesou v binárních sloučeninách s fluorom (RhF₄, IrF₄), a ve fluorokomplexech. Také další oxidacíni stavy, II, 0 a -I, jsou nejčastěji založeny na některých oxidacíčních komplexním charakteru.

Z oxidů je u rhodia znám oxid rhoditý Rh₂O₃ a měkký, slabě hydratovaný oxid rhodičitý Rh₂O₃.H₂O. Oxid rhoditý lze získat složováním kovového rhodia s kyslíkem v žaru nebo termickým rozkladem některých solí rhoditých:

\[4 \text{Rh(NO}_3\text{)}_3 = 2 \text{Rh}_2\text{O}_3 + 12 \text{NO}_2 + 3 \text{O}_2 \]

Pokud se stejnými cestami pokusíme přípravit oxid iridia, získáme vždy oxid iridičitý Ir₂O₃. Oxid iridičitý Ir₂O₃ lze získat hydrolytickým vyloučením z roztoků solí iridičitých za nepříznivou vzdutšího kyslíku.

Oxidy rhoditý, iridičitý i iriditý se v kyselinách rozpouštějí v příslušném soli. Za přítomnosti nadbytku kyselina nebo anionů těchto kyselin se tvoří aniontové komplexy, např. [RhCl₄]⁻, [IrCl₆]⁻, četn. [IrCl₆]⁻. Jako ligandy se v tomto případě mohou uplatnit i ostatní halogenidové ioni, CN⁻, NO₂⁻, SO₄²⁻ a SO₃²⁻ a řada dalších.

562
Kation Rh³⁺ je schopen vytvářet též podvojné sírany typu kamenců — Me³Rh(SO₄)₂, 12H₂O.

Reakce rhodia s chloretem vede ke vzniku RhCl₃. Stále jsou i ostatní halogenidy rhoditié. Iridium poskytuje dokončení dvě řady halogenidů — iridiát i iridicíát. Mimoto je známa též fluorid iridiový IF₃.

Rhodium a iridium tvoří i řadu organokovových složení. Jsou všem stejněho typu jako ty, které jsou popsané u kovů triády železa. Vzácnost rhodia i iridia však způsobuje, že chemie těchto látek není zcela dobře prozkoumána jako u prvých četnějších.

Technický význam rhodia a iridia je nevelký a je velmi omezěn jejich malým rozšířením v přírodě. Rhodium a slitiny rhodia s platinnou se uplatňují v oblasti chemické katalyzy. Čisté rhodium se v menší míře používá ve elektrotechnice a ma drobné speciální užití ve týkáním vyzkumném. Iridium v elementární formě nebo ve slitinách s dalšími platinnými kovy slouží jako mechanicky i chemicky vysoce rezistentní materiál.

Palladium a platina

Valenční sfera atomů palladia má elektronovou konfiguraci 5s² 4d⁸, atomů platiny 6s¹ 5d⁸.

Pro palladium ani pro platinu není charakteristická snaha dosahovat vyšších kladných oxidačních stavů. Jejich valenční sáry mají konfiguraci elektronové osmičty (str. 120), která je stabilní elektronovou konfigurací, na niž se stabilizují atomy stojící v periodickém systému vpravo od palladia a platiny. To se projevuje velkou ušlechlitostí obou kovů a tím, že většii neochotené vytvářejí jasné sloučeniny.

Palladium nabývá nejčastěji oxidačního stavu II (konfigurace d⁸) a v koordinacích stolčeninách též IV (konfigurace d⁶). Pro platina jsou tyto dva oxidační stavé také charakteristické a navíc oxidační stav IV je stálý i u jejich jednoduchých sloučenin. Většině výjimečné je u obou kovů stabilizace na oxidační stavy I, III a VI.

Zahrnutím praškového palladia v proudu kyslíku vzniká oxiá palladnatý PdO. Je nerozpunutý v kyselách. Jev výraznou tendencí k opětovnému ztlumení na kyslík a kov. Pokud se oxid palladnatý připraví v hydratační formě alkalizováním vodního roztoku palladnatých solí, je možno nalézt chloridy a dobře se rozpoutá v kyselinách i v hydraxidech alkalických kovů.

Platina tvoří tri jednoduché oxidy — PtO, Pt₂O₃ a PtO₂. Nejnápadnější je oxid platitútv. Spalováním platinu v kyslíku probíhá obtížně a vzniká při něm směs všech tří oxidů.

PtO lze získat dehydratací Pt(OH)₂ vyloučeného z vodního roztoku tetrachloroplatnatu zalkalizováním. Oxid se poměrně snadno vzdušným kyslíkem.

Oxid platitútvý PtO₂ je možno připravit intenzivní hydrolyzou vodního roztoku chloridu platitútvého PtCl₂ za varu.

Halogenidy palladia jsou odvozeny všem od oxidačního stavu II. U platiny známe dvě řady halogenidů, odvozované od oxidačních stavů II a IV. Výjimečné složení i oxidační stav kovu vykazují halogenidy PdF₆, PtF₆, PtCl₃ a PtCl.<nolabel>

Výrazná je schopnost palladia i platiny tvořit komplexní sloučeniny. Oxidační stav II je v částech vzniklých koordinací nejčastěji realizován tetraedrálním způsobem obklopeniště středo-vých atomů Pd²⁺ a Pd⁴⁺. Je tomu tak např. v částech [(Pt(NH₃)₄C₂H₅Cl)]²⁻, [(PtCl₄)]²⁻ nebo [(Pt(NH₃)₂Cl₂].

Vzniklé komplexní částice mohou být kationy, anionty i nenabité komplexy.

Jsou-li středo-vé atomy v oxidačním stavu IV, je koordinací číslo vysší, obvykle bývá rovno čtyři. Vzniklé komplexní částice mají charakter aniontových komplexů a vyznačují se oktaedrickou strukturou. Příkladem jsou částice [PdCl₄]²⁻ a [PtBr₄]²⁻. Takovouto komplexní sloučeninou je i kyselina hexachloroplatitútvá, vznikající při rozpouštění kovové platiny v lučase královské:

\[3\text{Pt} + 4\text{HNO}_3 + 18\text{HCl} = 3\text{H}_2[\text{PtCl}_6] + 4\text{NO} + 8\text{H}_2\text{O} \]
Nejčastějšími ligandy v komplexních sloučeninách palladia a platiny jsou anionty \(\text{Cl}^-, \text{Br}^- \), molekula \(\text{NH}_3 \), děle pyridin, aminy, anionty \(\text{NO}_2^- \), \(\text{CN}^- \) a řada dalších.

Organokovové sloučeniny s vazbou kov–úhlík typu \(\sigma \) jsou u palladia a platiny málo běžné. Zato velmi rozšířené je skupina komplexů s donorově nespecifikovanými ligandy – molekulami etenu, dienu, alkini, oxidu uhelnatého, substituovaného fosfánu nebo arusu apod.

Mimořádně rozsáhle použití má elementární platina ve vědě a technice. Využívá se její odolnost ke kyselinám a toho, že tato odolnost zůstává zachována i při vyšších teplotách. Vysokochemickým materiálem je slitina platiny s rhodiumem. Kovová platina se uplatňuje jako výtečný nespecifický katalyzátor v řadě anorganických i organických reakcí. Hlavním faktorem omezujícím její ještě rozšíření použití v těchto oblastech je vysoká cena prvků i jeho sloučenin a malá kapacita přírodních zdrojů. Palladium není dostatečně odolným kovovým materiálem, avšak i ono má určité použití v oblasti katalyzy.

26.9 SKUPINA MĚĐI

Skupinu mědi tvoří trojice prvků \emph{skupiny IB} periodického systému – měď, stříbro a zlato.

Společným znakem valenčních sčet atomů těchto tří prvků je, že obsahují 19 elektronu, tedy elektronovou osmáctku \((n-1)\), plus jeden pětičlenný elektron \((n-1)d^{10}\). Všechny tři prvky se proto mohou stabilizovat odtřesením tohoto jediného elektrona a dosáhnout oxidace stavy \emph{I} (konfigurace \((n-1)d^{10}\)). U stříbra je tento způsob stabilizace způsobem hlavním.

U mědi a zlata není elektronová osmáctka nejstabilnější elektronovou konfigurací. Oba prvky překvapivě dávají přednost různým jiným nepravidelným uspořádáním. V případě mědi je to konfigurace \((n-1)d^{9}\), zvýhodňující při dosažení oxidace stavy \emph{II}, a u zlata konfigurace \((n-1)d^{10}\), uskutečnění při dosažení oxidace stavy \emph{III}. U všech tří prvků jsou známy ještě některé další, zcela výjimečné oxidace stavy. Tím se spolu s barevností svých sloučenin a v některých případech jejich paramagnetismem měď, stříbro i zlato řadí k typickým přechodným kovům.

Body těsně jsou vysoké, těžkosti minimální, mechanické jsou všechny tři kovy pevné, ale kujné a vyzařují se velkou tepelnou a elektrickou vodivostí.

Atomy mědi, stříbra i zlata ve svých běžných oxidacech stavech jsou vysoce komplexotvorné. Stejně jako u platinnových kovů má většina jejich nejdůležitějších sloučenin komplexní charakter. Všechny tři prvky mají značný technický význam.

Měď

Atomy mědi mají valenční sčet u elektronovou konfigurací \(4s^1 \ 3d^10\). Stálé jsou oxidace stavy \emph{I} (konfigurace \((n-1)d^{10}\)) a \emph{II} (konfigurace \((n-1)d^9\)). Atomy mědi v oxidacím stavení I se velmi snadno oxidují (např. vznikující kyslíkem) na \(\text{CuO}\). Kromě tohoto dvou hlavních oxidacích stavu je u mědi relativně dostupný, ale málo stálý oxidace stav \emph{III} (konfigurace \((n-1)d^8\)) a \emph{0} (konfigurace \((n-1)d^{10}\)).

Jako ulechlitý kov se měď nerozloží v neoxidujících kyselinách. Častečně rozptylost se může objevit, je-li v systému přítomen vzdutý kyslík. Reakcí s horkými koncentrovanými roztoky kyselin podléhající měď velmi snadno:

\[
\begin{align*}
\text{Cu} + 2\text{H}_2\text{SO}_4 & = \text{CuSO}_4 + 2\text{H}_2\text{O} + \text{SO}_2 \\
\text{Cu} + 4\text{HNO}_3 & = \text{Cu(NO}_3)_2 + 2\text{NO}_2 + 2\text{H}_2\text{O}
\end{align*}
\]

\(^1\) Zjednodušeným vyjádřením této elektronové konfigurace je zápis \emph{ns}^(n-1)d^{10}, který budeme používat v dalším výkladu.
Měď se též rozpouští v koncentrovaných roztocích kyanidů alkalických kovů za vývoje vodíku:

\[2 \text{Cu} + 4 \text{CN}^- + 2 \text{H}_2\text{O} = 2[\text{Cu(CN)}_2]^2^- + 2\text{OH}^- + \text{H}_2 \]

Při vyšších teplotách reaguje měď také s většinou nekovů. Nesluší se přímo pouze s uhlíkem, vodíkem a dusíkem.

Měď tvoří dva jednoduché oxidy. Červený oxid měděné Cu₂O lze nejsnáze získat redukcí soli měděnatých ve vodním roztoku. NEROZPOUŠTI se ve vodě, ale je rozpustný v kyselinách za vzniku komplexních částic:

\[\text{Cu}_2\text{O} + 4 \text{HCl} = 2\text{H}[\text{CuCl}_2] + \text{H}_2\text{O} \]

V kyselinách, jejichž anion není vhodný jako ligand a koncentrace kyseliny je taková, že nepůsobi oxidu, oxid měděný disproporcionuje:

\[\text{Cu}_2\text{O} + \text{H}_2\text{SO}_4 = \text{CuSO}_4 + \text{Cu} + \text{H}_2\text{O} \]

Poměrně snadno se Cu₂O oxiduje na druhý stálý oxid – černě zbarvený oxid měděnatý CuO. Lze jej připravit i termickým rozkladem některých měděnatých sloučenin:

\[2\text{Cu(NO}_3)_2 = 2\text{CuO} + 4\text{NO}_2 + \text{O}_2 \]

V kyselinách se CuO rozpouští za vzniku soli měděnatých. Při zahřátí CuO snadno odstupuje kyslík a přechází na Cu₂O.

Z ostatních sloučenin mědi v oxidačních stavech I a II je třeba připomenout sulfidy Cu₂S a CuS, připravované přímou syntézou z prvků. CuS se může získávat i srážením měděnatých solí ve vodním roztoku selenem. Cu₂S vzniká z CuS redukcí vodíkem.

Kyanidy a thiokyanidy měděné jsou látky vysoce nestálé. Stejně jako Cu₂S podléhají vnitřní oxidaci-ředukci změně a rozpadají se po svém přechodném vzniku za uvolnění díky u nebo dihydroxanu:

\[2\text{Cu(CN)}_2 = 2\text{CuCN} + [\text{CN}]_2 \]

\[2\text{Cu(SCN)}_2 = 2\text{CuSCN} + [\text{SCN}]_2 \]

Vzniklý kyanid, resp. thiokyanid měděný jsou polymerní kovalentní látky, vyzařující se velkou stabilitou i odolností proti oxidaci vzhledem k kyslíkem.

Většina ostatních soli měděnatých jsou staže a dobře dostupně sloučeniny. Patří k nim šípan, dusičan, chlorid, chloritan aj. NEROZPUŚTI se uhlíkem, uhlíkem-oxidační, křemíčany aj. Charakter intermediiálních sloučenin mají hydrid mědi CuH a nitrid mědi Cu₃N.

Atomy mědi v obou staže oxidačních stavech ochotně tvorí komplexní částice. Atomy Cu⁺ v komplexních částicích dosahují koordinačních čísel 2, 3 a 4, atomy Cu²⁺ pak koordinačních čísel 4, 5 a 6. Zcela výjimečné jsou koordinační čísla vysší. Atomy Cu⁺ bývají v zvláštnosti na hodnotě koordinačního čísla koordinovaný lineárně, trigonálně nebo tetraedricky. U komplexních sloučenin
Cu₂ je soubor možných koordinačních polyédrů velmi rozsáhlý. Jsou známé sloučeniny s tetraedrickou, tetragonální, tetragonálně pyramidální, trigonalbipyramidální, oktaedrickou a tetragonálně bipyramidální koordinací na středovém atomu.

Typickými ligandy v komplexních mědi jsou ionty Cl⁻, Br⁻, CN⁻, SCN⁻, OCN⁻, S₂O₅²⁻, OH⁻, molekuly NH₃, H₂O, močovina, thioniocyanat, amidy a řada dalších organických ligandů.

Oxidačního stavu III se může u mědi dosáhnout jen působením stříbrných oxidačních činitelů. Například působením fluoru na váhu KCl a CuCl₂ při 1500 stupnin teploty lze získat hexafluorměditan draselný K₃[FeF₆]. Oxidované ionty [mědi(III)] se tvoří rychle probíhající při více teplotě v kyslíkové atmosféře:

\[2K₂O + 4CuO + O₃ = 4KCuO₂ \]

Tvorbě organokovových sloučenin není pro měd cajejí charakteristická. Teprve v nedávné době byly připraveny prvky alkylkových sloučenin mědi. Výjimečné je koordinace na atomech mědi molekulami alkenů, dience, oxida uhelnatého a karbonanovými sklety, ještě méně běžné jsou případy, kdy vzniknou donorové nespecifikované vazby mezi ligandem a atomem kovu.

Použití elementární mědi je velmi rozsáhlé. Největší množství mědi v elementárním stavu spotřebovává elektrotechnický průmysl a hutní výroba neželezných slitin. Podstatné menší množství mědi se používá ve formě sloučenin, CuO slouží jako oxidovadlo. CuCl a CuCl₂ jsou katalyzátory používané v anorganické i organické syntéze. CuCl se uplatňuje i jako redukovaná, např. při odstraňování nebezpečných organických peroxidů z reakčních směsí. V katalytické chemii a při deoxygenaci plynných některé oxidované části mědi. Širší ménější má upotřebení jako mořidlo, insekticid a výchozi látku pro výrobu dalších sloučenin mědi. Některé komplexní sloučeniny mědi se uplatňují v analytické chemii, ve fotografickém průmyslu a jako pigmenty a barviva. Hydroxid tetraamminměditanu [(Cu(NH₃)₄](OH)₂ ve vodném roztoku rozpuští celou, a je proto rozsáhlé využíván při výrobě umělého hevdéby.

Stříbro

Valenční šifra atomů stříbra má elektronovou konfiguraci 5s¹4d¹⁰. Atomy stříbra tedy mohou odrážet jednoho elektronu nabytí struktury elektronové osmifackty a dosáhnout tak oxidačního stavu I (konfigurace d¹⁰). Tento oxidační stav je vysoce stabilitní, atomy Ag⁺ nemají zvýraznělý oxidace-redukční reaktivitou. Jen zcela výjimečně nabývá stříbro oxidačního stavu II (konfigurace d⁰). Je tomu tak např. při fluoridu stříbrném AgF₂, oxidu stříbrnatém Ag₂O a v některých komplexních sloučeninách se středovým atomem Ag²⁺. Všechny tyto sloučeniny jsou velmi silná oxidovadla.

Elementární měd je uschovávána na západních zemích. Nerezpouštějí se v neoxidujících kyselinách a má velmi malou snahu přehazet z elementárního do sloučeného stavu. Rozpouštění stříbra v roztokách oxidujících kyselin o střední a velké koncentraci vede ke vzniku přišlužitých stříbrných solí:

\[3\text{Ag} + 4\text{HNO}_3 = 3\text{AgNO}_3 + \text{NO} + 2\text{H}_2\text{O} \]
\[2\text{Ag} + 2\text{H}_2\text{SO}_4 = \text{Ag}_2\text{SO}_4 + \text{SO}_2 + 2\text{H}_2\text{O} \]

Roztokům hydroxidů alkalických kovů stříbro odolává. Za příspěvku kyslíku reaguje podobně jako měd s roztoky kyanidů alkalických kovů, nevzniká však vodík:

\[4\text{Ag} + 8\text{CN}^- + \text{O}_2 + \text{H}_2\text{O} = 4\left[\text{Ag(CN)}_2\right]^– + 4\text{OH}^- \]

Stříbro tvoří jediný relativně stálý oxid. Je jím oxid stříbrný Ag₂O, který lze připravit dehydratací velmi nestálého AgOH vznikajícího alkalizaci roztoků stříbrných solí. Oxid stříbrný
se při zvýšení teplotě rozkládá na prvky. I tím se projevuje vysoká ušlechtilost stříbra a jeho ne-
ochota tvořit sloučeniny. Oxid stříbrný je silně bazický. S kyselinami poskytuje soli stříbrné,
v zásadách se nerozpouští.

Ve vodě nerozpusťnými sloučeninami stříbra jsou AgCN, AgSCN, AgCl, AgBr, AgI, Ag$_2$S, Ag$_2$S$_2$, Ag$_2$S, Ag$_3$N a některé další. Naopak dusičnan, chloridat a částečně i sian stříbrný jsou látky rozpustné. Některé z uvedených sloučenin, zejména ty, které mají charakter binárních látek, lze připravit syntézou z prvků. Ostatní se připravují konverzi stříbrných soli ve vodném roztoku.

Komplexotvornost atomu Ag$^+$ je značná. Projevuje se např. tím, že větší část uvedených stříbrných soli nerozpuští se ve vodě, a k rozpuštění se dostatečně vysoké koncentraci přítomní chloridový ion.

AgCN + CN$^-$ = [Ag(CN)$_2$]$^-$
AgCl + Cl$^-$ = [AgCl$_2$]$^-$

Stědový atom Ag$^+$ přítom na sebe koordináční číslo 2, 3 nebo 4. Větši část se takového amminkomplexu stříbrné. Tvorba amminkomplexu musí být přítomou rozpouštění jinak neroz-
pustných stříbrných soli

AgCl + 2NH$_3$ = [Ag(NH$_3$)$_2$]$^+$ + Cl$^-$
Diaminatriční kation má stejně jako všechny ostatní komplexy stříbra s koordinačním číslem 2 lineární tvar (hybridace SP). Výšší koordinační čísla se realizují trigonační nebo až tetra-
edrůvkou koordinací.

Tvorba organosulfidových sloučenin není pro stříbro typická. Byla popsána pouze existenci skupiny komplexů AgI s alkény, alkyny a aromatickými uhlovodíky. Jde většinou o útvary s ne-
specifikovanými donorovými atomy.

Elementární stříbro má použití ve vědeckém výzkumu, ve šperkařství a v mincovnictví. Ze sloučenin stříbra se v praxi nejvíce uplatňují ve fotografickém průmyslu halogenidy stříbrné, círlnive na světlo.

Zlato

Atomy zlata mají v základním stavu elektronovou konfiguraci valenční sféry 6s1 5d10. Stejně jako u mědi a stříbra je nejprobavenějším způsobem vazechné stabilizace atomů odrůžení jednoho elektronu, dosažení oxidaceho stavu I a vytvoření konfigurace elektronové osmínáctky. Je pozoruhodné, že kromě toho se atomy zlata stabilizují ještě dalším způsobem. Uvoľňují formálně tři elektrony a nabývají oxidaceho stavu III s nepravidelnou elektronovou konfigurací d$. Atomy zlata AuIII jeví sice výrazné oxidace účinky, ale po určité stránce je oxidací stav III stálejší a v jednoduchých sloučeninách zlata běžněji než oxidací stav I.

Elementární zlato vzniká snahou sekvat v nesloučeném stavu, je na vzduchu zcela stálé
da nerezago nevinně nekou. Je vysloveně ušlechtilým kovem.

Rozpuštění se ve vodném roztoku chlorovodíku nasycenním chlorom za vzniku kyselinu
tetrachlorozlaté, popř. jejich solí:

2Au + 3Cl$_2$ + 2Cl$^-$ = 2[AuCl$_4$]$^-$

Stejně reakční produkty vznikají rozpouštěním zlata v lůžce královské. Ještě snadněji se zlato roz-
pouští za přístupu vodu u oxidace kyslíku ve vodních roztocích kyanidů alkalických kovů:

4Au + O$_2$ + 8CN$^-$ + 2H$_2$O = 4[Au(CN)$_2$]$^-$ + 4OH$^-$
Fialový oxid zlatý Au₂O, vzniká hydrolyzou silné alkaličního vodného roztoku AuCl₃. Při rozpuštění AuCl₃ v kyselinách vznikají sloučeniny zlatné. Při výšších teplotách je oxid zlatý nestálý a disproporcionuje:

$$3\text{Au}_2\text{O} = 4\text{Au} + \text{Au}_3\text{O}_3$$

Hnědý oxid zlatý Au₂O₃ bere nejlépe získat opatrnou dehydrataci žlutohnědého hydroxidu zlatitého Au(OH)₃. Ten se vylučuje z roztoků tetrachlorozlatitánů alkaličním hydrolyzou:

$$[\text{AuCl}_4]^- + 3\text{OH}^- = \text{Au(OH)}_2^+ + 4\text{Cl}^-$$

I oxid zlatý je termicky dosti nestálý, při výšších teplotách se rozkládá na kov a kyslík. V roztocích hydroxidů alkaličních kovů se Au₂O₃ a Au(OH)₃ rozpuštějí za vzniku hydroxidolitánů.

Existuje též řada dalších binárních sloučenin zlata — sulfidy, nitridy, ažidy, fosfidy atyl.

Běžněji než tyto sloučeniny binárního typu jsou komplexy sloučeniny se středovými atomy Au⁺ a Au⁹⁺. Nejčastěji v nich zlato dosahuje koordinačního čísla 4, výjimečně 6. Typickými ligandy jsou halogenidové ionty, CN⁻, SCN⁻, NO₃⁻, S²⁻, O²⁻, OH⁻, aminy, alkylisothion a řada organických ligandů.

Organokovových sloučenin zlata není mnoho. Vesměs jde o látky s vazbou Au—C typu o jako R₂AuY a RAu₂Y (R = alkyl, Y = halogen, kyanoskupina, hydroxylová skupina aj.). Většina těchto sloučenin má dimerní, popř. i polymerní strukturu.

Veškeré použití v technické praxi má elementární zlato. Uplatňuje se i ve šperkařství, v mědičnictví a v lékařství. Ze sloučenin zlata je významná kyselina tetrachlorozlatitá, tetrachlorozlatitany, díkychlorozlatitany a tetrakynozlatitany, užívané při galvanickém pozlacení předmětů. Další sloučeniny zlata slouží k malbě na sklo a porcelán, ve fotografii a v lékařství.

26.10 SKUPINA ZINKU

Jejími členy jsou prvky skupiny 2B periodické soustavy — zinek, kadmium a rtuť. Největší část elektronového obalu těchto atomů je tvořena obsazenou (n−1)s²(n−1)p⁶(n−1)d¹⁰ a dvojicí elektronů v n-kvantové sféře n²¹). Zinek, kadmium a rtuť se tedy vyznačují přítomností elektronové čtyřčlánky, jež je známa jako stabilní elektronové konfigurace. Běžným a v podstatě jediným způsobem stabilizace prváků skupiny zinku je odtržení dvojice elektronů n² (inertního elektronového páru) a dosazení konfigurace elektronové osmaznicy a oxidaciho stavu II.

Všechny tři prvky v oxidacičním stavu II i v nesloučeném stavu s oxidacičním číslem 0 mají úplně zaplněné orbitály a, nemohou tedy být ve smyslu definice považovány za přechodné kovy. Chemicky chování tří tří kovů tomu plně odpovídá. Jak jsme však uvedli na začátku této kapitoly, bývá přesto obvykle přizpůsobován výklad chemie prváků skupiny 2B k výkladu chemie přechodných kovů, a proto tak užineme i my.

Kromě uvedeného způsobu prosté stabilizace na oxidacičním stav II existuje u prváků skupiny zinku, jmenovitě u rtuť ještě její neobyváklé modifikace. Značná inertnost elektronového páru n² u těchto atomů je plodnou toho, že v případě rtuti může dvojice jejich atomů při současném vytvoření vazby kov—kova odvrhnout jenom jeden z elektronových párů n². Dvojice atomů tak

1) Zjednodušený zápis této elektronové konfigurace je n²(n−1)d¹⁰.
dosíhne jako celek oxidaciího stavu II, což rozpočteno na oba atomy znamená čisté formální dosazení oxidaciího stavu I u každého z nich.

Úplné zaplňení orbitálů d atomů tři kovů v jejich sloučeninách je přičinou toho, že tyto sloučeniny jsou většinou bezbarvé (je vyloučen vznik přechodů elektronů d–d) a diamagnetické. Je pozoruhodné, že zaplňené orbitály d kovů se většinou nemohou podílet na tvorbě zpětně interakce π u komplexních sloučenin těchto prvků. Proto jsou typickými ligandy částice o charakteru donorů σ, bez π-akceptorových schopností. Tvorba komplexních částic je u zinku, kadmia a rutu častá.

Neschopnost těchto atomů vytvářet zpětnou interakci π se projevuje tím, že nevznikají komplexní karbonylní ani komplexy s nespecifikovanými donorovými atomy.

Zinek

Valenční sféra atomu zinku má elektronovou konfiguraci 4s²3d¹⁰. Stálý je u zinku pouze oxidacií stav II (konfigurace d⁹).

Zinek je nejvatrobnejší kov. V neoxidujících kyselinách nebo v roztocích oxidujících kyselin, zřetelně najdete, že jejich oxidaci schopnosti vymizely, se rozpustí za vzniku vodíku:

\[
\text{Zn} + \text{H}_2\text{SO}_4 \rightarrow \text{ZnSO}_4 + \text{H}_2
\]

V dostatečně koncentrovaných roztocích oxidujících kyselin probíhá jeho rozpouštění bez vzniku vodíku:

\[
\text{Zn} + 2\text{H}_2\text{SO}_4 \rightarrow \text{ZnSO}_4 + \text{SO}_2 + 2\text{H}_2\text{O}
\]

Velmi dobře se zinek rozpustí i v roztocích hydroxidů alkalických kovů:

\[
\text{Zn} + 2\text{OH}^- + 2\text{H}_2\text{O} \rightarrow [\text{Zn(OH)}_2]^2^- + \text{H}_2
\]

Na vlněm vzduchu se zinek pokrývá vrstvou oxidu, ale současně se průběhem další reakce v podstatě zastavuje. Celkově lze zinek označit za velmi reaktivní kov. Při vyšších teplotách podléhá pásobení většiny nekovů s výjimkou dusíku, vodíku a uhličí. Vytváří většinou velké množství slítnin s ostatními kovy.

Bílý oxid zinečnatý ZnO vzniká spalováním zína nebo dehydratací bílého Zn(OH)₂. Vytváří ho také zinečnatý hydrózou z roztoků zinečnatých soli. ZnO i Zn(OH)₂ mají vyslovené amfoterické charakter. Rozpouštějí se v kyselinách na soli zinečnaté, v roztocích hydroxidů alkalických kovů poukazují na tetrahydroxizinečnaty:

\[
\text{ZnO} + 2\text{OH}^- + \text{H}_2\text{O} \rightarrow [\text{Zn(OH)}_2]^2-
\]

Při rozpouštění ZnO, resp. Zn(OH)₂, v roztocích obsahujících amoníak vznikají amminkomplexy:

\[
\text{Zn(OH)}_2 + 4\text{NH}_3 \rightarrow [\text{Zn(NH}_3)_4]^2^- + 2\text{OH}^-
\]

Většina solí zinečnatých je ve vodě rozpustná. Do této skupiny patří především halogenidy (mimo fluorid), děje dusíčan, síran, octan a chloridán. Většina těchto solí tvorí při krystalizaci z vodních roztoků hydráty. K nerozpustným zinečnatým sloučeninám patří bílý sulfid zinečnatý ZnS, uhličitan zinečnatý ZnCO₃, křeménitý zinečnatý Zn₃Sb₂O₇ a fluorid zinečnatý ZnF₂ a některé další.

Velmi výrazná je tendence atomů Zn⁰ k tvorbě komplexních částic. Běžný je vznik aniontových komplexů s ligandy Cl⁻, Br⁻, I⁻, CN⁻, SCN⁻, NO₂⁻, OH⁻, CH₃COO⁻ aj. Velmi pevné komplexy tvoří též s molekulami amoníaku, hydrazinu, thioharnony, aminů a mnohých dalších.

Základními typy organokovových sloučenin zinku jsou látky o složení R₂Zn nebo RZnY (kde Y je halogen, kyanoskupina nebo skupiny typu OR, SR, NR₂, PR₂ aj.). Některé z těchto látek mají značný význam v technické praxi. Uplatňují se jako výchozí látky pro přípravu katalytických systémů polymerujících např. propen, butadien nebo isopren a užíváním pro získání polyakrylatů, polystyrenu, polyakrylonitrilu a dalších polymericů.

Z ostatních sloučenin zinku je významný ZnO, který se používá ve farmaceutickém průmyslu, ve sklářství (mírně sklo), při výrobě speciálních fotografických papírů, v kosmetice, jako bílý pigment (zinkova bíloba) aj. Chlorid, síran i octán zinečnatý mají upotřebení v papírenském průmyslu (výroba pergamenu), v textilním průmyslu (bělení prostředky, potiskování tkání). ZnO a ZnCl₂ jsou většinou katalyzátory (výroba methanolu), křemčitan zinečnatý slouží k výrobě televizních obrazovek. ZnS je se sněsem s BaSO₄ tvoří bílý pigment, tzv. litopen. Velký technický význam má již uvedené použití zinku k pokovování železných součástek a plechů, k výrobě peší a dalších slín s nezpevněnými kovy (např. bronzů). Zinkový prach se uplatňuje v organické syntéze i při některých anorganických výrobcích jako významné redukiovadlo.

- **Kadmium**

Atomy kadmia s valenční sčítou 5s²⁴d¹⁰ se obdobně jako zinek stabilizují ve svých sloučeninách dosažením oxidačního stavu II. Kadmium se řadí k neúbleským kovům. V kyselinách se rozpuštějí stejným způsobem jako zinek. Vzniká vodík nebo produkt redukce kyseliny, podle povahy a koncentrace použité kyseliny a podle teploty. Na vlhkém vzduchu podélá kadmium pouze povrchově oxidaci, která ani při vhodných podmínkách nepokračuje do hloubky materiálu.

Oxid kadmový stejně jako hydroxid kadmový lze získat alkalickou hydrolyzou vodních roztoků kadmových solí. Oslaběná látky jsou podstatně méně amfoterlní než obdobné sloučeniny zinku. Oxid i hydroxid se proto jen velmi nepatrně rozpuštějí v roztocích hydroxidů alkalických kovů. Jejich rozpoutání v kyselinách je naproti tomu spontánní a vede k vzniku kadmových solí. Žlutý sulfid kadmový a bílý uhlíčitan kadmový jsou nerozpustné, mělko rozpustné jsou tež fluorid, kyanid a kyanat kadmový. Ostatní sloučeniny kadmové, jmenovitě halogenidy, síran, chlorid, dusícan a některé další, jsou všeměsí rozpustné.

U kadmia bylo prokázáno, že stejné jako rutu je schopno modifikovaném způsobem stabilizace na dvoucí atomů Cd²⁺, při níž je formálně održen jen jeden ze dvou přítomných elektronových párů 5s². Druhý naopak zprostředkovává vazbu mezi oběma atomy kadmia. Tyto sloučeniny, obsahující formálně kadmium v oxidacním stavu I, byly získány např. z tavení tetrachlorhaldanu sodného nebo halogenidů alkalických kovů, v nichž byly rozpouštěny CdCl₂ a roztažené kovové kadmium.
Organokovové sloučeniny kadmia jsou málo běžné látky. Jedním běžnějším typem téhož sloučenin je R₂Cd (kde R je alkyl, popř. jedna ze skupin R může být alkoxyl nebo jiná obdobná skupina).

Technický význam kadmia není příliš velký. Sulfid kemadnkatý CdS slouží jako žlutý pigment.

Kovové kadmium se v menší míře užívá v jaderné technice k absorpci neutronů, a slouží též k po-
kovování při protikorozní ochraně některých elektrotechnických součástek (kondenzátorů); k ně-
kterým účelům jsou vhodné a používají se akumulátory Ni-Cd.

Rtuť

Valenční sfera atomů rtuti má elektronovou konfiguraci 6s²5d¹⁰. Stabilizuje se na kon-
figuraci elektronové osmíkatky ztrátou dvou elektronů a dosažením oxidacičního stavu II. Mimo to je u rtuti poměrně běžný již uvedený způsob stabilizace, při kterém se vzájemně vážou dva atomy rtuti vazbou zprostředkovanou jedním ze dvou elektronových párů 6s², přičemž druhý pár 6s² se uvolňuje. Vzniká tak dvojice atomů rtuti v celkovém oxidacičním stavu II. Formálně je to u atomů rtuti dosaženo oxidacičního stavu I.

Chemie rtuti se pomáhá odlišis je od chemie obou lehčích kovů ze skupiny zinku. Především je rtuť na rozdíl od obou prvů utlchtuje. Reaguje již s kyselinami, které mají oxidaciční účinky. Podle toho, jak velká je oxidaciční schopnost roztoku kyseliny, a podle toho, zda kyselina je či není přítomna v přebytku, dochází buď k tvorbě rtuťových, nebo rtuťnatých solí. Například při roz-
pouštění rtuti v nepříliš koncentrované kyselině dusičné, nepoužije-li se tento roztok v přebytku, nastává reakce

₆Hg + ₈HNO₃ = ₃Hg(NO₃)₂ + ₂NO + ₄H₂O

Konzentrovánojší a v přebytku použitá kyselina dusičná vede pouze k uskladnění děje

Hg + ₄HNO₃ = Hg(NO₃)₂ + ₂NO + ₂H₂O

Rtuť sice reaguje s většinou nekovů, např. s halogeny a sírou, i při běžných teplotách (v životě na str. 195), ale některé její sloučeniny mají sklon rozpadat se zpět na prvky (Hg₂O, HgS ap.). Velmi dobře odolává rtuť pouze měděným kyslíkem, vodným roztokům hydroxidu alkaliických kovů a neoxidujícím sloučenínám. Poskytuje s jinými kovy slitiny, z nichž mnohé jsou stejně jako

Žlutý oxid rtuťnatý HgO je látkou, která se vybuďuje při silném zalkalizování roztoku soli rtuťnaté;

Hg²⁺ + ₂OH⁻ = HgO + H₂O

Lze ji připravit též přímou syntezou z prvků, v tom případě je však vznikající oxid rtuťnatý zbarven červeně. HgO se rozpuštění v kyselinách za vzniku soli rtuťnatých. Ve vodě a v alkaliických vodných roztocích je nerozpustný.

Sloučeninou zcela nerozpustnou ve vodě je Hg₂S, který lze připravit srážením roztoků soli rtuťnatých sulfitanem nebo i přímou syntezou z prvků. Nerozpustnou látkou je též jód rtuťnatý HgI₂, vznikající případem jodidů k roztoku soli rtuťnaté jako červená skaženina.

Rozpuštěné soli rtuťnaté, např. chlorid rtuťnatý HgCl₂, a kyanid rtuťnatý Hg(CN)₂, jsou všem ve vodném roztoku velmi málo disociovány.

Rtuť v oxidacičním stavu II, stejně jako atomy Zn⁰ a Cd⁰, velmi náchylně vytváří komplexní částice s ligandy oh-donorového charakteru. I nerozpustné sloučeniny rtuti, jako je HgO nebo HgI₂, mezi v důsledku tvorby koordinačních sloučení přecházejí do roztoku:

HgI₂ + ₂I⁻ = [HgI₄]²⁻
V anionových komplexech rtuť běžně dosahuje tetraedrické koordinace a koordinačního čísla 4. Pozoruhodným a analyticky využíváným rozdílem mezi chválim rtuťnatými soli i soli většiny přechodných kovů je průběh jejich reakce s amoniakem za přítomnosti chloridů. Zatímco katony přechodných kovů tvoří amminkomplexy, rtutnatá sůl se sdělí jako velmi málo rozpustný amid-chlorid rtuťnatý. Ve vodním roztoku probíhá reakce

\[\text{HgCl}_2 + 2 \text{NH}_3 \rightarrow \text{HgNH}_2\text{Cl} + \text{NH}_2^+ + \text{Cl}^- \]

Sloučeniny rtuť v oxidácím stavu I obsahují vždy atomové skupiny \(\text{Hg}^2+ \) s vazbou kov–kov. Lze je označit všeobecně jako velmi málo stabiliční utvary. Oxid anion hydroxidu rtuťně nejsou známy. Při pokusu o jejich vyloučení z roztoku rtuťných soli účinkem hydroxidů alkalicích kovů vzniká vždy \(\text{HgO} \) a volná rtuť:

\[\text{Hg}^2+ + 2 \text{OH}^- \rightarrow \text{HgO} + \text{Hg} + \text{H}_2\text{O} \]

Dosud nebyly připraveny ani chlorkové rtuťné. Známé jsou a poměrně velmi dobrou stabilitou i v tuhém stavu vykazují halogenidy rtuťné \(\text{Hg}_2\text{Cl}_2 \), acetylid rtuťné \(\text{Hg}_2\text{C}_2 \), \(\text{H}_2\text{O} \) a chlo-ristan rtuťný \(\text{Hg}_2(\text{ClO}_4)_2 \). Některé další sloučeniny jsou stálé jen ve vodním roztoku, např. \(\text{Hg}_2(\text{NO}_3)_2 \) nebo \(\text{Hg}_2(\text{NO}_2)_3 \). Působením tepla, světla nebo i pohybu krystalizaci z roztoku se mnohé rtuťné sloučeniny zpracují na elementární rtuť a sloučeninu rtuťnatou. Působením oxidacech těchto lze rtuťné sloučeniny převést na rtuťnaté, aníž by docházelo k jejich disproporcionaci za vzniku elementární rtuť.

Komplexní sloučeniny, v jejichž středu stojí dvojice atomů \(\text{Hg}_2^2+ \) jsou silně známé, ale nejsou běžné ani stálé. Většinou se snadno rozpadají stejným způsobem jako ostatní rtuťné sloučeniny. Větší stabilitu vykazují pouze komplexní částice, v nichž jako ligandy vystupují difosforečnanové a trifosforečnanové aniony, aniony organofosforečnanové a některé organické ligandy.

Organové sloučeniny rtuť v oxidácím stavu II jsou poměrně běžné. Většinou vodící látka \(\text{Hg}_2\text{Cl}_2 \) nebo \(\text{Hg}_2\text{NO}_3 \), v nichž při funkcii skupiny \(\text{V} \) nejzrušnější atomová uskupení.

Elementární rtuť má velmi významnou použití ve vědě a technice jako kapaliny ušlechtilý kov, vyznačující se dobrou tepelnou a zejména elektrickou vodivostí a schopností rozpuštět mnoho jiné kovy.

Některé organové sloučeniny rtuť se uplatňují ve farmaci, \(\text{HgO} \) slouží jako fungicid, další rtuťné sloučeniny se používají jako detonátory. Upotřebení rtuť je poněkud omezeno jednak její jedovatostí v sloučeném i nesloučeném stavu, jednak tím, že rtuť ježína na i nedostatkem kovům, neboť jejich přítomnost zdroje již nestačí krytí rostoucí spotřebě.

- Zirkonium a hafnium

Valenční síly atomů těchto prvků mají elektronovou konfiguraci \(5s^2 5d^2 \) a \(6s^2 5d^2 \). Zirkonium a hafnium ve svých sloučeninách běžně nabývají oxidáčního stavu IV, který je staven dominantním. Nicméně oxidácí stavy jsou u obou prvků velmi nestálé. Oxidácích stavů III nebo II dosahují obvykle jen ve sloučeninách tvořících tuhoupfuky, např. ve halogenidech. Existence hydratovaných kationtů \(\text{Zr}^{2+} \) a \(\text{Hf}^{2+} \), stejně jako \(\text{Zr}^{4+} \) a \(\text{Hf}^{4+} \) nebyla ve vodních roztocích prokázána.

Poměr různých různých atomů Zr a Hf jsou větší než Ti a oba kovy jsou elektropozitívništěji, předpokládáme, že vazby v jejich sloučeninách jsou obecně iontovější. To se projevuje v řadě případů větší pevnosti jimi vytvářených vazeb. Proto jsou např. oba oxidů \(\text{ZrO}_2 \) a \(\text{HfO}_2 \) velmi málo těkavé látky, \(\text{ZrO}_2 \) se uplatňuje jako živ“Hevzorný materiál i jako bílý pigment pro výrobu smaltů. Je zvláštně baričtíštější než \(\text{TiO}_2 \), proto je v roztocích hydroxidů prakticky necupstný. Srážením z roztoků zirkoničitých a hafničitých soli přidáváme hydroxidů vznikají hydratované oxidy, dobře rozpustné v kyselinách.
Stejně jako u titanu jsou i u zirkonu známy podvojné ohydy se strukturami typu perovskitů nebo spinelu. Vznikají tavením oxidů, dušičnanů nebo uhličitanů kovů se ZrO₂. Nalezly někdy rozšíření jako elektroceramické materiály.

Istotové halogenidy ZrY₂ a Hf₂Y₂ jsou, stejně jako ohydy, velmi místo lehké a liší se tím od obdobných sloučenin titanu. V bezvodé formě je lze připravit redukční halogenaci oxidů. Bezvodé fluoridy je možné získat reakcí chloridu zirkonii čistého nebo hafničitého s bezvodým fluorovodíkem. Při pokusu o přípravu halogenidů z vodních roztoků se však hydráty halogenid-oxidu, známé je například ZrOCl₂·8H₂O. Sklon ke spontánní hydrolyze je u halogenidu zirkonie čistých méně výrazný než u TiCl₄.

Velmi tvrdými těžkotavitelnými materiály jsou boridy, karbidy a nitridy obou kovů. Jejich kompaktní krystalové struktury se vyznačují tím, že atomy kovů v nich tvoří nejčastěji hexagonální uspořádání a bor, uhlik nebo dusík zaujímají pozice v některých oktaedrických dutinách.

Zirkonium i hafnium poskytují si sírou sulfidy Me₂S₅, vykazující vrstevnatou strukturu typu jedicíd kademnatého a jevíci polovodivé vlastnosti.

Oba kovy v oxidacem stávajících tvorbě kompleksních sloučení. Typické ligandy jsou halogenidové anionty, hlavně F⁻, anionty O₂⁻, OH⁻, molekula H₂O a některé další částice. Koordinuční číslo bylo obvykle 7, 8, až 6. Běžná je tvorba polyaderných komplekhých aniontů s propojením středových atomů hanského.

Organokovové sloučeniny zirkoniu a hafnia nejsou běžné, vazba mezi kovem a uhličitým je obvykle měla pevně. Poměrně stabilní jsou komplexy s nespecifikovanými donorovými atomy, například [(h⁵-C₄H₅)₂Zr]Br₂ a [(h⁵-C₄H₅)₂Hf]Cl₃ jsou na vzdachu stálé látky, jejichž příprava není obtížná.

Zt a Hf jsou v přirodě velmi málo zastoupeny, rozšíření hafnia je asi stokrát méně než zirkoniu. Oba prvky a jejich sloučeniny se proto využívají v technické praxi jen sporadicky.
Dodatek

<table>
<thead>
<tr>
<th>Atomové číslo</th>
<th>Název český</th>
<th>Název latinský</th>
<th>Symbol</th>
<th>Relativní atomová hmotnost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>vodík</td>
<td>hydrogenium</td>
<td>H</td>
<td>1,007 9 ± 1)</td>
</tr>
<tr>
<td>2</td>
<td>helium</td>
<td>helium</td>
<td>He</td>
<td>4,00260</td>
</tr>
<tr>
<td>3</td>
<td>lithium</td>
<td>lithium</td>
<td>Li</td>
<td>6,941</td>
</tr>
<tr>
<td>4</td>
<td>beryllium</td>
<td>beryllium</td>
<td>Be</td>
<td>9,01218</td>
</tr>
<tr>
<td>5</td>
<td>bor</td>
<td>borum</td>
<td>B</td>
<td>10,81</td>
</tr>
<tr>
<td>6</td>
<td>uhlik</td>
<td>carbonenum</td>
<td>C</td>
<td>12,011</td>
</tr>
<tr>
<td>7</td>
<td>dusík</td>
<td>nitrogenium</td>
<td>N</td>
<td>14,0067</td>
</tr>
<tr>
<td>8</td>
<td>kyšlik</td>
<td>oxygenium</td>
<td>O</td>
<td>15,9994 +</td>
</tr>
<tr>
<td>9</td>
<td>fluor</td>
<td>fluorum</td>
<td>F</td>
<td>18,99840</td>
</tr>
<tr>
<td>10</td>
<td>neon</td>
<td>neon</td>
<td>Ne</td>
<td>20,179 +</td>
</tr>
<tr>
<td>11</td>
<td>sodík</td>
<td>natrium</td>
<td>Na</td>
<td>22,08977</td>
</tr>
<tr>
<td>12</td>
<td>hořčík</td>
<td>magnesium</td>
<td>Mg</td>
<td>24,305</td>
</tr>
<tr>
<td>13</td>
<td>hliník</td>
<td>aluminium</td>
<td>Al</td>
<td>26,98154</td>
</tr>
<tr>
<td>14</td>
<td>křemík</td>
<td>silicium</td>
<td>Si</td>
<td>28,086 +</td>
</tr>
<tr>
<td>15</td>
<td>fosfor</td>
<td>phosphorus</td>
<td>P</td>
<td>30,97376</td>
</tr>
<tr>
<td>16</td>
<td>síra</td>
<td>sulphur</td>
<td>S</td>
<td>32,06</td>
</tr>
<tr>
<td>17</td>
<td>chlor</td>
<td>chlorum</td>
<td>Cl</td>
<td>35,453</td>
</tr>
<tr>
<td>18</td>
<td>argon</td>
<td>argon</td>
<td>Ar</td>
<td>39,948 +</td>
</tr>
<tr>
<td>19</td>
<td>draslík</td>
<td>kalium</td>
<td>K</td>
<td>39,098 +</td>
</tr>
<tr>
<td>20</td>
<td>vápník</td>
<td>calcium</td>
<td>Ca</td>
<td>40,08</td>
</tr>
<tr>
<td>21</td>
<td>skandium</td>
<td>scandium</td>
<td>Sc</td>
<td>44,9559</td>
</tr>
<tr>
<td>22</td>
<td>titan</td>
<td>titanium</td>
<td>Ti</td>
<td>47,90 +</td>
</tr>
<tr>
<td>23</td>
<td>vanad</td>
<td>vanadium</td>
<td>V</td>
<td>50,9414 +</td>
</tr>
<tr>
<td>24</td>
<td>chrom</td>
<td>chromium</td>
<td>Cr</td>
<td>51,996</td>
</tr>
<tr>
<td>25</td>
<td>mangan</td>
<td>manganum</td>
<td>Mn</td>
<td>54,9380 +</td>
</tr>
<tr>
<td>26</td>
<td>železo</td>
<td>ferrum</td>
<td>Fe</td>
<td>55,847 +</td>
</tr>
<tr>
<td>27</td>
<td>kobalt</td>
<td>cobaltium</td>
<td>Co</td>
<td>58,9332</td>
</tr>
<tr>
<td>28</td>
<td>nikl</td>
<td>niccolum</td>
<td>Ni</td>
<td>58,71 +</td>
</tr>
<tr>
<td>29</td>
<td>měď</td>
<td>cuprum</td>
<td>Cu</td>
<td>63,546 +</td>
</tr>
<tr>
<td>30</td>
<td>zinek</td>
<td>zincum</td>
<td>Zn</td>
<td>65,38</td>
</tr>
</tbody>
</table>

1) Převzato z Pure and Applied Chemistry 30, 639 (1972)

2) Hodnoty relativních atomových hmotností jsou určeny se přesností ± 1 na poslední uvedené číslici, pokud je za poslední číslicí znak +, se přesností ± 3.

574
<table>
<thead>
<tr>
<th>Atomové číslo</th>
<th>Název český</th>
<th>Název latinský</th>
<th>Symbol</th>
<th>Relativní atomová hmotnost</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>gallium</td>
<td>gallium</td>
<td>Ga</td>
<td>69,72</td>
</tr>
<tr>
<td>32</td>
<td>germanium</td>
<td>germanium</td>
<td>Ge</td>
<td>72,59 +</td>
</tr>
<tr>
<td>33</td>
<td>arsen</td>
<td>arsenium</td>
<td>As</td>
<td>74,921 6</td>
</tr>
<tr>
<td>34</td>
<td>seleu</td>
<td>selenium</td>
<td>Se</td>
<td>78,96 +</td>
</tr>
<tr>
<td>35</td>
<td>brom</td>
<td>bromium</td>
<td>Br</td>
<td>79,904</td>
</tr>
<tr>
<td>36</td>
<td>krypton</td>
<td>krypton</td>
<td>Kr</td>
<td>83,80</td>
</tr>
<tr>
<td>37</td>
<td>rubidium</td>
<td>rubidium</td>
<td>Rb</td>
<td>85,467 8 +</td>
</tr>
<tr>
<td>38</td>
<td>stronciun</td>
<td>strontium</td>
<td>Sr</td>
<td>87,62</td>
</tr>
<tr>
<td>39</td>
<td>ytrrium</td>
<td>yttrium</td>
<td>Y</td>
<td>88,905 9</td>
</tr>
<tr>
<td>40</td>
<td>zirkonium</td>
<td>zirconium</td>
<td>Zr</td>
<td>91,22</td>
</tr>
<tr>
<td>41</td>
<td>niob</td>
<td>niobium</td>
<td>Nb</td>
<td>92,906 4</td>
</tr>
<tr>
<td>42</td>
<td>molybden</td>
<td>molybdaenium</td>
<td>Mo</td>
<td>95,94 +</td>
</tr>
<tr>
<td>43</td>
<td>technecium</td>
<td>technetium</td>
<td>Tc</td>
<td>(97) 1)</td>
</tr>
<tr>
<td>44</td>
<td>ruthenium</td>
<td>ruthenium</td>
<td>Ru</td>
<td>101,07 +</td>
</tr>
<tr>
<td>45</td>
<td>rhodium</td>
<td>rhodium</td>
<td>Rh</td>
<td>102,905 5</td>
</tr>
<tr>
<td>46</td>
<td>palladium</td>
<td>palladium</td>
<td>Pd</td>
<td>106,4</td>
</tr>
<tr>
<td>47</td>
<td>stříbro</td>
<td>argentum</td>
<td>Ag</td>
<td>107,868</td>
</tr>
<tr>
<td>48</td>
<td>kadmium</td>
<td>cadmium</td>
<td>Cd</td>
<td>112,40</td>
</tr>
<tr>
<td>49</td>
<td>indium</td>
<td>indium</td>
<td>In</td>
<td>114,82</td>
</tr>
<tr>
<td>50</td>
<td>cín</td>
<td>stannum</td>
<td>Sn</td>
<td>118,69 +</td>
</tr>
<tr>
<td>51</td>
<td>antimon</td>
<td>stibium</td>
<td>Sb</td>
<td>121,75 +</td>
</tr>
<tr>
<td>52</td>
<td>teflur</td>
<td>tellurium</td>
<td>Te</td>
<td>127,60</td>
</tr>
<tr>
<td>53</td>
<td>jod</td>
<td>iodum</td>
<td>I</td>
<td>126,904 5</td>
</tr>
<tr>
<td>54</td>
<td>xenon</td>
<td>xenon</td>
<td>Xe</td>
<td>131,30</td>
</tr>
<tr>
<td>55</td>
<td>cesium</td>
<td>caesium</td>
<td>Cs</td>
<td>132,905 4</td>
</tr>
<tr>
<td>56</td>
<td>baryum</td>
<td>barium</td>
<td>Ba</td>
<td>137,34 +</td>
</tr>
<tr>
<td>57</td>
<td>lanthanum</td>
<td>lanthanium</td>
<td>La</td>
<td>138,905 5 +</td>
</tr>
<tr>
<td>58</td>
<td>cer</td>
<td>cerium</td>
<td>Ce</td>
<td>140,12</td>
</tr>
<tr>
<td>59</td>
<td>praseodym</td>
<td>praseodymium</td>
<td>Pr</td>
<td>140,907 7</td>
</tr>
<tr>
<td>60</td>
<td>neodym</td>
<td>neodymium</td>
<td>Nd</td>
<td>144,24 +</td>
</tr>
<tr>
<td>61</td>
<td>promethium</td>
<td>promethium</td>
<td>Pm</td>
<td>(145)</td>
</tr>
<tr>
<td>62</td>
<td>samarium</td>
<td>samarium</td>
<td>Sm</td>
<td>150,4</td>
</tr>
<tr>
<td>63</td>
<td>europium</td>
<td>europium</td>
<td>Eu</td>
<td>151,96</td>
</tr>
<tr>
<td>64</td>
<td>gadolinium</td>
<td>gadolinium</td>
<td>Gd</td>
<td>157,25 +</td>
</tr>
<tr>
<td>65</td>
<td>terbiun</td>
<td>terbium</td>
<td>Tb</td>
<td>158,925 4</td>
</tr>
<tr>
<td>66</td>
<td>dysprosium</td>
<td>dysprosium</td>
<td>Dy</td>
<td>162,50 +</td>
</tr>
<tr>
<td>67</td>
<td>holmium</td>
<td>holmium</td>
<td>Ho</td>
<td>164,930 4</td>
</tr>
<tr>
<td>68</td>
<td>erbiaum</td>
<td>erbiaum</td>
<td>Er</td>
<td>167,26 +</td>
</tr>
<tr>
<td>69</td>
<td>thulium</td>
<td>thulium</td>
<td>Tm</td>
<td>168,934 2</td>
</tr>
<tr>
<td>70</td>
<td>yterbium</td>
<td>yterbium</td>
<td>Yb</td>
<td>173,04 +</td>
</tr>
<tr>
<td>71</td>
<td>lutecium</td>
<td>lutecium</td>
<td>Lu</td>
<td>174,97</td>
</tr>
<tr>
<td>72</td>
<td>hafnium</td>
<td>hafnium</td>
<td>Hf</td>
<td>178,49</td>
</tr>
</tbody>
</table>

1) Číslo v závorkách udávají nukleonové číslo nejslabejšího izotopu daného prvku.
<table>
<thead>
<tr>
<th>Atomové číslo</th>
<th>Název český</th>
<th>Název latinsky</th>
<th>Symbol</th>
<th>Relativní atomová hmotnost</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>tantal</td>
<td>tantalum</td>
<td>Ta</td>
<td>180,947 9+</td>
</tr>
<tr>
<td>74</td>
<td>wolfram</td>
<td>wolframium</td>
<td>W</td>
<td>183,85+</td>
</tr>
<tr>
<td>75</td>
<td>rhenium</td>
<td>rhenium</td>
<td>Re</td>
<td>186,2</td>
</tr>
<tr>
<td>76</td>
<td>osmium</td>
<td>osmium</td>
<td>Os</td>
<td>190,2</td>
</tr>
<tr>
<td>77</td>
<td>iridium</td>
<td>iridium</td>
<td>Ir</td>
<td>192,22+</td>
</tr>
<tr>
<td>78</td>
<td>platina</td>
<td>platinum</td>
<td>Pt</td>
<td>195,09+</td>
</tr>
<tr>
<td>79</td>
<td>zlato</td>
<td>aurum</td>
<td>Au</td>
<td>196,966 5</td>
</tr>
<tr>
<td>80</td>
<td>rtuf</td>
<td>hydrargyrum</td>
<td>Hg</td>
<td>200,59</td>
</tr>
<tr>
<td>81</td>
<td>thallium</td>
<td>thallium</td>
<td>Tl</td>
<td>204,37+</td>
</tr>
<tr>
<td>82</td>
<td>olovo</td>
<td>plumbum</td>
<td>Pb</td>
<td>207,2</td>
</tr>
<tr>
<td>83</td>
<td>bismut</td>
<td>bismuthium</td>
<td>Bi</td>
<td>208,980 4</td>
</tr>
<tr>
<td>84</td>
<td>polonium</td>
<td>polonium</td>
<td>Po</td>
<td>(209)</td>
</tr>
<tr>
<td>85</td>
<td>astat</td>
<td>astatium</td>
<td>At</td>
<td>(210)</td>
</tr>
<tr>
<td>86</td>
<td>radon</td>
<td>radon</td>
<td>Rn</td>
<td>(222)</td>
</tr>
<tr>
<td>87</td>
<td>francium</td>
<td>francium</td>
<td>Fr</td>
<td>(223)</td>
</tr>
<tr>
<td>88</td>
<td>radium</td>
<td>radium</td>
<td>Ra</td>
<td>226,025 4</td>
</tr>
<tr>
<td>89</td>
<td>aktinium</td>
<td>actinium</td>
<td>Ac</td>
<td>227,027 8</td>
</tr>
<tr>
<td>90</td>
<td>thorium</td>
<td>thorium</td>
<td>Th</td>
<td>232,038 1</td>
</tr>
<tr>
<td>91</td>
<td>protaktinium</td>
<td>protactinium</td>
<td>Pa</td>
<td>231,035 9</td>
</tr>
<tr>
<td>92</td>
<td>uran</td>
<td>uran</td>
<td>U</td>
<td>238,029</td>
</tr>
<tr>
<td>93</td>
<td>neptunium</td>
<td>neptunium</td>
<td>Np</td>
<td>237,048 2</td>
</tr>
<tr>
<td>94</td>
<td>plutonium</td>
<td>plutonium</td>
<td>Pu</td>
<td>(244)</td>
</tr>
<tr>
<td>95</td>
<td>americium</td>
<td>americium</td>
<td>Am</td>
<td>(243)</td>
</tr>
<tr>
<td>96</td>
<td>curium</td>
<td>curium</td>
<td>Cm</td>
<td>(247)</td>
</tr>
<tr>
<td>97</td>
<td>berkeliun</td>
<td>berkeliun</td>
<td>Bk</td>
<td>(249)</td>
</tr>
<tr>
<td>98</td>
<td>kalifornium</td>
<td>kalifornium</td>
<td>Cf</td>
<td>(251)</td>
</tr>
<tr>
<td>99</td>
<td>einsteinium</td>
<td>einsteinium</td>
<td>Es</td>
<td>(254)</td>
</tr>
<tr>
<td>100</td>
<td>fermium</td>
<td>fermium</td>
<td>Fm</td>
<td>(257)</td>
</tr>
<tr>
<td>101</td>
<td>mendelevium</td>
<td>mendelevium</td>
<td>Md</td>
<td>(258)</td>
</tr>
<tr>
<td>102</td>
<td>nobelium</td>
<td>nobelium</td>
<td>No</td>
<td>(258)</td>
</tr>
<tr>
<td>103</td>
<td>joliotium</td>
<td>joliotium</td>
<td>Lr</td>
<td>(256)</td>
</tr>
<tr>
<td>104</td>
<td>laurentium</td>
<td>laurentium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>rutherfordium</td>
<td>rutherfordium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>nielsbohrium</td>
<td>nielsbohrium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>hahnium</td>
<td>hahnium</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Podle návrhu komise II. pro názvosloví anorganické chemie IUPAC mají být u prvků s atomovým číslem větším než 100 užívány názvy a symboly odvoditelné z jejich atomových čísel:

<table>
<thead>
<tr>
<th>Atomové číslo</th>
<th>Plný název</th>
<th>Zkrácený název</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>un-nil-unium</td>
<td>unium</td>
<td>Unu</td>
</tr>
<tr>
<td>102</td>
<td>un-nil-bium</td>
<td>bium</td>
<td>Unb</td>
</tr>
<tr>
<td>103</td>
<td>un-nil-trium</td>
<td>trium</td>
<td>Unt</td>
</tr>
<tr>
<td>104</td>
<td>un-nil-quadium</td>
<td>quadrium</td>
<td>Unq</td>
</tr>
<tr>
<td>105</td>
<td>un-nil-pentium</td>
<td>pentium</td>
<td>Unp</td>
</tr>
<tr>
<td>106</td>
<td>un-nil-hexium</td>
<td>hexium</td>
<td>Unh</td>
</tr>
<tr>
<td>107</td>
<td>un-nil-septium</td>
<td>septium</td>
<td>Uns</td>
</tr>
<tr>
<td>108</td>
<td>un-nil-oktium</td>
<td>oktium</td>
<td>Uno</td>
</tr>
<tr>
<td>109</td>
<td>un-nil-ennium</td>
<td>ennium</td>
<td>Une</td>
</tr>
<tr>
<td>110</td>
<td>un-un-nilium</td>
<td>unnilium</td>
<td>Unn</td>
</tr>
<tr>
<td>120</td>
<td>un-bi-nilium</td>
<td>binilium</td>
<td>Uba</td>
</tr>
<tr>
<td>130</td>
<td>un-tri-nilium</td>
<td>trinium</td>
<td>Utn</td>
</tr>
<tr>
<td>140</td>
<td>un-quad-nilium</td>
<td>quadrilium</td>
<td>Uqa</td>
</tr>
<tr>
<td>150</td>
<td>un-pent-nilium</td>
<td>pentilium</td>
<td>Upn</td>
</tr>
<tr>
<td>160</td>
<td>un-hex-nilium</td>
<td>hexilium</td>
<td>Uhn</td>
</tr>
<tr>
<td>170</td>
<td>un-sept-nilium</td>
<td>septilium</td>
<td>Usa</td>
</tr>
<tr>
<td>180</td>
<td>un-okt-nilium</td>
<td>oktilium</td>
<td>Uon</td>
</tr>
<tr>
<td>190</td>
<td>un-enn-nilium</td>
<td>ennilium</td>
<td>Uen</td>
</tr>
<tr>
<td>200</td>
<td>bi-nil-nilium</td>
<td>binilium</td>
<td>Ban</td>
</tr>
</tbody>
</table>

1) Povětšky nejsou součástí názvů, jsou zde uvedeny proto, aby přispěly ke srozumitelnosti a k snazší výslovnosti názvů.
Rejstřík

acetylace 171
acetylydy 378
acídita kyselin 254
- vodných roztoků 250
adice antarafaciální 198
- suprafacíální 197
afinita elektronová 76
akceptor 137, 516
aktinitum 542
aktinoidy 158, 542
aktivita 207
alchymie 20
alkylhalogensilany 392
altait 277
amfibol 391, 460
amid kremičný 387
- kyselin dusičné 364
amidy 353
amoniak 350
- vodný roztok 350
analogie 18
anatas 473
anglešit 472
anhydrit 489
anion kvantitový, vazba 96
antimon, chemické vlastnosti 501
- sloučeniny 502
- vazebné možnosti 499
antimoni 472
apatit 278
argentit 478
argon 266, 284
Aristoteles 19
arsen, chemické vlastnosti 501
- sloučeniny 502
- vazebné možnosti 499
arsenopyrit 472
arylhalogensilany 392
asbest 391
asbolan 477
asociáty jontové 236
asfat 270, 288
atmosféra 262

atom donorový 508
- elektronový obal 41
- jednoelektronový 55
- stabilita jádra 34
- středový 507
- víceelektronový 57
- vodík, energie orbitalů 54
atomové jádro, stabilita 34
- orbitaly, obrazení elektrony 53
atributy hmoty 12
autoionizace 246
autokatalýza 202
azidy 354
azoimid 352
azurit 478
baddeleyit 474
baryt 273, 470
bastnášit 473
bauxit 470
bazén magmatický 459
bazicina roztoků, vyjadřování 250
- vodných roztoků 250
- zásad 256
Bequerel H. 37
beryl 390, 469
beryllium, chemické vlastnosti 487
- sloučeniny 487
- vazebné možnosti 486
berzelianit 276
biotit 262
bischofite 469
bismut, chemické vlastnosti 501
- sloučeniny 502
- vazebné možnosti 499
bismutit 473
bor 401
- binární sloučeniny 404
- elementární 282
- chemické vlastnosti 404
- sloučeniny s dusíkem 409
- s uhlíkem 409
bor, termální sloučeniny 409
- vazba v molekule B\textsubscript{3} 92
- vazebné možnosti 401
boracit 282
boratny 405
borax 282, 411
boridy 407
boritany 410
bormit 478
Broglie L. de 45
brom 288
- elementární 268
bromhany 304
bromid křemičitý 385
bromistany 304
bromnany 304
brookit 473
buňka bazálně centrována 425
- elementární 421
- plošně centrována 425
- prostorově centrována 425
- primitivní 425
- základní 421
buňky Bravaisovy 425
burel 476
butadien, výklad vazby 109
carnotit 474, 476
celestín 470
cer 541
cerit 473
cerasit 472
cin, chemické vlastnosti 495
- sloučeniny 496
- vazebné možnosti 494
cinnabarit 273, 480
colemanit 282, 411
coloradit 277
columbit 475
cowellit 478
cristobalit 460
Curie P. 37
Curie-Sklodowska M. 37
curody 158
cyklus primárního doplnění 158
- sekundárního doplnění 158
- typických prvků 158
- základní 158
číslo 13
částice elektrofilní 127
- elementární 25
- izelektronové 140
částice izosterní 140
- komplexní 506, 507
- nizkospinové 521
- skladba 507
- vysokospinové 521
- nuklofilní 137
četnost osy symetrie 416
cízlo atomové 26
- efektivní 59
- koordinační 508
- kvantuové 49
- neutronové 26
- nukleonové 26
- oxidů 137
- protonové 26
- solvatační 236
déby 128
délka vazby 126
- výpočet 127
- vodičkové vazby 149
Demekritos 19
diagram korelační 198
- molekulových orbitalů 83
diamagnetismus 93, 532
diamant, struktura 281
- výroba 280
diamid kyseliny sirové 354
diazanidy 354
diizóvanany 362
dioksan 359
dióforitany 366
dichlorid-oxid uhličitý 388
dichlorid-sulfid křemičitý 386
dikyan 382
dipol 97, 128
- indukováný 145
- permanentní 128, 144
Drac P. 52
disidičitany 334
dislokační hranová 446
- šroubová 448
disociace elektronytická 233
disproportionace 176
diviteonitany 337
dismanit 469
donor 137, 516
dusíkanany 363
dusík 345
- binární sloučeniny 349
- elementární 277
- chemické vlastnosti 349
dusík, sloučeniny s halogeny 355
- se sírou 358
- těžké sloučeniny 362
- vazba v molekule N₂ 92
- vazebné možnosti 345
dusíky 362
dvacátka elektrotonova 120
dysprosium 541
efekt Debye 145
efekt Einsteinov 145
efekt Londonov 146
Einstein A. 15, 44
ekvivalent chemický 142
elektroda vodíková 212
elektrolyt 233
- potenciální 233
- pravý 233
- silný 235
- slabý 235
elektrosféra 465
- amalgamová 485
diagramová 485
tavenin 464
elektron 25
- nepárový 65
elektronová regulativita 98
Empedokles 19
energie 14
- aktivacní 186
- atomových orbitalů 54
- Fermiho 443
- Gibbsova 185, 204
- ionizační 73
- do prvého stupně 73
- do vyššího stupně 75
- jádra 32
- kvantování 42
tepelného pohybu 187
- vazby 124
- vodíkovým můstkem 149
- vazební jádra 32
- vnitřní soustavy 180
- změny při reakci 179
- nádrž 180
eutropie 185
erbium 541
ethan, výklad vazby 107
ethen, výklad vazby 108
ethyn, výklad vazby 109
europium 541
experiment 18
faktor frekvenční 189
fize 155
fenakrit 469
ferrosilicium 398
fluor 288
- elementární 267
- vazba v molekule F₂ 92
- výroba sloučenin 305
fluorid bortu 408
- výklad vazby 106
- křemíčný 385
- sírový, výklad vazby 111
fluorit 267, 469
fluorapatit 267
fluoroboritany 408
fluorovodík, asociace molekul 150
- výklad vazby 95
formy hmoty 11
forsterit 390
fosfan 346, 358
fosfity 359
fosfor 345
- binární sloučeniny 358
- elementární 278
- chemické vlastnosti 349
- sloučeniny s dusíkem 361
- halogeny 360
- se sírou 361
- těžké sloučeniny 364
- vazebné možnosti 345
fosforečnany 367
fosforičtany 366
fosforitany 366
fosformy 366
fragen 388
frakcionace 153
francium 481
- funkce vlhnů 47
- gadolinium 433
- gadoliniumium 541
galenit 273, 472
gallium, chemické vlastnosti 491
- sloučeniny 492
- vazebné možnosti 490
germanium, chemické vlastnosti 495
- sloučeniny 496
- vazebné možnosti 494
Goudsmith S. A. 52
grafit 394
- výroba 280
hořčik, chemické vlastnosti 487
- sloučeniny 487
- vazebné možnosti 486
hybridizace atomových orbitalů 101
hydratace 171
- ionů 235
hydrázy 354
hydráz 351
hydrát beryliu, vazbu 103
- látky 94
hydridokompakty 221
hydridy 219
- ionové 218, 220
- kovalentní 220
- kovové 221
hydroformylace 265
hydrogenace 171
hydrogenochalkogenidy 328
hydrogensulfetany 333
hydrogenuhlíčatany 387
hydrolýza 171
- anionů 259
- kationů 259
- nevratná 258
- soli 258, 260
- vratná 258
hydroflůra 262
hydroxyamin 352
hyperoxydy 318, 483
hypotéza 18
- atomová 25
Chadwick J. 25
chalkogenidy 327
chalkogenovodíky 326
chalkogeny 320
- binární sloučeniny 325
- chemické vlastnosti 325
- vazebné možnosti 320
- ternární sloučeniny 331
chalkopyrit 273, 478
chalkovin 273, 478
chemie anorganická 23
- historický vývoj 17
- obecná 23
- organická 23, 377
chlor 288
- elementární 288
chlorace 171
chlorečany 302
chlorid křemičitý 385
- nitrosofu 364
chloristany 302
chloranany 301
chlorasparit 268
chrom 547, 548
chromit 475
chrysokol 478

iatrochemie 20
identita 415
ilmenit 473
imid křemíčitý 386
– kyseliny sirové 354
imidy 353
indexy Millerovy 421
indium, chemické vlastnosti 491
– složení 492
– vazebné možnosti 490
individuální chemické 153
inciacie 174
interakce slábé, mezi molekulové 144
interhalogeny 297
inverze podle bodu 415
ion molekulový 141
iridium 562
Ivaněnkov D. D. 25
izobary 27
izolanty 449
– iontové 449
– kovalentní 451
izometrie geometrická 513
– hydratační 515
– iontizační 515
– koordináční 515
– optická 514
– vazebná 516
izomery 154
izomorfi 429
izotop 27
izotypie 430

jádro atomové 25
jednotka vzevoučová 141
jev fotoelektrický 44
– – vnější 446
– – vnější 455
– – Hallův 455
– – Jahn–Tellerův 525
jíl 391, 599
jod 288
– elementární 268
jodidnany 304
jodid křemíčitý 385
jodistany 304
jodiky 304

kadným 568, 570
kainit 268, 485
kaolin 391, 400
karbony 378
– intersticiální 379
– polymerní 378
karbonyly 380
karbonát 268, 468, 469, 485
karyolit 477
kassiterit 471
katalýza 200
– heterogenní 203
– homogenní 202
katalyzátor 201
– nespecifický 201
– selektivní 201
– specifický 201
kation nitrosylový 356
– – vazba 96
– nitrosylový 364
kazivec 267, 268, 305, 306
kernit 282
kintická reakční 188
klasifikace prvků 150
klast 508
kobalt 554, 558
kobutil 477
koks 394
koligace 136
konzentrace 230
– látková 231
– – relativní 231
– molekulární 231
– rovnovážná 205
konfigurace atomová 129
– elektronová 129
– inertního párů 120
– iontů, elektronová 119
– nepravidelné 120
– pseudoválcového plynu 120
– vzácného plynu 120
konstanta atomová hmotnostní 27
– boltzmannova 185
– disociační kyselina a zásad 251
– – rovnovážná 234
– – Planckova 44
– rovnovážní koncentrační 205
– – thaliová 206
– – Rydbergova 56
– rychlostní 189
kontakce aktinoidových 542
– lantanoidová 123, 541
koordinace 136, 178, 506
kovy alkalické 481
- -, chemické vlastnosti 482
- -, sloučeniny 484
- -, vazebné možnosti 482
- -, výroba sloučenin 485
kovy alkalických zemin 150, 486
- -, chemické vlastnosti 487
- -, sloučeniny 487
- -, vazebné možnosti 486
kovy elementární 456
- explorační přírodních zdrojů 456
- nepřehodné 481
- platinitové 561
- přehodné 538
- -, obecné charakteristiky 539
- -, rozšíření v přírodě 456
- -, vlastnosti 445
kryolith 267
krypton 266, 284
- sloučeniny 285
křem 460
křemichovitý 389
- přírodní struktura 390
křemík 374
- -, binární sloučeniny 383
- - elementární 281
- -, chemické vlastnosti 377
- -, sloučeniny s dusíkem 386
- -, halogeny 385
- -, se sírou 386
- -, ternární sloučeniny 389
- -, vazebné možnosti 374
kuprit 478
kvalita chemické látky 153
kyanitan 382
kyanovodík 382
kyselina 177, 243
- amidosírová 357
- bromná 304
- bromát 304
- bromát 304
- dusnatá 362
- -, difosforečná 365
- difosforit 365, 366
- difosforit 365, 366
- distrová 332
- dišličnatá 332, 336
- dišličnatá 332, 337
- dusčnatá 363
- dusíkatá 362
- fluoroborit 408
- fluorofosforečná 368
kyselina florokřemichovitá 386
- fosforečná 365, 367
- -, deriváty 367
- fosforit 365, 366
- fosforit 365, 366
- heteropolyfosforečná 368
- chlorid 302
- chlorit 303
- chlorid 302
- chlořína 301
- chlorová 338
- chlorid 302
- chlorid 302
- chlorid 302
- chlorid 302
- chlorková 354
- křemichovitá 389
- kyanát 382
- kyanovodíková 382
- Lewisova 248
- nitrid-tribromdiová 354
- peroxodiová 332, 339
- peroxoduşčnatá 364
- peroxodustin 364
- peroxodiová 332, 337
- peroxodiová 332, 337
- polythionová 332, 337
- selenit 339
- selenid 340
- sírová 332, 334
- siřičnatá 332, 333
- tellurit 339
- tellurová 340
- cyclo-tetrafosforečná 365
- kation-tetrafosforečný 365
- thiokyanat 383
- thiouriová 332, 336
- thiouriová 332, 336
- cyclo-trifosforečná 365
- kation-trifosforečný 365
- uhličnatá 387
kyselost roztoků, vyjádření 250
kyselina 177, 243
- binární sloučeniny 315
- elementární 271
- chemické vlastnosti 314
- vazba v iontech O₂⁻, O₃⁻, O₄⁻ 93
- -, molekule O₂ 92
- vazebné možnosti 311
lanthan 539, 540
lantanoidy 158, 540
látková část 153
- chemická 152
583
látky amfoterní 257
 - částečně rozpustné 237
 - heterogenní 155
 - homogenní 155
 - iontové 164
 - izomerní 154
 - izomorfní 154
 - monostrukturalní 154
 - Kovové 164
 - nerozpuštěné 237
 - nízkomolekulární 164
 - rozpustné 237
 - náhodné rozpustné 237
 - vysokomolekulární 165

Lavoisier A. L. 22
led sudý 295
ledem chlóřený 268, 277, 369, 370
lédolit 468
Leukippos 19
ligand 507
limonit 477
linneit 477
lišť Úraz v molekule Li$_2$ 92
litotéra 262
lůdsinit 472
Lomonosov M. V. 22
ložiska segregací 460
lučava křalovská 364
 lutecium 541
 magma 459
 - diferentiaci 459
 magnetit 477
 magnezit 469
 malachit 478
 mangan 553
 markazit 477
 mastek 391
 měď 564
 mechanika kvantová 42
 - vnava 42
 mechanizmus reakcí 190
 - -, elementární kroky 190
 - -, přenos elektronů 193
 - řežový 174
 Menděljejev D. I. 73, 156
 měnící iónů 227, 392
 metalomerce 463
 metan, výhled vazby 106
 metoda van Arkelova-de Boerova 464
 - Bayerova 470
 - Krollova 463

metoda Mondova 464
 - MO-LCAO 83
 - pražně-reakční 472
 - pražně-redukční 472
 - subtrahenovití 470
 mikrosvěticí 42
 - dualismus 43
 milír 477
 mineraly leukokratní 460
 - melanokratní 460
 - pegmatitové faze 460
 množství látek 142
 modernizm 137
 model posyvůtních látek 439
 - VSEPR 111
 - -, pravidla 117
 modifikace 430
 moře 142
 malalita hmotnostní 231
 - objemová 231
 molekula 141
 - hmotnost 141
 molekulární reakci 190
 molekuly izoelektronové 140
 molybéden 547, 550
 molybdén 475
 moment dipolový 128
 monazit 474
 můstka antifluoritéová 433
 - fluoritová 433
 - korundová 435
 - kupritová 434
 - perovskitová 435
 - rutilová 434
 - sfaleritová 432
 - spinelová 437
 - wurtzitová 432
 mléčky iontových složenin 426
 - kovalentních látek 428
 - kovů 425
 - molekulových látek 428
 multiplicita 65
 maskitová 460
 městek vodníkový 148
 myšlení abstraktní 17
 naboj formální 140
 - iónů 124
 napětí Hallovo 455
 nasamotí 276
 neslektrolyty 233
 nedělín 470
584
některé 262
- explozace přírodních zdrojů 263
- zastoupení v přírodě 262
neodym 541
neon 266, 284
nerosity akcesorické 460
neutron 25
nikl 554, 559
nisob 545, 547
nitráce 171
nitrid boritý 409
- fosforečný 361
- fosforitý 361
- křemíčitý 386
nitridy 353
nitraokali 485
nositelé elektrického proudu 445
- proudu, polohivost 445
nuklid 26

objem molární ideálního plynu 209
oddělení krystalografická 421
oilin 460
olovo, chemické vlastnosti 495
- vazebná možnosti 494
- sloučeniny 496
operace symetrie 414
orbal atomový 48
- degenerovaný 51
- molekulový 84
- symboľka 85
- týp s, p, d 86
- nevazebný 87, 89
- protivazebný 83
- vazebný 83
ortorh 473
orthoklas 460
osy symetrie jednoduchá 416
- složená 417
- třírobová 417
osmium 561
osmička elektronová 120
oxid boritý 408
- bromčitý 300
- bromný 300
- dusičitý 356
- dusičný 357
- dusitý 356
- dusnatý 355
- dusný 355
- fosforečný 360
- fosforitý 360
- fosforitý 359
oxid chloriditý 299
- chloriditý 300
- chlorný 299
- chlorový 300
- jodiditý 300
- křemíčitý 384
- křemnitrý 384
- selenitý 330
- struktura 323
- selenový 330
- sítčitý 329
- sítčitý 329
- telluritý 330
- tellurový 330
- uhelnatý 379
- výklad vazby 96
- uhelnitý 380, 395
- oxidůří 388
- oxidůří 315
- iontové 316
- kovalentní 316
- ozon, struktura 272
- ozonidy 318
- pulladium 563
- par elektronový 65
- inertní 162
Paracelsus 21
paramagnetismus 93, 532
parkesovani 478
pas dovolené energie 441
- valenční-vodivostní 442
- valenční 442
- vodivostní 442
- zákazný 441
pațelionovaní 478
Pauli W. 53
pentenyl 159
pentinsět 477
periodicita elektronové konfigurace 72
- oxidačních čísel 161
- sekundární 162
- perovskit 475
- peroxid vodíku 316
- peroxidy 317, 483
- peroxohydridy 318
- peroxočláněny 318
- petrografické fyzikální 460
Planck M. 43
platina 563
plocha nodální 61
- plyn elektronový 444
- generátorový 395
- koksarencký 394
- trásky 217
- vodní 265, 395
- zemní 273
- plynová vazec 266, 284
- - příprava 267
- - složení 285
- - struktura 267
- - technický význam 287
- - výroba 267
- podvojné zaměna 170
- podbyl hmoty 12
- pochody hydrotermální 461
- pneumatolytické 460
- pole krystalové 518
- ligandové 518
- polohy interstruční 451
- poloměry Ještěd 121
- polonium 277
- polovodiče 452
- půlměsíce 453
- typ n 453
- - p 454
- - vlastní 452
- - vlastnosti 454
- potenciometry 297
- polychalogenydy 328
- polychlorogenydy 328
- polyanec koordinační 515
- polynol 430
- polysiloxany 392
- polysulfidy 328
- polychitonany 337
- porady Frénkelovy 451
- - mlýnky 446
- - bodové 450
- - Schottkyho 450
- potenciál elektrody 210
- - standardní 211
- pozorování 18
- pozorováním 18
- praseodymy 541
- pravidla Fajansova 123
- - Slaterova 59
- - Woodwardova-Hoffmanova 197
- pravidlo Astonovo 29
- - Hundovo 64
- - Lewinovo, oktatóvé 133
- - Mattauskove 29
- - maximální multiplicity 66
- - pravidlo n+1 64
- - Wignerovo-Wittmerovo 195
- - Le Chateliers-Braunovi 209
- - neutróny 46
- - Paulího 53
- - výučebnosti 53
- - výsledky 63
- - zachování orbitalové symetrie 195
- - spinu 195
- - proces poznávání 17
- proces metamorfní 461
- promethium 541
- propagace 174
- prostor 13
- prostrkovitínium 542, 543
- proton 25
- prvek 26, 152
- prvky dispergování 263
- - kovové 163
- - kumulované 263
- - mononuklidické 29
- - nekovové 163
- - polynuklidické 29
- - symetrie 415
- přechod d-d 531
- překryv atomových orbitalů 81
- přepětí vodíku 465
- psilomelan 476
- pyrit 273, 477
- pyroxeny 391, 460
- pyrophos 477
- radioaktivita 37
- - přeměna z 38
- - β+ 38
- - β− 37
- - radon 266, 284
- rafínace kovů 466
- - fyzikálně chemické 467
- - fyzikální 467
- - chemická 466
- - za snížení tlaku 467
- - závislosti 467
- - reakce acidobazické 177
- - bimolekulární 190
- - heterogenní 169
- - homogenní 169
- - chemické 167
- - energetické změny 179
- - rozdělení 169
- - ionové 172
- - izolované 189
reakce koordinační 178
- molekulové 172
- monomolekulární 190
- odašťovací redukční 175
- redukční 170
- radikálové 174
- redukční 170
- rozkladně 170
- skladně 170
- trimolekulární 190
- vytěšovací 70
retardace 174
rhenium 553, 554
rhodanidy 383
rhodonovodík 383
rhodium 562
ropa 273
rotace kolem osy 414
- složené osy 415
rovina posunutého zrcadlení 417
rovina symetrie 416
rovnice Arrheniova 189
- chemická 168
- Kohlrauschova 235
- Nerstova 213
- Nernstova-Peterssova 212
- Ostwaldova 235
- Schrödingerova 47
rovnovaha chemických heterogenní 207
- homogenní 206
- vodíková 207
- sírovodíková 210
- chemických reakcí 204
rozmrz-jonů 121
rozpad radioaktivní, kinetika 39
- poločas 40
rozprašování 230
- aprotické 246
- protické 244
rozptylové 229, 237
- bromidů 239
- dusičnanů 240
- dusitanů 240
- elektrolytů 241
- fluoridů 239
- fosforečnanů 238
- halogenidů 239
- hydroxidů 238
- chloridových 240
- chloridů 239
- chloritanů 240
- jodidů 239
- látěk 237
rozptusnost octanů 240
- oxidů 237
- plynů v kapalinách 242
- siranů 240
- sířčitanů 238
- soli alkalických kovů 240
- amonných 240
- sulfidů 239
- uhličitanů 238
roztok nasyacený 237
roztoky 229
- elektrolytů 234
- struktura 232
- vyjednávání složení 230
rtaf 571
ruční 456
rumělka 473, 480
ruthenium 561
Rutherford E. 25, 41
rutil 473
Ryderberg J. R. 56
rychlost reakce 188
- v jednotkovém objemu 188
řad reakce 189
- vazby 89
řada ligandů spektrochemická 521
sádrovec 273, 489
samarium 541
samarskit 475
selenium 282, 411
selen 326
- elementární 276
- selektivní 340
- selektivitní 339
- selektivní 327
- série Balmerova 57
- Brachettova 57
- Lymanova 56
- Paschenova 57
- Pfundova 57
stříbro 273, 471, 479
stříbro koordinační 508
- n-ksantovů 53
- solvatační 236
- valenční 72
scholčit 476
schéma reakcí 168
schénia 485
Schrödinger E. 47
siderit 477
sila Lorentzova 455
silikagel 389
silikon 392
silanol 393
silany 383
- deriváty 384
silicidy 384
sílxy 392
sily coulombické 144
- Debyeovy 145
- dipol-dipolové 144
- dipol-molekulové 145
- disperzní 145
- indukční 145
- Keesonovy 144
- Londonovy 146
- van der Waalsovy 144
sira 320
- elementární 273
- oxid 329
- těsné sloučeniny 323
- výroba sloučenin 340
strany 334
sirupovka 381
sítě hliníky 333
sklo draslé 399
- draslno-olovnaté 399
- chemické 399
- křemenné 399
- optické 399
sklo 391
slady uraniumové 476
sloučeniny 152
- sloučeniny iontové 118
- koordinace 505
- izomerie 512
- magnetické vlastnosti 332
- rozdělení reakcí 533
- stabilita 530
- vlastnosti 529
- významné reakce 526
složky soustavy 155
smaltin 477
sněh nitrátní 363
smithsonit 479
smořínk 476
soda 395
solanka 307
solfi amonné 351
- hydratizace 352
- hydroxylamonné 353
solvance 171
- iontů 235
solvokyselina 246
solvolyza 171
solvoterie 246
solfovanada 246
součet rozpustnosti 240
soustava hektogenní 155
- homogenní 155
- izolovaná 154
- krystalografická 421, 423
- otevřená 154
- periodická 157
- skupiny 159
- uzavřená 154
soustavy líšek 154
spektrum vodíku emisní 55
spin elektronu 52
spodumén 468
střížení stejnojmenným iontem 242
stabilita iontů 123
stav oxidativního atoru 137
strocantit 470
struktura atoru 25
- hmoty 11
- nepřitržitá 12
- přetržitá 11
- křeměňová 390
střed symetrie 417
stříbro 566
stupně disociační elektrolytu 234
stříbro 273
- Ziseova 527
sulfan 326
sulfid křemíky 386
- uhličitý 381
sulfidy 327
sulfonace 171
supravodíkové 445
sylvin 268, 468, 485
symbolika chemické vazby 130
symetrie 414
- atomové konfigurace 417
- bodová 415
- krystalových mřížek 414, 421
- molekul 414, 417, 420
- Schönfliesova symbolika 420
synetze termokluzelní 35
štěpení atomových jader 35
- vazeb heterolytické 137
- homolytické 136
tantal 545, 547
tantalit 475
technetium 553, 554
tellur 326
tellurí 320
- elementární 277
tellurany 340
tellurácetany 340
telluridy 327
tenerit 478
teorie Arrheniova 243
- Brönsteda a Lowryho 243
- flopidotonová 21
- Lewisova 248
- molekulových orbitalů 81
- protonova 243
- vědecká 18
teplo reakční 181
- složovací 183
- spalná 183
terbuš 541
terminace 175
termoredukce 462
tetrahydrom 337
tetroy 159
Thales z Miletu 19
thallium, chemické vlastnosti 491
- složeniny 492
- vazebné možnosti 490
thiékyantany 383
thiékantany 336
Thomson J.J. 25
thorium 542, 543
thorwertit 390, 473
thulium 541
tiemamit 276
tinkal 282
titan 543, 544
translaci 415
transuran 158, 543
tridymin 460
triedy 159
třítlivin 468
třínitrid vodíku 352
třínitíd 354
trojúhelník vysuvový 64
tvar atomblových orbitalů 59
- molekul 111
- příklady 117
- určení 115
tvar orbitulu typu d 62
- f 63
- p 61
- s 60
typy mlžek 430

Uhlenbeck G. E. 52
uhli 273, 394
- aktuální 280
uhličitan 387
uhlik 374
- elementární 280
- chemické vlastnosti 377
- složeniny s dusíkem 382
- se sírou 381
- těsné složeniny 387
- vazba v molekule C_2 92
- vazebné možnosti 374
uhlovodíky 378
uran 547, 552
uraničitý 158
uspořádání kouli kubické 427
- nejčiščší 426
vakance 470
val 143
valence 137
valentní 472
vanadin 545
vanadinit 477
vápenec 400, 469, 489
vazba donor-akceptorov 137, 506, 516
- heteronukleární 94
- homonukleární 90
- chemická 78
- iotnost a kovalentnost 97
- polarita 96
- symbolika 130
- iontová 118
- kov--kov 508
- kovová 443
- třípříručová dvouelektromová 402
- v aniontu hexafluorolezitanovém 521
- hexakyanolezitanové 520
- hexakyanolezitanové 518
- tetrakis(hiokyanato)kbeltranovanovém 523
- tetrakyanonitelnatanyovém 524
- kationtu tetraminměďnatém 524

589
vakna v koordinačních sloučeninách
- - oktaedrických komplexech 516
- - tetraedrických komplexech 522
- - tetragonálních komplexech 522
- - tetrazeny niklu 524
- - tuhých látkách 439
- Zeové soli 528
- vodíkovým můstkem 148
vznosn 139
vědomí 11
velikost iontů 121
vlastnosti elektrofilní 137
- chemické vazby 124
- kátět 154
- - acidobazické 250
- - - struktura 252
- - nukleofilní 137
- specifické 153
voda 222
- acidobazické vlastnosti 227
- - asociace 149, 151
- - diagram molekulových orbitalů 222
- - energetická 227
- - chemické vlastnosti 225
- - odstranění plynů 227
- - pitná 227
- - struktura kapaliny 224
- - ledu 224
- - technologická 227
- - těžká 228
- - uzlíková 227
- vazba v molekule 222
- - z ropných tělísek 268
vodič 443
vodič 216
- atomární 218
- - elementární 264
- - emisní spektrum 55
- - chemické vlastnosti 217
- - vazba v atomech H2, H2 90
- - - molekule 81
- - - vazebné možnosti 216
vodičová fotoelektrická 455
výměna iontů 227
výroba 18
- aktivního uhlí 280
- amidi sodného 371
- amoniaku 368
- antimono 472
- arsenu 472

výroba bary 470
- berylia 469
- bismutu 473
- boritanů 412
- boru 282
- bromidů 310
- bromovodíku 310
- bromu 270
- cementu 400
- cesia 468
- chinu 471
- diamantů 280
- drasíku 468
- dusičnanů 370
- dusíku 278
- dusitanů 370
- - fluoridů 306
- - fluoridu bortého 412
- - fluorovodíku 306
- - fluoru 286
- fosforečnanů 372
- fosforečných hnojiv 373
- fosforanů 372
- fosforu 279
- gallia 471
- germanie 471
- grafitu 280
- hliníku 474
- hliníku 470
- hořčíku 469
- hydrázínu 371
- hydridoboritanů 413
- hydroxidu draselného 485
- - sodného 485
- - hydroxyleninu 371
- - chlorořeznanů 308
- - chlorid-oxidů síry 344
- - chloridu fosforečného 372
- - fosforitého 372
- - chloridů síry 344
- - chloridu sodného 307
- - chloritanů 308
- - chlornanů 308
- - chlorovodíku 307
- - chloru 269
- - chromu 475
- - india 471
- - jodidů 310
- - jodovodíku 310
- - jodu 270
- - jodínu 480
- - karmenity 400
- - karbidů 396
výroba keramiky 400
- kobalru 477
- kovů elektrolyzami 464
- - obecné metody 461
- - redukce kovů 462
- - - nekovy 462
- - - - sloučeninami 462
- - - - uhlíkem 463
- - - - vodíkem 462
- - - - tepelným rozkladem sloučenin 464
- křemičku 382
- kyanidů 397
- kyanimidů 397
- kyanovodíku 397
- kyseliny borit 412
- - dusičné 369
- - fosforečné 373
- - chloristé 309
- - chlorosírové 343
- - sírové 341
- kysličku 272
- lanthanoidů 473
- lithium 468
- mangana 476
- mědi 478
- molybdenu 475
- niklu 477
- niobu 475
- olova 472
- oxidů 319
- oxidu boritého 412
- oxidů dusíku 370
- oxidu fosforečného 371
- - chloritického 308
- - - křemičitého 398
- - sírového 342
- - - sířického 340
- - - uhelnatého 394
- peroxidu vodíku 319
- peroxosíranů 319, 344
- platinných kovů 478
- polysirolanů 398
- porcelánu 400
- rhenia 476
- rtuti 480
- rubína 458
- rudi 280
- selezu 276
- síry 274
- sířických 343
- skandia 473
- skla 398

výrobu sloučenin alkalických kovů 485
- - antimonu 504
- - arsenu 504
- - bary 489
- - becilyla 488
- - bismutu 504
- - brunu 389
- - cínu 497
- - fluoru 305
- - fosforu 371
- - germania 497
- - hliníku 493
- - hofčiku 488
- - chloru 306
- - jodu 309
- - kysličku 318
- - olova 497
- - síry 340
- - vápníku 489
- - sedíku 468
- - stavebních materiálů 400
- - stronciu 470
- - sířka 478
- - sulfuru 342
- - sulfidu sodného 343
- - uhličitého 397
- - tantalu 475
- - telluru 277
- - thallia 471
- - thiostranu sodného 343
- - thoríu 474
- - titanu 473
- - trichlor-oxidu fosforečného 372
- - uhličitanu draselného 395
- - sodného 395
- - uranu 476
- - vanadu 474
- - vápníku 469
- - vodíku 265
- - wolframu 476
- - zínu 479
- - zirkonia 474
- - zlata 479
- - železa 477
- vznet nerošů 459
- vzorec funkční 132
- - - geometrický 135
- - - kryštałochimický 135
- - - strukturní elektronový 132
- vzorec chemické 131
- - molekulové 131
- - - stehiometrické 131
<table>
<thead>
<tr>
<th>vztaž Boltzmannův 185</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Goldberghův–Waagův 206</td>
</tr>
<tr>
<td>– Rydbergův 56</td>
</tr>
<tr>
<td>Werner A. 505, 512</td>
</tr>
<tr>
<td>witherit 470</td>
</tr>
<tr>
<td>wolfram 547; 552</td>
</tr>
<tr>
<td>wolframat 476</td>
</tr>
<tr>
<td>wollastonit 390</td>
</tr>
<tr>
<td>xenon 266, 284</td>
</tr>
<tr>
<td>– sloučeniny 285</td>
</tr>
<tr>
<td>– struktura sloučenin 286</td>
</tr>
<tr>
<td>xenotím 473</td>
</tr>
<tr>
<td>ytterbium 541</td>
</tr>
<tr>
<td>yttrium 539, 540</td>
</tr>
<tr>
<td>záhyt elektronů 38</td>
</tr>
<tr>
<td>zákon Hesův 182</td>
</tr>
<tr>
<td>– Laplaceův–Lavoisierův 182</td>
</tr>
<tr>
<td>– násobných sloučovacích poměrů 143</td>
</tr>
<tr>
<td>zákaz periodický 156</td>
</tr>
<tr>
<td>– racionality parametrů 421</td>
</tr>
<tr>
<td>– stálosti bran 421</td>
</tr>
<tr>
<td>– stálých sloučovacích poměrů 143</td>
</tr>
<tr>
<td>– zachování energie 14</td>
</tr>
<tr>
<td>– zachování hmotnosti 14</td>
</tr>
<tr>
<td>– zákony přírodní 18</td>
</tr>
<tr>
<td>– termochemické 182</td>
</tr>
<tr>
<td>– zachování 14</td>
</tr>
<tr>
<td>– zásada 177, 243</td>
</tr>
<tr>
<td>– Lewisova 240</td>
</tr>
<tr>
<td>zinek 568, 569</td>
</tr>
<tr>
<td>zirkon 390, 473</td>
</tr>
<tr>
<td>zirkonium 543</td>
</tr>
<tr>
<td>zlato 567</td>
</tr>
<tr>
<td>zlomek hmotnosti 230</td>
</tr>
<tr>
<td>– molarní 230</td>
</tr>
<tr>
<td>zrcadlení v rovině 414</td>
</tr>
<tr>
<td>železo 477, 556</td>
</tr>
<tr>
<td>žívec 400</td>
</tr>
</tbody>
</table>
Obecná a anorganická chemie

DT 54 (0758)

016
Čena vázaného výtisku Kčs 43, –
104 23,852

Publikace je určena jako učebnice pro studující vysokých škol chemickotechnologických a jako pomůcka všem, kteří chce získat ucelený pohled na moderní anorganickou chemii

04 – 607 – 89
Kčs 43, –